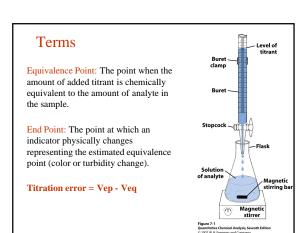

Chapters 7 and 11 Acid-Base Titrations


Titration:

Increments of reagent solution-the titrant-are added to analyte until their reaction is complete.

Titration type/endpoint determination:

- •Volumetric: volume of standard is measured
- •Gravimetric: mass of standard is measured, e.g., Mohr method (Cl-Ag-CrO₄).
- •Coulometric: time at constant current is measured, i.e., amount of charge.
- •Spectrophotometric: Beer's Law, the absorbance

Terms Blank titration: Carry out the same procedure without analyte. To estimate the titration error. Back-titration: Add a known excess of one standard titrant to the analyte, and then titrate a second standard titrant to determine the excess reagent. May be required when a reaction is slow or the standard solution lacks stability. Stopcock Magnetic stirring bar solution lacks stability.

Standard Solutions (Titrants)

Desirable Properties of Standard Solutions

- Sufficiently stable (only need to determine concentration once).
- 2. React rapidly with the analyte (less time between additions).
- React more or less completely with the analyte (satisfactory end points).
- 4. Undergo a selective reaction with analyte described by a simple chemical equation

Standard Solutions (Titrants)

Methods for Establishing the Concentration of Standard Solutions

- Direct Method: A carefully weighed quantity of primary standard is diluted to a known volume. First choice if possible.
- Standardization: A titrant to be standardized is used to titrate a weighed quantity of a primary, secondary standard or a known volume of another standard solution.

Standard Solutions (Titrants)

Primary Standard:

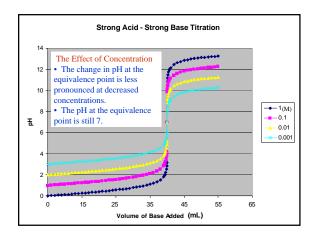
Highly purified compound that serves as a reference material.

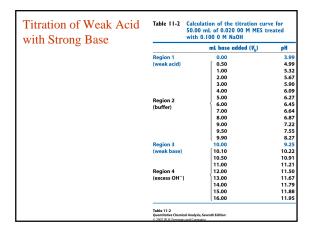
- High purity, stability (air, heat, vacuum),
- Standard solution (direct method)
- To standardize a standard solution (standardization)

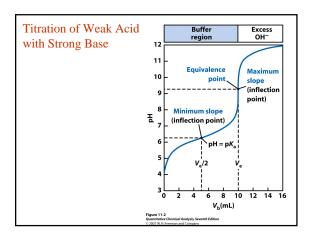
Secondary Standard:

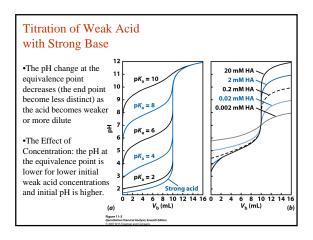
A reference material (a compound) whose purity has been established by a chemical analysis. Often used in lieu of a primary standard because there are not many primary standards.

Acid-Base Titrations


How does the pH change as titrant is added?


Titration Curve: A graph showing how the concentration of one of the reactants varies as titrant is added. (how the pH changes as titrant is added in acid and base titration)

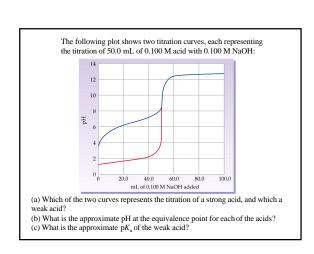


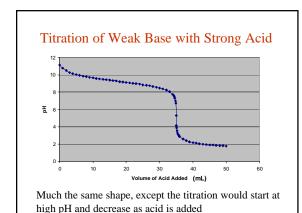

Titration of Strong Base with Strong Acid 1. Before the equivalence point: excess OH 2. At the equivalence point: pH = 7.00 3. After the equivalence point: excess H⁺ Figural 1.1 Figural 1.1 Guardinary Committed Control Analysis, formed defined

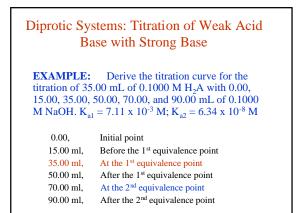
Titration of Strong Acid with Strong Base **EXAMPLE:** Derive the titration curve for the titration of 20.00 mL of 0.1000 M HCl with 0.00, 10.00, 19.98, 20.00, 20.02 and 40.00 mL of 0.1000 M NaOH. 0.00, initial point 10.00 ml, 50% titration 19.98 ml, half-drop before equivalence point 20.00 ml, 100% titration (equivalence point) 20.02 ml, half-drop after equivalence point 40.00 ml, 200% titration (far-over)

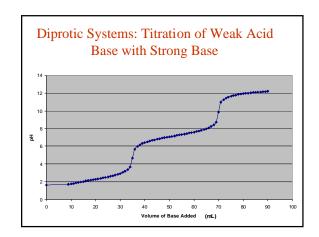
Titration of Weak Acid with Strong Base

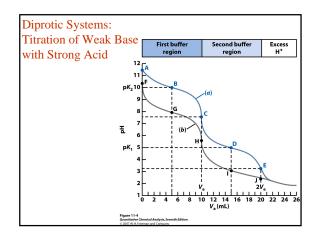
EXAMPLE: Derive the titration curve for the titration of 35.00 mL of 0.1000 M HAc with 0.00, 15.00, 35.00, and 50.00 mL of 0.1000 M NaOH. $K_a = 1.75 \times 10^{-5} M$


 $\mathbf{K}_{a} = 1.73 \times 10^{-1} \text{M}$


0.00, initial point


15.00 ml, before equivalence point


35.00 ml, 100% titration (equivalence point)


50.00 ml, after equivalence point

Standard Solutions for Acid/Base Titrations

Standard acid or base reagents are always strong acids or bases

- They yield sharper end points.
- Weak reagents react incompletely.
- Nitric acid and hot sulfuric and perchloric yield undesirable ox/red side reactions.

Primary standards for acid standardization (see Table 11-5)

- Na₂CO₃
- Tris (THAM) tris(hydroxymethyl)aminomethane, (HOCH₂)₃CNH₂
- Sodium tetraborate decahydrate, Na₂B₄O₇.10H₂O

Endpoint Determination

- 1. Indicators
- 2. Derivatives of titration curve
- 3. Gran Plot

Using Indicators to Determine the End Point

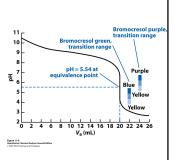
Acid/Base Indicators

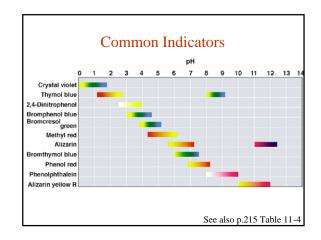
- · Weak acids or bases themselves
- · The conjugate forms differs in color

Indicators

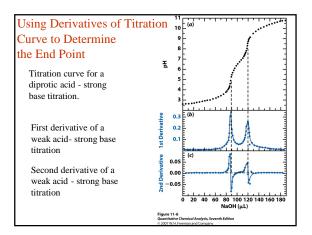
Indicator Behavior

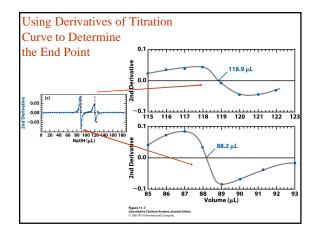
acid color shows when $pH + 1 = pK_a$

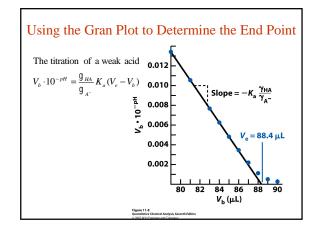

and base color shows when $pH - 1 = pK_a$


Color change range is $pH = pK_a \pm 1$

(Transition range)


Choosing the Proper Indicator


- Color change range should be in area where titration curve is most vertical.
- Indicator error: the difference between the observed end point (color change) and the true equivalence point.



Using Derivatives of Titration Curve to Determine the End Point Table 11-3 Computation of first and second derivatives for a titration curve First derivative Second derivative $\Delta (\Delta pH/\Delta \mu L)$ $\mu L \; \text{NaOH}$ $\mu \mathbf{L}$ 85.5 0.155 0.071 0 4.400 86.0 86.5 0.226 0.081 0 87.0 4.626 87.5 0.307 88.5 0.340 5.273 89.0 -0.083 0 89.5 0.257 5.530 -0.068.0 0.189 -0.039 0 0.130 92.0 5.980 93.0

Using the Gran Plot to Determine the End Point

The titration of a weak acid

$$V_b \cdot 10^{-pH} = K_a \frac{g_{HA}}{g_{A^-}} (V_e - V_b)$$

The titration of a weak base

$$V_a \cdot 10^{+pH} = \frac{1}{K_a} \frac{g_B}{g_{BH^+}} (V_e - V_a)$$