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1 Introduction

The notion of chain recurrence, introduced by Conley [11], is a way of getting at the
recurrence properties of a dynamical system. It has remarkable connections to the
structure of attractors. These ideas have recently been extended to noncompact spaces
by Hurley [21].

Chain recurrence is proving increasingly useful in a variety of fields; accordingly, it is
of interest to identify chain recurrent sets and to analyze their structure. Chain recur-
rence plays a central role in the theory of exponential dichotomies for linear evolutionary
systems developed by Sacker and Sell. See [26] and the references to their earlier work
therein. Mischaikow, Smith and Thieme [23] show that omega limit sets of asymptoti-
cally autonomous semiflows are internally chain recurrent for the limiting vector field,
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and Benäım and Hirsch [5] obtained similar results for asymptotic pseudotrajectories
for continuous semiflows. Benäım [3] has shown that limit sets of certain stochastic
approximation processes are characterized as internally chain recurrent continua for the
associated mean vector field; this has been applied to economics [18], epidemiology [6],
game theory [8] and numerical analysis [19]. In [16] it is shown that compact internally
chain transitive sets for strongly monotone dynamical systems either are unordered or
else are contained in totally ordered, compact arcs of equilibria; and the latter alterna-
tive cannot occur if the dynamical system is real analytic and dissipative. This result is
applied to stochastic approximation and game theory in [7]. Chain recurrence in surface
flows is analyzed in [4].

Outside the subject of topological dynamics, chain recurrence has been used to char-
acterize the property of uniform persistence (or permanence) for dynamical systems,
an idea that arose out of population biology; see Garay [13], Hofbauer and So [20],
Schreiber [27], and Smith and Zhao [31]. Looked at abstractly, uniform persistence is
the notion that a closed subset of the state space (e.g., the set of extinction for one
or more populations) is repelling for the dynamics on the complementary set. One of
the principal tools in the theory of uniform persistence is the Butler-McGehee lemma
[10, 12, 15, 29, 32, 33, 35]. This says that an omega limit set which intersects an isolated
invariant set M , but is not contained in M , must contain positive and negative orbits
outside M whose respective omega and alpha limit sets lie in M . In the present paper we
show that the Butler-McGehee property of omega limit sets is shared by chain transitive
sets for a dynamical system. This class of sets, we show, contains the omega limit sets of
perturbations of true (precompact) orbits of dynamical systems, including asymptotic
pseudo-orbits and orbits of asymptotically autonomous dynamical processes. By ex-
tending the Butler-McGehee result we are able to extend earlier results on attractivity,
convergence and uniform persistence to perturbed dynamical systems. In particular, we
show that uniform persistence is stable under a broad class of perturbations.

Schreiber [27] has recently proved a robust permanence result for Kolmogorov-type
vector field on IRn

+ generating a dissipative flow. More precisely, he gives sufficient
conditions for uniform persistence to hold uniformly for the given system as well as for
all small Cr perturbations of it (r ≥ 1). As an application of our general result on the
stability of uniform persistence, we improve this result by establishing that the uniform
persistence is stable to perturbation by a C0-small Lipschitz vector field.

In the first section of this paper basic definitions are given. In addition, we show that
limit sets of precompact orbits of (not necessarily invertible) maps are internally chain
transitive, and that omega limit sets of certain perturbed orbits also have this property.
The Butler-McGehee lemma and some other properties of internal chain transitive sets
are the focus of section 3. Our main results on strong repellors and uniform persistence
are contained in section 4.
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2 Chain transitive sets

Let Z be the set of integers and Z+ the set of nonnegative integers. Let X be a metric
space with metric d and f : X → X be a continuous map. A subset A ⊂ X is said to
be an attractor for f if A is nonempty, compact and invariant (f(A) = A), and there
exists some open neighborhood U of A in X such that lim

n→∞ supx∈U{d(fn(x), A)} = 0. If

A 6= X, then A is a proper attractor. A global attractor for f : X → X is an attractor
which attracts every point in X. For a nonempty invariant set M , the set W s(M) :=
{x ∈ X : lim

n→∞ d(fn(x),M) = 0} is called the stable set of M . The omega limit set

of x is defined in the usual way as ω(x) = {y ∈ X : fnk(x) → y, for some nk →∞}. A
negative orbit through x = x0 is a sequence γ−(x) = {xk}0

k=−∞ such that f(xk−1) = xk

for integers k ≤ 0. There may be no negative orbit through x and even if there is one,
it may not be unique. Of course, a point of an invariant set always has at least one
negative orbit contained in the invariant set. For a given negative orbit γ−(x) we define
its alpha limit set as α(γ−) = {y ∈ X : xnk

→ y for some nk → −∞}.

Definition 2.1 A point x ∈ X is said to be chain recurrent if for any ε > 0, there
is a finite sequence of points x1, · · · , xm in X (m > 1) with x1 = x = xm such that
d(f(xi), xi+1) < ε for all 1 ≤ i ≤ m − 1. The set of all chain recurrent points for
f : X → X is denoted by R(X, f). Let A ⊂ X be a nonempty invariant set. We call
A internally chain recurrent if R(A, f) = A, and internally chain transitive if
the following stronger condition holds: For any a, b ∈ A and any ε > 0, there is a finite
sequence x1, · · · , xm in A with x1 = a, xm = b such that d(f(xi), xi+1) < ε, 1 ≤ i ≤ m−1.
The sequence {x1, · · · , xm} is called an ε-chain in A connecting a and b.

Following LaSalle [22], we call a compact invariant set A invariantly connected if
it cannot be decomposed into two disjoint closed nonempty invariant sets. An internally
chain recurrent set need not have this property— e.g., a pair of fixed points. However,
it is easy to see that every internally chain transitive set is invariantly connected.

We give some examples of internally chain transitive sets.

Lemma 2.1 Let f : X → X be a continuous map. Then the omega (alpha) limit set of
any precompact positive (negative) orbit is internally chain transitive

Proof. Let x ∈ X and set xn = fn(x). Assume x has a precompact orbit γ = {xn},
and denote its omega limit set by ω. Then ω is nonempty, compact, invariant and
lim

n→∞ d(xn, ω) = 0. Let ε > 0 be given. By the continuity of f and compactness of

ω, there exists δ ∈ (0, ε
3
) with the following property: If u, v are points in the open

δ-neighborhood U of ω with d(u, v) < δ, then d(f(u), f(v)) < ε
3
. Since xn approaches ω

as n →∞, there exists N > 0 such that xn ∈ U for all n ≥ N .
Let a, b ∈ ω be arbitrary. There exist k > m ≥ N such that d(xm, f(a)) < ε

3
and
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d(xk, b) < ε
3
. The sequence

{y0 = a, y1 = xm, · · · , yk−m = xk−1, yk−m+1 = b}

is an ε
3
-chain in X connecting a and b. Since for each yi ∈ U for i = 1, · · · , k − m,

we can choose zi ∈ ω such that d(zi, yi) < δ. Let z0 = a and zk−m+1 = b. Then for
i = 0, 1, · · · , k −m we have:

d(f(zi), zi+1) ≤ d(f(zi), f(yi)) + d(f(yi), yi+1) + d(yi+1, zi+1)
< ε

3
+ ε

3
+ ε

3

Thus the sequence z0, z1, · · · , zk−m, zk−m+1 is an ε-chain in ω connecting a and b. There-
fore ω is internally chain transitive. By a similar argument, we can prove the internal
chain transitivity of alpha limit sets of precompact negative orbits.

Remark 2.1 Bowen [9] proved that omega limit sets of precompact orbits of continuous
invertible maps are internally chain transitive. Robinson [24] proved that omega limit
sets of precompact orbits of continuous maps are internally chain recurrent.

Let {Sn : X → X}n≥0, be a sequence of continuous maps. The discrete dynamical
process (or process for short) generated by {Sn} is the sequence {Tn : X → X}n≥0

defined by T0 = I = the identity map of X and

Tn = Sn−1 ◦ Sn−2 ◦ · · ·S1 ◦ S0, n ≥ 1

The orbit of x ∈ X under this process is the set γ+(x) = {Tn(x) : n ≥ 0}, and its omega
limit set is

ω(x) = {y ∈ X : (∃nk →∞) lim
k→∞

Tnk
(x) = y}

If there is a continuous map S on X such that Sn = S, so that Tn is the nth iterate
Sn, then {Tn} is a special kind of process called the discrete semiflow generated by S.
By an abuse of language we may refer to the map S as a discrete semiflow.

Definition 2.2 The process {Tn : X → X} is asymptotically autonomous, if there
exists a continuous map S : X → X such that

nj →∞, xj → x ⇒ lim
j→∞

Snj
(xj) = S(x)

We also say that {Tn} is asymptotic to S.

It is easy to see from the triangle inequality that if limn→∞ Sn = S uniformly on
compact sets, then the process generated by {Sn} is asymptotic to S.

By [35, Theorem 2.1] and [36, Theorem 1.2], the omega limit set of a precompact orbit
of an asymptotically autonomous process Tn : X → X, n ≥ 0, with limit S : X → X, is
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nonempty, compact, invariant and internally chain recurrent for S. Lemma 2.1 and the
same embedding approach as in [35, 36], give the following additional result.

Lemma 2.2 Let Tn : X → X, n ≥ 0, be an asymptotically autonomous discrete process
with limit S : X → X. Then the omega limit set of any precompact orbit of {Tn} is
internally chain transitive for S.

Definition 2.3 Let S : X → X be a continuous map. A sequence {xn} in X is an
asymptotic pseudo-orbit of S if

lim
n→∞ d(S(xn), xn+1) = 0.

The omega limit set of {xn} is the set of limits of subsequences.

Let {Tn} be a discrete process in X generated by a sequence of continuous maps Sn

that converges to a continuous map S : X → X uniformly on compact subsets of X.
It is easy to see that every precompact orbit of Tn : X → X,n ≥ 0, is an asymptotic
pseudo-orbit of S.

Remark 2.2 Consider the non-autonomous difference equation xn+1 = f(n, xn), n ≥ 0
on the metric space X. If we define Sn = f(n, ·) : X → X, n ≥ 0 and let T0 = I, Tn =
Sn−1 ◦ · · · ◦ S1 ◦ S0 : X → X, n ≥ 1, then xn = Tn(x0) and {xn : n ≥ 0} is an orbit
of the discrete process Tn. If f(n, ·) → f̄ : X → X uniformly on compact subsets of
X then Tn is asymptotically autonomous with limit f̄ . Furthermore, in this case any
precompact orbit of the difference equation is an asymptotic pseudo-orbit of f̄ since
d(f̄(xn), xn+1) = d(f̄(xn), f(n, xn)) → 0.

Lemma 2.3 The omega limit set of any precompact asymptotic pseudo-orbit of a
continuous map S : X → X is nonempty, compact, invariant and internally chain
transitive.

Proof. Let Z+ = Z+ ∪ {∞}. For any given strictly increasing continuous function
φ : [0,∞) → [0, 1) with φ(0) = 0 and φ(∞) = 1(e.g., φ(s) = s

1+s
), we can define a

metric ρ on Z+ as ρ(m1,m2) = |φ(m1)− φ(m2)|, for any m1,m2 ∈ Z+, and then Z+ is
compactified. Let {xn : n ≥ 0} be a precompact asymptotic pseudo-orbit of S : X → X,
and denote its compact omega limit set by ω. Define a metric space

Y = ({∞} ×X) ∪ {(n, xn) : n ≥ 0}
and

g : Y → Y, g(n, xn) = (n + 1, xn+1), g(∞, x) = (∞, S(x)).

By Definition 2.3 and the fact that d(xn+1, S(x)) ≤ d(xn+1, S(xn)) + d(S(xn), S(x))
for x ∈ X, n ≥ 0, it easily follows that g : Y → Y is continuous. Let γ+(0, x0) =
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{(n, xn); n ≥ 0} be the positive orbit of (0, x0) for discrete semiflow gn : Y → Y, n ≥ 0.
Then γ+(0, x0) is precompact in Y and its omega limit ω(0, x0) = {∞} × ω, which by
Lemma 2.1 is invariant and internally chain transitive for g. Applying the definition of
g, we see that ω is invariant and internally chain transitive for S.

Let A and B be two nonempty compact subsets of X. Recall that the Hausdorff
distance between A and B is defined by

dH(A, B) := max (sup{d(x,B) : x ∈ A}, sup{d(x,A) : x ∈ B})
We then have the following result.

Lemma 2.4 Let S, Sn : X → X for n ≥ 1 be continuous. Let {Dn} be a sequence of
nonempty compact subsets of X with lim

n→∞ dH(Dn, D) = 0 for some compact subset D

of X. Assume that for each n ≥ 1, Dn is invariant and internally chain transitive for
Sn. If Sn → S uniformly on D ∪ (∪n≥1Dn), then D is invariant and internally chain
transitive for S.

Proof. Observe that the set K = D
⋃

(∪n≥1Dn) is compact; for an open cover of K also
covers D, and hence a finite subcover provides a neighborhood of D which must also
contain Dn for all large n. If x ∈ D then there exist xn ∈ Dn such that xn → x. As
Sn(xn) ∈ Dn and Sn(xn) → S(x), we see that S(x) ∈ D. Thus S(D) ⊂ D. On the other
hand, there exist yn ∈ Dn such that Sn(yn) = xn. We can assume that yni

→ y ∈ D
for some subsequence yni

, since dH(Dni
, D) → 0. Then xni

= Sni
(yni

) → S(y) = x,
showing that S(D) = D.

By uniform continuity and uniform convergence, for any ε > 0 there exists δ ∈ (0, ε/3)
and a natural number N such that for n ≥ N and u, v ∈ K with d(u, v) < δ, we have

d(Sn(u), S(v)) ≤ d(Sn(u), S(u)) + d(S(u), S(v)) < ε/3.

Fix n > N such that dH(Dn, D) < δ. For any a, b ∈ D, there are points x, y ∈ Dn such
that d(x, a) < δ and d(y, b) < δ. As Dn is internally chain transitive for Sn, there is a
δ-chain {z1 = x, z2, · · · , zm+1 = y} in Dn for Sn, connecting x to y. For each i = 2, · · · ,m
we can find wi ∈ D with d(wi, zi) < δ since Dn is contained in the δ-neighborhood of
D. Let w1 = a, wm+1 = b. We then have

d(S(wi), wi+1) ≤ d(S(wi), Sn(zi)) + d(Sn(zi), zi+1) + d(zi+1, wi+1)

< ε/3 + δ + δ < ε

for i = 1, · · · ,m. Thus {w1 = a, w2, · · · , wm+1 = b} is an ε-chain for S in D connecting
a to b.

Let Φ(t) : X → X, t ∈ [0,∞) be a continuous semiflow. That is, (x, t) → Φ(t)x is
continuous, Φ(0) = idX and Φ(t) ◦ Φ(s) = Φ(t + s) for t, s ≥ 0. A nonempty invariant
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set A ⊂ X for Φ(t) (i.e., Φ(t)A = A, t ≥ 0) is said to be internally chain transitive if for
any a, b ∈ A and any ε > 0, t0 > 0, there is a finite sequence {x1 = a, x2, · · · , xm−1, xm =
b; t1, · · · , tm−1} with xi ∈ A and ti ≥ t0, 1 ≤ i ≤ m − 1, such that d(Φ(ti, xi), xi+1) < ε
for all 1 ≤ i ≤ m − 1. The sequence {x1, · · · , xm; t1, · · · , tm−1} is called an (ε, t0)-chain
in A connecting a and b. We then have the following result.

Lemma 2.1′ Let Φ(t) : X → X, t ≥ 0, be a continuous semiflow. Then the omega limit
set of any precompact orbit is internally chain transitive.

Proof. Let ω = ω(x) be the omega limit set of a precompact orbit γ(x) = {Φ(t)x : t ≥
0} in X. Then ω is nonempty, compact, invariant and lim

t→∞ d(Φ(t)x, ω) = 0. Let ε > 0

and t0 > 0 be given. By the uniform continuity of Φ(t)x for (t, x) in the compact set
[t0, 2t0]× ω, there is a δ = δ(ε, t0) ∈ (0, ε

3
) such that for any t ∈ [t0, 2t0] and u and v in

the open δ-neighborhood U of ω with d(u, v) < δ, there holds d(Φ(t)u, Φ(t)v) < ε
3
. It

then follows that there exists a sufficiently large T0 = T0(δ) > 0 such that Φ(t)x ∈ U ,
for all t ≥ T0. For any a, b ∈ ω, there exist T1 > T0 and T2 > T0 with T2 > T1 + t0 such
that d(Φ(T1)x, Φ(t0)a) < ε

3
and d(Φ(T2)x, b) < ε

3
. Let m be the greatest integer which

is not greater than T2−T1

t0
, then m ≥ 1. Set

y1 = a, yi = Φ(T1 + (i− 2)t0)x, i = 2, · · · ,m + 1, ym+2 = b

and
ti = t0 for i = 1, · · · ,m; tm+1 = T2 − T1 − (m− 1)t0

Then tm+1 ∈ [t0, 2t0). It follows that d(Φ(ti)yi, yi+1) < ε
3

for all i = 1, · · · ,m + 1. Thus
the sequence

{y1 = a, y2, · · · , ym+1, ym+2 = b; t1, t2, · · · , tm+1}
is an ( ε

3
, t0)-chain in X connecting a and b. Since yi ∈ U for i = 2, · · · ,m + 1, we can

choose zi ∈ ω such that d(zi, yi) < δ. Let z1 = a and zm+2 = b. It then follows that

d(Φ(ti)zi, zi+1) ≤ d(Φ(ti)zi, Φ(ti)yi) + d(Φ(ti)yi, yi+1) + d(yi+1, zi+1)
< ε

3
+ ε

3
+ ε

3
, i = 1, · · · , m + 1.

This proves that the sequence {z1 = a, z2, · · · , zm+1, zm+2 = b; t1, t2, · · · , tm+1} is an
(ε, t0)-chain in ω connecting a and b. Therefore ω is internally chain transitive.

Remark 2.3 With Lemma 2.1′, it is easy to see there are analogues of Lemmas 2.2
and 2.3 for continuous semiflows. Moreover, the analogue of Lemma 2.4 for continuous
semiflows follows by a similar argument.

3 Chain transitivity and attractivity

In this section, we discuss further properties of internally chain transitive sets, and give
some applications. Throughout this section, X is a metric space with metric d and
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f : X → X is a continuous map.

Lemma 3.1 A nonempty compact invariant set M is internally chain transitive if and
only if M is the omega limit set of some asymptotic pseudo-orbit of f in M .

Proof. The sufficiency follows from Lemma 2.3. To prove the necessity, we can choose
a point x ∈ M since M is nonempty. For any ε > 0, the compactness of M implies that
there is a finite sequence of points {x1 = x, x2, · · · , xm, xm+1 = x} in M such that its
ε-net in X covers M , i.e., M ⊂ ∪m

i=1B(xi, ε), where B(xi, ε) := {y ∈ X : d(y, xi) < ε}.
For each 1 ≤ i ≤ m, since M is internally chain transitive, there is a finite ε-chain
{yi

1 = xi, y
i
2, · · · , yi

ni
, yi

ni+1 = xi+1} in M connecting xi and xi+1. Then the sequence
{x1

1, · · · , x1
n1

, x2
1, · · · , x2

n2
, · · · , xm

1 , · · · , xm
nm

, xm
nm+1} is a finite ε-chain in M connecting x

and x, and its ε-net in X covers M .
For each integer k, letting ε = 1

k
in the above claim, we have a finite 1

k
-chain {zk

1 =
x, zk

2 , · · · , zk
lk
, zk

lk+1 = x} in M whose 1
k
-net in X covers M . It then easily follows that the

infinite sequence of points {z1
1 , · · · , z1

l1
, z2

1 , · · · , z2
l2
, · · · , zk

1 , · · · , zk
lk
, · · ·} is an asymptotic

pseudo-orbit of f in M and its omega limit set is M .

Block-Franke Lemma([2], Theorem A) Let K be a compact metric space and f :
K → K be a continuous map. Then x 6∈ R(K, f) if and only if there exists an attractor
A ⊂ K such that x ∈ W s(A) \ A.

Lemma 3.2 A nonempty compact invariant set M is internally chain transitive if and
only if f |M : M → M has no proper attractor.

Proof. Necessity. Assume there is a proper attractor A for f |M : M → M . Then A 6= ∅
and M \A 6= ∅. Since A is an attractor, there is an ε0 > 0 such that A attracts the open
ε0-neighborhood U of A in M . Choose a ∈ M\A and b ∈ A and let {x1 = a, x2, · · · , xm =
b} be an ε0-chain in M connecting a and b. Let k = min{i : 1 ≤ i ≤ m, xi ∈ A}. Since
b ∈ A and a 6∈ A, we have 2 ≤ k ≤ m. Since d(f(xk−1), xk) < ε0, we have f(xk−1) ∈ U
and hence xk−1 ∈ W s(A) \ A. By Block-Franke Lemma, xk−1 6∈ R(M, f), which proves
that M is not internally chain recurrent, and a fortiori not internally chain transitive.

Sufficiency. For any subset B ⊂ X we define ω(B) to be the set of limits of sequences
of the form {fnkxk} where nk → ∞ and xk ∈ B. Since f |M : M → M has no proper
attractor, Block-Franke Lemma implies that M is internally chain recurrent. Given
a, b ∈ M and ε > 0, let V be the set of all points x in M for which there is an ε-chain
in M connecting a to x; this set contains a. For any z ∈ V , let

{z1 = a, z2, · · · , zm−1, zm = z}

be an ε-chain in M connecting a to z. Since lim
x→z

d(f(zm−1), x) = d(f(zm−1), z) < ε,

there is an open neighborhood U of z in M such that for any x ∈ U , d(f(zm−1), x) < ε.
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Then {z1 = a, z2, · · · , zm−1, x} is an ε-chain in M connecting a and x, and hence U ⊂ V .
Thus V is an open set in M . We further claim that f(V ) ⊂ V . Indeed, for any z ∈ V ,
by the continuity of f at z, we can choose a y ∈ V such that d(f(y), f(z)) < ε. Let
{y1 = a, y2, · · · , ym−1, ym = y} be an ε-chain in M connecting a and y. It then follows
that {y1 = a, y2, · · · , ym−1, ym = y, ym+1 = f(z)} is an ε-chain in M connecting a and
f(z), and hence f(z) ∈ V . By the compactness of M and [14, Lemma 2.1.2] applied
to f : M → M , it then follows that ω(V ) is nonempty, compact, invariant and ω(V )
attracts V . Since f(V ) ⊂ V , we have ω(V ) ⊂ V and hence ω(V ) = f(ω(V )) ⊂ V . Then
ω(V ) is an attractor in M . Now the nonexistence of proper attractor for f : M → M
implies that ω(V ) = M and hence V = M . Clearly, b ∈ M = V , and hence, by the
definition of V , there is an ε-chain in M connecting a and b. Therefore M is internally
chain transitive.

Recall that a nonempty invariant subset M of X is said to be isolated for f : X → X
if it is the maximal invariant set in some neighborhood of itself.

Lemma 3.3 (Butler-McGehee type lemma) Let M be an isolated invariant set
and L be a compact internally chain transitive set for f : X → X. Assume that
L ∩M 6= ∅ and L 6⊂ M . Then:

(a) there exists a u ∈ L \M such that ω(u) ⊂ M .

(b) there exists a w ∈ L \M and a negative orbit γ−(w) ⊂ L such that its α-limit set
α(w) ⊂ M .

Proof. By the assumption, we can choose a ∈ L ∩M and b ∈ L \M . For any integer
k ≥ 1, by the internal chain transitivity of L, there exist a 1

k
-chain {yk

1 = a, · · · , yk
lk+1 =

b} in L connecting a and b, and a 1
k
-chain {zk

1 = b, · · · , zk
mk+1 = a} in L connecting b

and a. Define a sequence of points by

{xn : n ≥ 0} := {y1
1, · · · , y1

l1
, z1

1 , · · · , z1
m1

, · · · , yk
1 , · · · , yk

lk
, zk

1 , · · · , zk
mk

, · · · , }.
Then for any k > 0 and for all n ≥ N(k) :=

∑k
j=1(lj+mj), we have d(f(xn), xn+1) < 1

k+1
,

and hence lim
n→∞ d(f(xn), xn+1) = 0. Thus {xn}n≥0 ⊂ L is a precompact asymptotic

pseudo-orbit of f : X → X. Let ω be its omega limit set.
As in the proof of Lemma 2.3, we define a metric space

Y = ({∞} ×X) ∪ {(n, xn); n ≥ 0}
and a continuous map

g : Y → Y, g(n, xn) = (n + 1, xn+1), g(∞, x) = (∞, f(x))

By the invariance and isolatedness of M for f : X → X, it is easy to see that M̃ :=
{∞} ×M is invariant and isolated for g. Note that a, b ∈ ω and ω(0, x0) = {∞} × ω.
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Clearly, (∞, a) ∈ ω(0, x0)∩M̃ and (∞, b) ∈ ω(0, x0)\M̃ . By the Butler-McGehee lemma
for omega limit sets ([12, Theorem 3.1]), it then follows that there exists (∞, u) ∈
ω(0, x0) \ M̃ such that ω(∞, u) ⊂ M̃ ; and there exists (∞, w) ∈ ω(0, x0) \ M̃ and a
negative orbit γ−(∞, w) such that its α-limit set α(∞, w) ⊂ M̃ . Now the definition of
g shows that u and w satisfy (a) and (b), respectively.

In [31], a generalized Markus’ theorem for maps is proved by using Lemma 3.2.
For the completeness, we include this result here and also give an alternative, although
somewhat longer, proof using Lemma 3.3.

Theorem 3.1(Strong Attractivity) ([31], Lemma 4.1) Let A be an attractor and
C be a compact internally chain transitive set for f : X → X. If C ∩W s(A) 6= ∅, then
C ⊂ A.

Proof. Clearly, A is isolated for f : X → X. Let x ∈ C ∩W s(A). By the compactness
and invariance of C, ω(x) ⊂ C and hence ω(x) ⊂ C ∩ A. Then C ∩ A 6= ∅. Assume
that, by contradiction, C 6⊂ A, then, by Lemma 3.3, there exists w ∈ C \ A with a
full orbit γ(w) = {wn : n ∈ Z} ⊆ C and α(w) ⊂ A. Since w /∈ A, there exists an
open neighborhood V of A such that w /∈ V . Then, by the attractivity of A, there
exist an open neighborhood U of A and an integer n0 > 0 such that SnU ⊂ V for all
n ≥ n0. Since α(w) ⊂ A, there exists an integer n1 > n0 such that w−n1 ∈ U , and hence
w = w0 = Sn1(w−n1) ∈ V , which contradicts w /∈ V .

Let A and B be two isolated invariant sets. A is said to be chained to B, written
A → B, if there exists a full orbit through some x 6∈ A ∪ B such that ω(x) ⊂ B
and α(x) ⊂ A. A finite sequence {M1, · · · ,Mk} of invariant sets is called a chain if
M1 → M2 → · · · → Mk. The chain is called a cycle if Mk = M1.

Theorem 3.2 (Convergence) Assume that each fixed point of f is an isolated
invariant set, that there is no cycle of fixed points, and that every precompact orbit
converges to some fixed point of f . Then any compact internally chain transitive set is
a fixed point of f .

Proof. Let C be a compact internally chain transitive set for f : X → X. Then for
any x ∈ C, we have γ+(x) ⊂ C and ω(x) ⊂ C. Thus the convergence of γ+(x) implies
that C contains some fixed point of f . Let E = {e ∈ C : f(e) = e}, then E 6= ∅ and, by
the compactness of C and the isolatedness of each fixed point of f , E = {e1, e2, · · · , em}
for some integer m > 0. Assume by way of contradiction that C is not singleton. Since
E 6= ∅, there exists some i1 (1 ≤ i1 ≤ m) such that ei1 ∈ C, i.e., C ∩ {ei1} 6= ∅. Since
C 6⊂ {ei1}, by Lemma 3.3, there exist w1 ∈ C \ {ei1} and a full orbit γ(w1) ⊂ C such
that α(w1) = ei1 . Since γ+(w1) ⊂ C, there exists some i2 (1 ≤ i2 ≤ m) such that
ω(w1) = ei2 . Therefore, ei1 is chained to ei2 , i.e., ei1 → ee2 . Since C ∩ {ei2} 6= ∅ and
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C 6⊂ {ei2}, again by Lemma 3.3 , there exist w2 ∈ C \ {ei2} and a full orbit γ(w2) ⊂ C
such that and α(w2) = ei2 . We can repeat the above argument to get an i3 (1 ≤ i3 ≤ m)
such that ei2 → ei3 . Since there is only a finite number of ei’s, we will eventually arrive
at a cyclic chain of some fixed points of f , which contradicts our assumption.

Let S be a compact metric space and f : S → S be a continuous map with f(S) = S.
An ordered collection {M1, · · · ,Mk} of pairwise disjoint, compact and invariant subsets
of S is called a Morse decomposition of S if for each x ∈ S \∪k

i=1Mi there is an i with
ω(x) ⊂ Mi and for any negative orbit γ− through x there is a j > i with α(γ−) ⊂ Mj. By
[25, Theorems 3.1.7 and 3.1.8] and their discrete-time versions, the current definition
for Morse decomposition is equivalent to that in terms of Conley’s repeller-attractor
pairs(see, e.g., [25, Definition 3.1.5] for semiflows and [31, Definition 4.2] for maps).

A collection {M1, · · · , Mk} of pairwise disjoint, compact and invariant subsets of
S is called an acyclic covering of Ω(S) := ∪x∈Sω(x) if each Mi is isolated in S,
Ω(S) ⊂ ∪k

i=1Mi, and no subset of Mi’s forms a cycle in S. This concept is very important
in the persistence theory (see, e.g., [10, 15]). The equivalence between acyclic coverings
and Morse decompositions was first observed by Garay for (two sided) continuous flow
on the boundary (see [13, Lemma]). In the following lemma, we formulate it in a general
setting and give a complete proof which also provides an algorithm how to re-order an
acyclic covering into an ordered Morse decomposition.

Lemma 3.4 A finite sequence {M1, · · · ,Mk} of pairwise disjoint, compact and invariant
sets of f in S is an acyclic covering of Ω(S) if and only if it (after re-ordering) is a Morse
decomposition of S.

Proof. Necessity. We first claim that for any subcollection M of Mi’s, there exists an
element D ∈ M such that D cannot be chained to any element in M. Indeed, by
contradiction, the nonexistence of such D would imply that some subset of Mi’s from
this finite collection M forms a cycle, which contradicts the acyclic condition. By this
claim, we can re-order the total collection M0 := {M1, · · · ,Mk} by induction. First
we choose an element, denoted by D1, from the collection M0 such that D1 cannot
be chained to any element in M0. Suppose we have chosen D1, · · · , Dm, we further
choose an element, denoted by Dm+1, from the collection Mm := M0 \ {D1, · · · , Dm}
such that Dm+1 cannot be chained to any element in Mm. After k steps, we then get
a re-ordered collection D := {D1, · · · , Dk}. Moreover, for any 1 ≤ i < j ≤ k, clearly
we have Di, Dj ∈ Mi−1. Therefore, by the choice of Di, Di cannot be chained to any
element in Mi−1, and hence Di cannot be chained to Dj.

For any x ∈ S \ ∪k
i=1Di, By the assumption, we have ω(x) ⊂ ∪k

i=1Di, and hence
the invariant connectedness of ω(x) implies that ω(x) ⊂ Di for some i. Let γ− be any
given negative orbit of f through x and let α = α(γ−) . By Lemma 2.1, α is internally
chain transitive for f . We further claim that α ⊂ Dj for some j. Indeed, assume that,
by contradiction, α 6⊂ Dm for all 1 ≤ m ≤ k. Since α ⊂ S is compact and invariant,
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α ∩ (∪k
i=1Mi) 6= ∅, and hence there exists some Mi1 (1 ≤ i1 ≤ k) such that α ∩Di1 6= ∅.

By Lemma 3.3, there exist w1 ∈ α\Di1 and a full orbit γ(w1) ⊂ α such that α(w1) ⊂ Di1 .
Since w1 ∈ α ⊂ S, ω(w1) ⊂ ∪k

i=1Di, and hence, by the invariant connectedness of ω(w1),
there exists some Di2 (1 ≤ i2 ≤ k) such that ω(w1) ⊂ Di2 . Therefore Di1 is chained to
Di2 , i.e., Di1 → Di2 . Clearly, ω(w1) ⊂ α. Then α ∩ Di2 6= ∅. Again by Lemma 3.3,
there exists w2 ∈ α \Di2 and a full orbit γ(w2) ⊂ α and α(w2) ⊂ Di2 . We can repeat
the above argument to get an i3 (1 ≤ i3 ≤ k) such that Di2 → Di3 . Since there is only
a finite number of Dm’s, we will eventually arrive at a cyclic chain of some Dm for f in
S, which contradicts the acyclicity condition. It then follows that that Dj → Di, and
hence, by the property of {D1, · · · , Dk}, we have j > i. Therefore {D1, · · · , Dk} is a
Morse decomposition of S.

Sufficiency. Since the Mi, 1 ≤ i ≤ k, are pairwise disjoint and compact, there exist k
pairwise disjoint and closed subsets Ni of S such that Mi is contained in the interior of
Ni, 1 ≤ i 6= j ≤ k. In order to see that Mm is isolated in S, suppose that there exists an
invariant set M ⊂ IntNm but M 6⊂ Mm. It follows that there is a x ∈ M ∩ (S \∪k

i=1Mi).
Let γ ⊂ M be a full orbit through x. Clearly, ω(x) ⊂ M and α(x) ⊂ M . Since
{M1, · · · ,Mk} is a Morse decomposition of S, there exist j > i such that ω(x) ⊂ Mi

and α(x) ⊂ Mj. Then Mi ∩ Nm 6= ∅ and Mj ∩ Nm 6= ∅, and hence i = m = j, which
contradicts j > i. Thus each Mi is isolated in S. Clearly, the definition of Morse
decompositions implies that Ω(S) ⊂ ∪k

i=1Mi. We further claim that if Mi1 → Mi2

then i1 > i2. Indeed, let γ(x) be a full orbit through some x 6∈ Mi1 ∪ Mi2 such that
ω(x) ⊂ Mi2 and α(x) ⊂ Mi1 . If x ∈ Ml for some l, we have ω(x) ⊂ Ml ∩ Mi2 and
α(x) ⊂ Ml ∩Mi1 , and hence i1 = l = i2, contradicting that x /∈ Mi1 ∪Mi2 . It follows
that x ∈ S \ ∪k

i=1Mi. Since {M1, · · · ,Mk} is a Morse decomposition of S, there exist
j > i such that ω(x) ∈ Mi and α(x) ∈ Mj. Then we have i1 = j > i = i2. By this claim,
it is easy to see that no subset of Mi’s forms a cycle in S. Therefore {M1, · · · ,Mk} is
an acyclic covering of Ω(S).

4 Strong repellors and uniform persistence

Throughout this section, X is a metric space and f : X → X is a continuous map. Let
X0 ⊂ X be an open set with f(X0) ⊂ X0. Define ∂X0 = X \ X0, and M∂ = {x ∈
∂X0 : fn(x) ∈ ∂X0, n ≥ 0}, which may be empty. Note that ∂X0 need not be the
boundary of X0 as the notation suggests. This peculiar notation has become standard
in persistence theory (see, e.g., [33]). We assume hereafter that every positive orbit of
f is precompact. If S ⊂ X, define Ω(S) := ∪x∈Sω(x).

There are two traditional approaches in persistence theory, one using Morse decom-
positions and the other using acyclic coverings. The next lemma, together with Lemma
3.4, shows that the two approaches are identical.

Lemma 4.1 Suppose that there exists a maximal compact invariant set A∂ of f in ∂X0,
that is, A∂ is compact, invariant, possibly empty, and contains every compact invariant
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subset of ∂X0. Then a finite sequence {M1, · · · ,Mk} of pairwise disjoint, compact and
invariant subsets of ∂X0, each of which is isolated in ∂X0, is an acyclic covering of
Ω(M∂) in ∂X0 if and only if it (after re-ordering) is a Morse decomposition of A∂.

Proof. Let S = A∂. Then we have S ⊂ M∂ and hence Ω(S) ⊂ Ω(M∂). It follows that
{M1, · · · ,Mk} is also an acyclic covering of Ω(S). So the necessity follows from Lemma
3.4. To prove the sufficiency, assume that {M1, · · · ,Mk} is a Morse decomposition of
S. By Lemma 3.4, {M1, · · · ,Mk} is an acyclic covering of Ω(S) in S. Since S is the
maximal compact invariant set in ∂X0, any compact invariant set in ∂X0 is a subset
of S. Consequently, no subset of Mi’s forms a cycle in ∂X0 because such a cycle is
compact and invariant so necessarily belongs to S, violating that {M1, · · · ,Mk} is a
Morse decomposition of S. We further claim that Ω(M∂) ⊂ ∪k

i=1Mi. Indeed, for any
x ∈ M∂, ω(x) is a compact, invariant, internally chain transitive set in ∂X0(by Lemma
2.1). Then ω(x) ⊂ S, and hence [31, Lemma 4.3] implies that ω(x) ⊂ R(S, f) ⊂ ∪k

i=1Mi.
Therefore {M1, .., Mk} is an acyclic covering of Ω(M∂) in ∂X0.

Theorem 4.3 (Strong Repellors) Assume that

(C1) f has a global attractor A.

(C2) the maximal compact invariant set A∂ = A ∩ M∂ of f in ∂X0, possibly empty,
admits a Morse decomposition {M1, · · · ,Mk} with the following properties:

• Mi is isolated in X,

• W s(Mi) ∩X0 = ∅ for each 1 ≤ i ≤ k.

Then there exists δ > 0 such that for any compact internally chain transitive set L with
L 6⊂ Mi for all 1 ≤ i ≤ k, there holds infx∈L d(x, ∂X0) > δ.

Proof. We first prove the following weaker conclusion:

Claim There is an ε > 0 such that if L is a compact internally chain transitive set not
contained in any Mi, then supx∈L d(x, ∂X0) > ε.

Indeed, assume that, by contradiction, there exists a sequence of compact internally
chain transitive sets {Dn : n ≥ 1} with Dn 6⊂ Mi, 1 ≤ i ≤ k, such that

lim
n→∞ sup

x∈Dn

d(x, ∂X0) = 0.

Since W s(A) = X, by Theorem 3.1, we have Dn ⊂ A for all n ≥ 1. In the compact
metric space of compact nonempty subsets of A with Hausdorff distance dH , the sequence
{Dn : n ≥ 1} has a convergent subsequence. Without loss of generality, we assume that
for some nonempty compact set D ⊂ A, lim

n→∞ dH(Dn, D) = 0. Then for any x ∈ D, there

exists xn ∈ Dn such that lim
n→∞xn = x. Clearly, lim

n→∞ d(xn, ∂X0) = 0, and hence there
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exists yn ∈ ∂X0 such that lim
n→∞ d(xn, yn) = 0. It then follows that lim

n→∞ yn = x, and

hence x ∈ ∂X0 = ∂X0. Thus D ⊂ ∂X0. By Lemma 2.4 with Sn = f , D is internally
chain transitive for f . It then follows that D ⊂ A∂ and [31, Lemma 4.3] implies that
D ⊂ R(A∂, f) ⊂ ∪k

i=1Mi. Then the invariant connectedness of D implies that D ⊂ Mi

for some i. Since Dn → Mi as n →∞, the isolatedness of Mi in X implies that Dn ⊂ Mi

for all large n, contradicting to our assumption. This proves the claim.
We now prove the theorem by contradiction. Assume there exists a sequence of

compact, internally chain transitive sets {Ln : n ≥ 1} with Ln 6⊂ Mi, 1 ≤ i ≤ k, n ≥ 1,
such that lim

n→∞ infx∈Ln d(x, ∂X0) = 0. As in the proof of the claim, we can assume that

lim
n→∞ dH(Ln, L) = 0, where L is a compact internally chain transitive set for f : X → X

and L 6⊂ Mi for each 1 ≤ i ≤ k. Clearly, there exist xn ∈ Ln, n ≥ 1, such that
lim

n→∞ d(xn, ∂X0) = 0, and hence L ∩ ∂X0 6= ∅. By the above claim, we can choose

a ∈ L ∩ ∂X0 and b ∈ L with d(b, ∂X0) > ε. As in the proof of Lemma 3.3, let
{xn : n ≥ 0} be the asymptotic pseudo-orbit determined by a and b in L. Then there
are two subsequences xmj

and xrj
such that xmj

= a and xrj
= b for all j ≥ 1. Note that

d(xsj+1, f(x)) ≤ d(xsj+1, f(xsj
))+d(f(xsj

), f(x)). By induction, it then follows that for
any convergent subsequence xsj

→ x ∈ X, j → ∞, there holds lim
j→∞

xsj+n = fn(x) for

any integer n ≥ 0. We can further choose two sequences lj and nj with lj < mj < nj

and lim
j→∞

lj = ∞ such that d(xlj , ∂X0) > ε, d(xnj
, ∂X0) > ε, and d(xk, ∂X0) ≤ ε for

any integer k ∈ (lj, nj), j ≥ 1. Since {xn : n ≥ 0} is a subset of the compact set L,
we can assume that, after taking a convergent subsequence, xlj → x ∈ L as j → ∞.
Clearly, d(x, ∂X0) ≥ ε and hence x ∈ X0. We further claim that the sequence nj − lj
is unbounded. Assume that, by contradiction, nj − lj is bounded. Then mj − lj is also
bounded and hence we can assume that, after choosing a subsequence, mj − lj = m,
where m is an integer. Since f(X0) ⊂ X0, we have a = lim

j→∞
xmj

= lim
j→∞

xlj+m = fm(x) ∈
X0, which contradicts a ∈ ∂X0. Thus we can assume that, by taking a subsequence,
nj − lj → ∞ as j → ∞. Then for any integer n ≥ 1, there is an integer J = J(n) ≥ 1
such that nj − lj > n for all j ≥ J . Then we have lj < lj + n < nj and hence
d(xlj+n, ∂X0) ≤ ε, j ≥ J(n). Thus fn(x) = lim

j→∞
xlj+n satisfies d(fn(x), ∂X0) ≤ ε, n ≥ 1.

Since x ∈ L, we have fn(x) ∈ L, n ≥ 0. Thus, by Lemma 2.1, ω(x) is a compact,
internally chain transitive set for f : X → X. Moreover, supy∈ω(x) d(y, ∂X0) ≤ ε.
Appealing again to the claim, we conclude that ω(x) ⊂ Mi for some 1 ≤ i ≤ k, and
hence x ∈ W s(Mi) ∩X0. But this contradicts assumption (C2).

Remark 4.1 By an argument similar to the last part of the proof of Theorem 4.3,
with ∂X0 replaced by an isolated invariant set M , we can prove Lemma 3.3 without
appealing to the Butler-McGehee lemma for omega limit sets.

Remark 4.2 Recall that f : X → X is said to be uniformly persistent with
respect to (X0, ∂X0) if there exists η > 0 such that lim inf

n→∞ d(fn(x), ∂X0) ≥ η for all
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x ∈ X0. If “inf” in this inequality is replaced with “sup”, f is said to be weakly
uniformly persistent with respect to (X0, ∂X0). It then follows that Theorem 4.3,
with L = ω(x), x ∈ X0, implies [20, Theorems 4.1 and 4.2]. Note that A∂ is also a Morse
decomposition of f : A∂ → A∂.

Remark 4.3 In view of Lemma 4.1, Theorem 4.3 holds if condition (C2) is replaced
by

(C2′) There exists a finite sequence M = {M1, · · · ,Mk} of pairwise disjoint, compact
and isolated invariant sets in ∂X0 with the following properties:

• Ω(M∂) := ∪x∈M∂
ω(x) ⊂ ∪k

i=1Mi,

• no subset of M forms a cycle in ∂X0,

• Mi is isolated in X,

• W s(Mi) ∩X0 = ∅ for each 1 ≤ i ≤ k.

Moreover, Theorem 4.3 with (C2) replaced by (C2′), applied to the omega limit sets
of precompact orbits of continuous maps and asymptotically autonomous discrete pro-
cesses, implies [34, Theorem 2.2]) and [35, Theorem 2.5], respectively.

Remark 4.4 If we restrict attention to omega limit sets L in Theorem 4.3, the assump-
tion (C1) can be replaced by some weaker compactness assumptions near ∂X0, see, e.g.,
[33] for a detailed discussion in the context of continuous semiflows. In particular, by
the proof of Theorem 4.3, it follows that the weak uniform persistence implies uniform
persistence for maps.

Let Sm : X → X, m ≥ 0, be a sequence of continuous maps such that every positive
orbit for Sm has compact closure, and Sm(X0) ⊂ X0. Let ωm(x) denote the omega limit
of x for discrete semiflow Sm, and set W = ∪m≥0,x∈Xωm(x).

Theorem 4.4 (stability of uniform persistence) Assume W is compact and
Sm → S0 uniformly on W . In addition, assume:

(A1) S0 satisfies (C1) and (C2) of Theorem 4.3 or (C1) and (C2′) of Remark 4.3.

(A2) there exist η0 > 0 and a positive integer N0 such that for m ≥ N0 and x ∈ X0,
lim sup

n→∞
d(Sn

mx, Mi) ≥ η0, 1 ≤ i ≤ k.

Then there exist η > 0 and a positive integer N such that lim inf
n→∞ d(S n

mx, ∂X0) ≥ η for

m ≥ N and x ∈ X0.

Proof. Assume that, by contradiction, there exists a sequence {xk} in X0 and positive
integers mk → ∞ satisfying lim inf

n→∞ d(S n
mk

xk, ∂X0) → 0 as k → ∞. By Lemma 2.1,

15



ωmk
(xk) is a compact internally chain transitive set for Smk

. In the compact metric
space of all compact subsets of W with Hausdorff distance dH , the sequence {ωmk

(xk)}
has a convergent subsequence. Without loss of generality, we assume that for some
nonempty compact L ⊂ W , lim

k→∞
dH(ωmk

(xk), L) = 0. Clearly, there exist yk ∈ ωmk
(xk)

such that lim
k→∞

d(yk, ∂X0) = 0, and hence L ∩ ∂X0 6= ∅. By Lemma 2.4, L is internally

chain transitive for S0. Since L∩ ∂X0 6= ∅, Theorem 4.3, applied to S0, implies L ⊂ Mi

for some i. Therefore limk→∞ sup{d(x,Mi) : x ∈ ωmk
(xk)} = 0 and hence there

exists a k0 > 0 such that mk0 > N0 and ωmk0
(xk0) ⊂ {x : d(x,Mi) < η0

2
}. Since

Sn
mk0

(xk0) → ωmk0
(xk0) as n → ∞, we have lim sup

n→∞
d(Sn

mk0
(xk0),Mi) ≤ η0

2
, which is a

contradiction to assumption (A2).

Corollary 4.5 (Uniform persistence uniform in parameters) Let Λ be a metric
space with metric ρ. For each λ ∈ Λ, let Sλ : X → X be a continuous map that takesX0

into itself, and such that Sλ(x) is continuous in (λ, x). Assume that every positive orbit
for Sλ has compact closure in X, and that the set

⋃
λ∈Λ,x∈X ωλ(x) has compact closure,

where ωλ(x) denotes the omega limit of x for discrete semiflow {Sn
λ}. Let λ0 ∈ Λ be

fixed, and assume further that

(B1) Sλ0 : X → X has a global attractor, and either the maximal compact invariant
set A∂ of Sλ0 in ∂X0 admits a Morse decomposition {M1, · · · ,Mk}, or there exists
an acyclic covering {M1, · · · ,Mk} of Ω(M∂) for Sλ0 in ∂X0.

(B2) There exists δ0 > 0 such that for any λ ∈ Λ with ρ(λ, λ0) < δ0 and any x ∈ X0,
lim sup

n→∞
d(Sn

λx,Mi) ≥ δ0, 1 ≤ i ≤ k.

Then there exists δ > 0 such that lim inf
n→∞ d(Sn

λx, ∂X0) ≥ δ for any λ ∈ Λ with ρ(λ, λ0) <

δ and any x ∈ X0.

Proof. Clearly, (B1) and (B2) imply that (A1) holds for S0 := Sλ0 : X → X. If the
conclusion were false we could find sequences xk ∈ X0 and λk with λk → λ0 such that
lim inf
n→∞ d(Sn

k xk, ∂X0) → 0 as k → ∞, where Sk := Sλk
→ S0 uniformly on W . But this

contradicts Theorem 4.4.

Remark 4.5 Corollary 4.5 is very similar to [31, Theorem 4.3]. The difference lies in
that the existence of a global attractor A0 ⊂ X0 for Sλ0 : X0 → X0 is assumed in [31,
Theorem 4.3].

Remark 4.6 By using similar arguments, we can prove the analogues of Lemmas 3.1-3.4,
Theorems 3.1-3.2 and 4.3-4.4 and Corollary 4.5 for continuous semiflows.

As an application of Corollary 4.5, consider the Kolmogorov-type ordinary differen-
tial equation:

x′i = xifi(x) ≡ Fi(x) (1)
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on P ≡ IRn
+ where f is a C1 vector field on P . Let P 0 = {x ∈ P : xi > 0, 1 ≤ i ≤ n}

and for M > 0 let PM = {x ∈ P : xi ≤ M, 1 ≤ i ≤ n} and P 0
M = PM ∩ P 0. Denote

by φf
t the semiflow generated by (1). Let CL = CLip(PM , IRn) be the space of Lipschitz

vector fields on PM . Below, ‖x‖ denotes a norm of vector x ∈ IRn.

According to [27], a compact invariant K of φf
t is said to be unsaturated if

min
µ∈M(f,K)

max
1≤i≤n

∫
fidµ > 0,

where M(f, K) is the set of φf
t -invariant Borel probability measures with support con-

tained in K. In particular, an equilibrium e of φf
t is unsaturated if and only if fi(e) > 0

for some 1 ≤ i ≤ n, and a periodic orbit γ = {u(t) : t ∈ [0, T ]} of φf
t , with minimal

period T > 0, is unsaturated if and only if
∫ T
0 fi(u(s))ds > 0 for some 1 ≤ i ≤ n.

Corollary 4.6 (Robust permanence) Assume that

(D1) there exists M > 0 such that x ∈ PM and xi = M implies fi(x) ≤ 0;

(D2) the maximal compact invariant set of φf
t on PM\P 0

M admits a Morse decomposition
{M1, · · · ,Mk} such that each Mi is unsaturated for φf

t .

Then there exist ε, η > 0 such that for g ∈ CL satisfying (D1) and

sup
x∈PM

‖f(x)− g(x)‖ < ε (2)

and for x ∈ P 0
M , it follows that

η ≤ yi ≤ M, 1 ≤ i ≤ n, for all y ∈ ωg(x). (3)

Here, ωg(x) denotes the omega limit set of x for the system x′i = xigi(x).

Proof. Let Λ = {g ∈ CL : (D1) holds for g} (endowed with the uniform metric), and
consider the family of semiflows φg

t on X = PM with X0 = P 0
M . Here, φg

t denotes the
semiflow generated by x′i = xigi(x) ≡ Gi(x). The continuity of the map (g, x, t) → φg

t (x)
is well-known. The closure of

⋃
g∈Λ,x∈PM

ωg(x) is compact in PM . Clearly, φf
t : X → X

has a global attractor. By (the continuous-time version of) Corollary 4.5, it suffices to
prove that condition (B2) holds, which is implied by the following lemma.

Lemma 4.2 Let λ0 = f ∈ Λ. If K ⊂ PM is an unsaturated compact invariant set for
φf

t , then condition (B2) holds for K.

Proof. Assume that, by contradiction, (B2) is not true for K. We will use a similar
idea as in [27] to construct a φf

t -invariant Borel measure µ ∈ M(f,K) such that µ is

17



saturated for φf
t . It then follows that there exist two sequences gm ∈ Λ and ym ∈ X0

such that ρ(gm, f) := sup
x∈PM

‖gm(x)− f(x)‖ < 1
m

and

lim sup
t→∞

d(φgm

t (ym), K) <
1

m
, ∀m ≥ 1, (4)

and hence there is a sequence of sm such that

d(φgm

t (ym), K) <
1

m
, ∀t ≥ sm,m ≥ 1.

Let xm = φgm
(sm, ym). Then xm ∈ X0 and the flow property of φgm

t implies that

d(φgm

t (xm), K) <
1

m
, ∀t ≥ 0, m ≥ 1, (5)

Let f = (f1, · · · , fn). Since

ln

(
[φgm

t (xm)]i
xm

i

)
=

∫ t

0
gm

i (φgm

s (xm))ds, ∀t ∈ IR, 1 ≤ i ≤ n, m ≥ 1. (6)

By inequality (5), it easily follows that

lim sup
t→∞

1

t

∫ t

0
gm

i (φgm

s (xm))ds ≤ 0, 1 ≤ i ≤ n, m ≥ 1. (7)

Then we can choose a sequence tm such that tm ≥ m and

1

tm

∫ tm

0
gm

i (φgm

s (xm))ds <
1

m
, 1 ≤ i ≤ n, m ≥ 1. (8)

Define a sequence of Borel probability measures µm on IRn
+ by

∫
hdµm =

1

tm

∫ tm

0
h(φgm

s (xm))ds, m ≥ 1, (9)

for any continuous function h ∈ C(IRn
+, IR). By inequality (5), it then follows that

µm lies in space M(V ) of Borel probability measures with support in the compact set
V = {x ∈ IRn

+ : d(x, K) ≤ 1}. By the weak* compactness of M(V ), we can assume that
µm converges in the weak* topology to some µ ∈ M(V ) as m → ∞. We claim that µ
is invariant under φf

t , i.e., µ(φf
t (B)) = µ(B) for any t ∈ IR and any Borel set B ⊆ IRn

+.

It suffices to verify that
∫

h ◦ φf
t dµ =

∫
hdµ for any h ∈ C(IRn

+, IR) and t ∈ IR. For any
fixed t > 0, since

∫ tm

0

(
h ◦ φgm

t (φgm

s (xm))− h(φgm

s (xm))
)
ds

=
∫ tm

0
h ◦ φgm

t+s(x
m)ds−

∫ tm

0
h(φgm

s (xm))ds

18



=
(∫ tm−t

0
h ◦ φgm

t+s(x
m)ds +

∫ tm

tm−t
h ◦ φgm

t+s(x
m)ds

)

−
(∫ t

0
h(φgm

s (xm))ds +
∫ tm

t
h(φgm

s (xm))ds
)

=
(∫ tm−t

0
h ◦ φgm

t+s(x
m)ds +

∫ t

0
h ◦ φgm

tm+u(x
m)du

)

−
(∫ t

0
h(φgm

s (xm))ds +
∫ tm−t

0
h(φgm

t+v(x
m))dv

)

=
∫ t

0

(
h

(
φgm

tm+s(x
m)

)
− h(φgm

s (xm))
)
ds,

we get
∣∣∣∣
∫

(h ◦ φf
t − h)dµ

∣∣∣∣ = lim
m→∞

∣∣∣∣
∫

(h ◦ φf
t − h)dµm

∣∣∣∣

= lim
m→∞

∣∣∣∣
1

tm

∫ tm

0

(
h ◦ φf

t (φ
gm

s (xm))− h(φgm

s (xm))
)
ds

∣∣∣∣

≤ lim sup
m→∞

1

tm

(∣∣∣∣
∫ tm

0

(
h ◦ φgm

t (φgm

s (xm))− h(φgm

s (xm))
)
ds

∣∣∣∣

+
∣∣∣∣
∫ tm

0

(
h ◦ φf

t (φ
gm

s (xm))− h ◦ φgm

t (φgm

s (xm))
)
ds

∣∣∣∣
)

= lim sup
m→∞

1

tm

(∣∣∣∣
∫ t

0

(
h(φgm

tm+s(x
m))− h(φgm

s (xm))
)
ds

∣∣∣∣

+
∣∣∣∣
∫ tm

0

(
h ◦ φf

t (φ
gm

s (xm))− h ◦ φgm

t (φgm

s (xm))
)
ds

∣∣∣∣
)

.

Therefore, using inequality (5), boundedness of h(·) on V and uniform convergence
of gm → f (and hence of φgm

t → φf
t ) on PM , we have

∫
(h ◦ φf

t − h)dµ = 0 for any
h ∈ C(IRn

+, IR) and t > 0. For any t > 0 and p ∈ C(IRn
+, R), letting h = p ◦ φf

−t, we

then get
∫
(p − p ◦ φf

−t)dµ =
∫
(p ◦ φf

−t ◦ φf
t − p ◦ φf

−t)dµ = 0. Then µ is invariant for
φf

s , s ∈ IR. By inequality (5) and weak* convergence, it follows that µ ∈ M(f, K). For
any 1 ≤ i ≤ n, using the uniform convergence of gm to f on V and inequality (8), we
further have

∫
fidu = lim

m→∞

∫
fidµm

≤ lim
m→∞

1

tm

∫ tm

0
(fi − gm

i )(φgm

s (xm))ds + lim sup
m→∞

1

tm

∫ tm

0
gm

i (φgm

s (xm))ds ≤ 0.

But this contradicts the unsaturatedness of K for φf
t .

Remark 4.7 Corollary 4.6 may be compared to Schreiber’s main result on robust
permanence result ([27, Theorem 4.3]). His result guarantees permanence under Cr-
small perturbation, r ≥ 1, while ours guarantees permanence under the wider class of
C0-small perturbation by locally Lipschitz vector fields.
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For many systems, the boundary dynamics are simple: every bounded orbit on the
boundary converges to an equilibrium or a nontrivial periodic orbit. By a critical
element of (1) we mean an equilibrium point or a nontrivial periodic orbit. Our usual
notation for a critical element is γ = {u(t) : 0 ≤ t ≤ T} where u(t) is a T -periodic
solution of (1) and T is the minimal period which may be zero for an equilibrium. Let
W s(γ) denote the stable manifold of γ.

Corollary 4.7 (Robust permanence) Let (D1) hold, and assume that

(D3) there exist hyperbolic critical elements γi ∈ PM ′\P 0
M ′ for some M ′ < M , 1 ≤ i ≤ k,

satisfying:

(i) P \ P 0 ⊂ ∪k
i=1W

s(γi);

(ii) for each γi, there exists k such that xk = 0 on γi and
∫ Ti
0 fk(u

i(s))ds > 0;

(iii) no subset of {γ1, γ2, · · · , γk} forms a cycle in P \ P 0.

Then the conclusion of Corollary 4.6 holds.

Proof. By assumptions (D1) and (D3) and Lemma 4.1, {γ1, γ2, · · · , γk} is a Morse
decomposition of the maximal compact invariant set for φf

t on PM \P 0
M . Since (D3) (ii)

implies that each γi is unsaturated for φf
t (see [27, Section 3]), the conclusion follows

from Corollary 4.6. Here we give an alternative and more elementary proof without
using the concept of invariant measures. As in the proof of Corollary 4.6, clearly (B1)
holds, and then it suffices to prove that condition (B2) holds, which is implied by the
following claim.

Claim For each γi, there is ε > 0 such that for g ∈ CL satisfying (2) and x ∈ P 0
M with

d(x, γi) < ε there exists t > 0 such that d(φg
t (x), γi) ≥ ε.

Proof of Claim: Without loss of generality suppose that u(t) = u(t + T ) = ui(t) =
(0, · · · , 0, ul(t), · · · , un(t)) with uj(t) > 0 for all t. We will argue the case when γ
is a nontrivial periodic orbit (T > 0) as the case for an equilibrium is simpler. Set
λ = T−1

∫ T
0 fk(u(s))ds > 0 where k < l is an index as in (D3)(ii) above. Let K be a

common Lipschitz constant for f and F on PM . Choose ε > 0 such that

ε[1 + K(1 + MT ) exp(KT )] < λ/2.

A standard Gronwall argument shows that if d(x, γ) < ε, so ‖x − u(s)‖ < ε for some
s ∈ [0, T ), and (2) holds, then

‖x(t)− u(t + s)‖ ≤ ε(1 + MT ) exp(KT ), 0 ≤ t ≤ T.

Here, we have simplified notation by setting x(t) = φg
t (x) and we use that supx∈PM

‖F (x)−
G(x)‖ < εM . Now, suppose by way of contradiction that d(x(t), γ) < ε for all t ≥ 0.
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The inequality

gk(x(t)) ≥ fk(u(s + t))− |gk(x(t))− fk(x(t))| − |fk(x(t))− fk(u(t + s))|
≥ fk(u(t + s))− ε− εK(1 + MT ) exp(KT )

≥ fk(u(t + s))− λ/2,

which holds for 0 ≤ t ≤ T , implies that xk(t) satisfies

x′k(t) ≥ xk(t)[fk(u(t + s))− λ/2].

Integrating, we have,
xk(T ) ≥ xk(0) exp(λT/2).

By assumption, d(x(T ), γ) < ε so we may apply the previous argument again to get
xk(2T ) ≥ xk(0) exp(2λT/2), and by induction, we have that xk(nT ) ≥ xk(0) exp(nλT/2).
As the right hand side increases without bound as n increases we contradict that
d(x(t), γ) < ε for t ≥ 0. This proves the claim. Because (B2) holds, our result fol-
lows from (the continuous-time version of) Corollary 4.5.
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[6] M. Benäım and M. W. Hirsch, Differential and stochastic epidemic models, in
“Differential and Stochastic Epidemic Models (S. Ruan, G. Wolkowicz, J. Wu,
eds.), Fields Institute Communications No. 21. American Mathematical Society,
Providence RI, 1999, 31-44.
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