
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) A carbohydrate can be defined as a molecule

- 1) _____
- A) composed of amine groups and carboxylic acid groups bonded to a carbon skeleton.
- B) composed mostly of hydrocarbons and soluble in non-polar solvents.
- C) whose name ends in "-ase".
- D) that is an aldehyde or ketone and that has more than one hydroxyl group.
- E) composed of carbon atoms bonded to water molecules.
- 2) Classify the molecule shown according to the location of its carbonyl group and the number of carbon atoms.
- 2) _____

$$\begin{array}{c} \text{CHO} \\ | \\ \text{H-- C--OH} \\ | \\ \text{HO-- C--H} \\ | \\ \text{CH}_2\text{OH} \end{array}$$

- A) ketotriose
- B) ketotetrose
- C) aldotetrose
- D) aldopentose
- E) aldotriose
- 3) Classify the molecule shown according to the location of its carbonyl group and the number of carbon atoms.
- 3) _____

- A) aldotetrose
- B) aldopentose
- C) aldotriose
- D) ketotriose
- E) ketotetrose

4) Classify the molecule shown according to the location of its carbonyl group and the number of carbon atoms.					4)	
СНО						
H— C —						
но- С-						
HO— Ċ—						
ĊH ₂	OH					
A) ketotriose						
B) aldotriose						
C) aldotetrose						
D) aldopentose	!					
E) ketotetrose						
5) Glucose can be cla	assified as a(an)				5)	
A) ketohexose.						
B) aldopentose						
C) aldohexose.						
D) ketopentoseE) aldoketose.	•					
L) aldoketose.						
6) Ribose can be clas	ssified as a(an)				6)	
A) ketohexose.						
B) aldohexose.						
C) ketopentose						
D) aldopentose	•					
E) aldoketose.						
7) Fructose can be cl	assified as a(an)				7)	
A) aldohexose.						
B) ketohexose.						
C) aldopentose						
D) aldoketose.						
E) ketopentose	•					
8) How many stereo	isomers of an aldo	otetrose can exist?			8)	
A) 16	B) 32	C) 2	D) 4	E) 8	/	
9) How many stereo		-			9)	
A) 2	B) 16	C) 8	D) 32	E) 4		
10) Left- and right-h	anded mirror imag	ge molecules are knowi	n as		10)	
A) structural is		Se intoloculos une luto (vi				
B) enantiomers						
C) diastereome						
D) anomers.						
E) cis-trans iso	mers.					

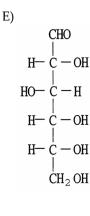
11) Molecules such as erythrose and threose, which are stereoisomers but not mirror images, are
referred to as a pair of ______. D- and L-threose are mirror images and are referred to as a pair

of

- A) anomers; diastereomers
- B) diastereomers; anomers
- C) diastereomers; enantiomers
- D) enantiomers; diastereomers
- E) anomers; enantiomers

12) Which molecule shown is D-glyceraldehyde?

12) _____


- A) on the chiral carbon nearest to the carbonyl points to the right.
- B) on the chiral carbon farthest from the carbonyl points to the left.
- C) on the end carbon farthest from the carbonyl points to the left.
- D) on the chiral carbon farthest from the carbonyl points to the right.
- E) on the chiral carbon nearest to the carbonyl points to the left.

14) Which molecule shown is an L-isomer?

14) _____

A)

$$\begin{array}{c} \text{CHO} \\ & | \\ &$$

- 16) Two isomeric sugars that are cyclic and only differ in the position of the -OH group attached to the hemiacetal carbon are called A) eneantiomers.
 - B) anomers.
 - C) diastereomers.
 - D) mutarotations.
 - E) epimers.
- 17) Mutarotation is process where
 A) two glucose molecules react to form a disaccharide.

17)

16)

- B) glucose undergoes reaction to form an equilibrium mixture of anomers. C) glucose isomerizes to fructose.
- D) glucose reacts with an alcohol forming a cyclic acetal.
- E) the aldehyde group present in a sugar is converted to a hemiacetal.
- 18) All of the statements concerning monosaccharides are correct **except**A) A molecule is classified as a D or L isomer by the position of the hydroxyl group on the chiral center farthest from the carbonyl group.
 - B) Monosaccharides have the general formula $C_n(H_2O)_n$, but this only describes the number and kinds of atoms, not their structure.
 - C) Monosaccharides with 5 or 6 carbon atoms exist in solution in cyclic form.
 - D) The number of stereoisomers possible is 2^n , where n is the number of chiral carbon atoms in the molecule.
 - E) The two different cyclic forms of a particular monosaccharide are called tautomers.
- 19) The conversion of cyclic glucose between the alpha form and the beta form is called
- 19) _____

- A) dimerization.
- B) hydrolysis.
- C) polymerization.
- D) cyclization.
- E) mutarotation.
- 20) When a monosaccharide forms a ring by interaction of one of its hydroxyl groups with its aldehydε 20) _____ group, the bond is referred to as a(an) _____ linkage.
 - A) ester
 - B) glycosidic
 - C) hemiacetal
 - D) acetal
 - E) ether

21) A hemiacetal lini	cage consists of a				21)	
A) carbon ator	n bonded to two-OH	groups.				
B) carbon ator	n bonded to both an - 0	OH and an -OR gro	up.			
C) carbon ator	n that is bonded to an .	-OR group and an -	NH ₂ group.			
D) carbonyl gr	oup that is also bonde	d to a hydroxyl grou	ıp.			
	oup that is also bonde		-			
, , ,	1	0				
22) A sugar is classif	ied as an L-isomer if th	ne hydroxyl group			22)	
_	al carbon closest to the		nts to the right			_
•	al carbon farthest from		e e			
·	al carbon closest to the	, , ,				
	carbon farthest from th					
	al carbon farthest from					
L) on the chire	ar carbon farthest from	the earborry i group	points to the left.			
22) All of the following		an and amid an aftime and	ast in burn an bia ab ansi	abury assessed	22)	
			est in human biochemis		23)	
A) glucose.	B) maltose.	C) ribose.	D) galactose.	E) fructose.		
•	r to glucose and galac	tose in all of the foll	owing aspects except		24)	
A) it forms a h	_					
	rgo mutarotation from	α to β anomers.				
C) its formula						
D) it is a ketos	e.					
E) none of the	above					
25) When a monosac	charide forms a cyclic	hemiacetal, the carb	on atom that contained	d the carbonyl	25)	
group is identifie	d as the carb	on atom because				
A) D; the carbo	onyl group is drawn to	the right.				
B) anomeric; i	ts substituents can assı	ame an α or a β posi	tion.			
C) L; the carbo	nyl group is drawn to	the left.				
D) acetal; it for	rms bonds to an -OR a	ınd an —OR'.				
E) enantiomer	ic; depending on its po	sition, the resulting	ring can have a mirro	r image.		
		_		-		
26) reaction of a sim	ole sugar with an alcoh	nol produces a			26)	
A) a mixture o		F				
B) cyclic aceta						
C) glycoside	•					
D) all of the ab	ove					
E) none of the						
L) Horic of the	above					
27) of gluce	ose leads to gluconic ac	rid			27)	
A) Reduction	se leads to gracorite at				<i></i>	
B) Oxidation						
C) Isomerizati	on					
D) Esterification						
E) Glycosidati						
E) Giycosidati	OH					

28) Common reducing	reactions of monosaccl	harides are due t	0		28)
A) the presence of more than one hydroxyl group.					
B) the presence of	of at least one chiral car	bon atom.			
C) the presence of	of at least one hydroxyl	group.			
D) their cyclic str	ructures.	-			
E) the presence of	of a carbonyl group, us	ually on the #1 ca	arbon atom.		
29) Which molecule is	not a reducing sugar?				29)
A) glucose	B) galactose	C) lactose	D) sucrose	E) maltose	
11) gracese	2) garactese	C) Include	2) sucrese	2) 1110110000	
30) Which molecule is a	a reducing sugar?				30)
A) starch					-
B) glycogen					
C) amylopectin					
D) maltose					
E) sucrose					
-4)					
31) Ketoses can act as r					31)
	l groups can readily be				
15	makes the carbonyl gro	•	0 0		
	ber of hydroxyl group				
·	converted to an aldehy	ae by keto-enoi t	automerization.		
E) none of the ab	oove				
32) A glycosidic bond i	İs				32)
. 0 2	en any two carbohydra	ite molecules.			
	d between an anomeric		d anv —OR group.		
	en anomeric carbon ato				
·	t can be broken by reac	•			
E) none of the ab					
20) 411 611 611	6 6 10	<i>.</i>			22)
33) All of the following	,	•	-		33)
_	ey form a fibrous netw				
	ent of hemoglobin they			:	
, ,	molecule on cell surface	•	O	immune system.	
	ent of cartilage they pro		,		
E) As chinn they	act as a structural com	iponeni oi iobsie	r snens.		
34) Cellulose is produc	ed by , and its	s major function i	is .		34)
A) animals; energ	-	,			,
B) plants; energy					
	structural component				
	ructural component				
E) none of the ab	pove				
05) 57					0 =`
35) The reaction in whi	ich a disaccharide is bro	oken down into i	ts component monosa	accharides is	35)
A) oxidation.					
B) hydrolysis.					
C) reduction.	mation				
D) glycoside formation. E) enediol formation.					
L) EHEUIOI IOIIIId	itiO11.				

36) Lactose result from re	eacting glucose	at its carbo	on and galactose	at its car	bon. 36)	
A) 6, 1	B) 4, 1	C) 1, 1	D) 1, 4	E) 1, 6		
37) The bond connecting	the two monos	accharides in maltos	e is a(an)	linkage.	37) _	
A) 1,2 anomeric						
B) α -1,4 glycosidio						
C) β-1,6 glycosidio						
D) β-1,4 glycosidio						
E) α –1,6 glycosidio						
38) The bond connecting	the two monos	accharides in sucros	e is a(an)	linkage.	38)	
A) α-1,6 glycosidio	2				_	
B) α-1,4 glycosidio	2					
C) β-1,6 glycosidio						
D) b-1, 4 glycosidi	c					
E) 1,2 anomeric						
39) The molecular formu	la of the commo	on disaccharides in h	uman biochemi	stry is	39)	
A) C ₁₂ H ₂₂ O ₁₁ .				J	´ -	
B) $C_2(H_2O)_2$.						
C) C ₁₂ H ₂₄ O ₁₂ .						
D) CH ₂ O.						
, -						
E) C ₆ H ₁₂ O ₆ .						
40) Sucrose is not a reduc	cing sugar beca	use its			40)	
A) disaccharide bo	nd is a β-1,4 lir	nkage.			_	
B) disaccharide bo	nd is an α –1,4 li	inkage.				
_	-	onverted to aldehyde	groups.			
D) disaccharide bo		neric link.				
E) none of the above	ve					
41) Glocoproteins are for	med by bondin	g a oligosaccharide t	o a protein thro	ugh a link	age. 41)	
A) glucuronic	J	0 0	1	0	, _	
B) ester						
C) ether						
D) glycosidic						
E) imine						
42) Starch is produced by	, and	its major function is			42)	
A) animals; energy		- ,			/ _	
B) animals; as a str	-	nent				
C) plants; energy s	•					
D) plants; as a stru		ent				
E) none of the above	•					

43) Glycogen is produced by, and	its major function is	43)
A) plants; as a structural component	•	· .
B) animals; as a structural componen	t	
C) plants; energy storage		
D) animals; energy storage		
E) none of the above		
44) Starch is composed of two polymers,	, which is an unbranched chain, and, which	44)
is a branched polymer.		
A) amylase; amylose		
B) amylose; amylase		
C) amylopectin; amylose		
D) amylose; amylopectin		
E) amylase; amylopectin		
45) Which of the following statements comp		45)
A) Both are polymers of α -D-glucose	2.	
B) Both serve as energy storage mole		
C) Glycogen is more highly branched	• •	
D) Glycogen molecules are generally	larger than amylopectin molecules.	
E) none of the above		
SHORT ANSWER. Write the word or phrase tha	t best completes each statement or answers the question.	
40.5	11 (1.6)	
46) Explain why cows and other grazing an value, but humans cannot.	imals can eat grass and benefit from its nutritive 46) _	
,		
MATCHING. Choose the item in column 2 that	best matches each item in column 1	
Match the following.		
47) enantiomers	A) a monosaccharide that is sweeter than	47)
	sucrose and found in honey and fruits	
48) diastereomers		48)
	B) an aldopentose that is a component of	40)
49) anomers	nucleic acids	40)
,		49)
50) galactose	C) stereoisomers that are not mirror images of	50)
	each other	
51) ribose		E1)
	D) a monosaccharide which is a component of	51)
52) fructose	milk sugar	,
o 2)		52)
	E) mirror-image forms of chiral molecules	
	T) ! (1 1) (1	
	F) isomers of cyclic sugars that exist in the	
	 F) isomers of cyclic sugars that exist in the position of the hydroxyl group at the hemiacetal carbon atom 	

53) glucose	A) a monosaccharide that functions as the transport form of carbohydrates in blood	53)
54) reducing sugar	B) a polysaccharide composed of glucose	54)
55) polysaccharide	units joined by β –1,4 linkages	55)
56) sucrose	C) a disaccharide composed of one molecule of glucose and one molecule of galactose	56)
57) maltose	D) a disaccharide composed of two molecules	57)
58) lactose	of glucose	58)
59) disaccharide	E) a very highly branched polysaccharide composed of glucose units	59)
60) amylose	F) a component of starch composed of	60)
61) cellulose	glucose units joined by β –1,4 linkages	61)
62) glycogen	G) a carbohydrate that yields two monosaccharides upon hydrolysis	62)
	H) a carbohydrate composed of a large number of monosaccharides chemically combined	
	I) a carbohydrate that can be oxidized to produce an acid molecule or its corresponding anion	
	J) a disaccharide composed of one molecule of glucose and one molecule of fructose	

Answer Key

Testname: UNTITLED1

1) D

2) C

3) E

4) D

5) C

6) D

7) B

8) D

9) C

10) B

11) C

12) A

13) D

14) D

15) E

16) B

17) B

18) E

19) E

20) C

21) B

22) E

23) B

24) D

25) B

26) D

27) B

28) E

29) D

30) D

31) D

32) B

33) B

34) D

35) B

36) B

37) B 38) E

39) A

40) D

41) D

42) C

43) D

44) D

45) E

46) Humans do not have the enzyme that breaks the β -1,4-linkages in cellulose. Grazing animals and some insects have bacteria in their digestive systems that produce an enzyme that hydrolyzes these linkages. Therefore these animals can digest and metabolize cellulose.

47) E

48) C

Answer Key Testname: UNTITLED1

- 49) F
- 50) D 51) B

- 52) A 53) A 54) I 55) H 56) J 57) D 58) C 59) G 60) F 61) B 62) E