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Abstract
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The incidence of type 1 diabetes is increasing worldwide and therapies of islet transplantation
and potential cell-based therapies are rapidly evolving. Choosing the optimal site for such
therapies is crucial for safety and for obtaining the best possible outcome. The liver is currently
the site of choice, but is unfortunately associated with disadvantages for graft survival.

In paper I, intraportally transplanted human islets were evaluated for hypoxia, apoptosis, and
beta-cell survival. This revealed a substantial graft loss of approximately 50 % of transplanted
islet mass at one month posttransplantation. At the same time, revascularization was increased,
yet still lower than that of native islets. The highest rate of apoptosis was associated with
prolonged time in culture prior transplantation.

Due to progressive loss of graft function, repeated islet transplantation is often performed.
A mouse model, used in paper II, demonstrated an increased survival rate of islets transplanted
one week after a first transplant. This finding may reflect an improved engraftment environment
“primed” by the first islet injection. No difference in islet vascular density could be ascribed
to it.  

As stem cell-based therapies improve, graft monitoring possibilities and retrieval are of
importance for safely introducing these techniques into the clinic. Islet grafts to omentum and
muscle cured diabetic mice in paper III. Gene expression was unaltered or increased for genes
important for beta-cell function.

Decidual stromal cells (DSCs) have immunomodulatory properties that could prove useful
for treatments of autoimmune or inflammatory conditions. In paper IV, DSCs were found
to be easily isolated from human placenta. The cells were characterized by surface markers,
differentiation capacity and gene expression during culture. Co-culture with human pancreatic
islets was also conducted. DSCs were observed to be very similar to other types of mesenchymal
stromal cells. Greatest change in gene expression was seen between passage 2 and 5. The effect
on human islet function may depend on islet viability prior to co-culture.
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All things are so very uncertain,  
and that's exactly what makes me feel reassured 
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MSC Mesenchymal stem cell 
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PDX1 Pancreatic and duodenal homeobox 1 

RPMI Rosewell Park Memorial Institute 

SEM Standard error of the mean  

T1D Type 1 diabetes 

T2D Type 2 diabetes 

TNF-a Tumor necrosis factor-a 

VEGF Vascular endothelial growth factor 
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Introduction 

Islets of Langerhans 

The pancreas is an unpaired gland that has both exocrine and endocrine func-
tion. Clusters of endocrine cells distributed throughout the pancreas form the 
islets of Langerhans, named after the German physician Paul Langerhans, who 
was the first to histologically describe them in 1869. Today, we know that 
these clusters consist of different hormone-producing cells which make up the 
endocrine function of the pancreas and play an indispensable role in the ho-
meostasis and metabolism of glucose. 

The major hormone-secreting cell types are alpha-cells, beta-cells, delta-
cells, PP-cells, and epsilon-cells which, produce glucagon, insulin, somatosta-
tin, pancreatic polypeptide, and ghrelin, respectively. In healthy human adults, 
the pancreas contains 3.2-14.8 million islets1-3. A loss of beta-cell function or 
mass leads to insulin deficiency, causing elevated blood glucose levels and 
resulting in the condition known as diabetes mellitus. 

Diabetes 

Diabetes mellitus is a heterogeneous disease, which can arise due to a patient’s 
genetic load and/or environmental risk factors associated with inflammation, 
autoimmunity and metabolic decompensation. Type 1 diabetes (T1D) usually 
presents in childhood or adolescence and is characterized by an almost com-
plete autoimmune destruction of the pancreatic islets4. Type 2 diabetes (T2D) 
is characterized by hyperglycemia and insulin resistance often associated with 
obesity. There are also other variants of diabetes displaying mixed phenotypes 
with different degrees of autoimmunity and insulin resistance, i.e. late auto-
immune diabetes in adults (LADA), and maturity onset diabetes of the young 
(MODY)5. According to the International Diabetes Federation, diabetes is one 
of the fastest growing global heath emergencies of the 21st century with more 
than 463 million people suffering from the disease. T1D, one of the most com-
mon chronic diseases affecting children, accounts for 5-10 %, whereas T2D 
represents around 90 % of diabetes worldwide. 

The incidence of T1D is increasing, but there are considerable regional var-
iations6,7. To date, Sweden has the second highest incidence rate of T1D in the 
world (after Finland) in children aged 0-14 years (43.2 per 100,000 per year)8. 
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Treatment of Type 1 Diabetes 

The standard treatment of T1D includes life-long insulin administration, after 
groundbreaking experiments by Fredrick Banting and Charles Best in 1921. 
New insulin formulas and technical devices, such as continuous glucose mon-
itoring and closed loop systems, have substantially improved treatment op-
tions and contributed to better health9,10. For the majority of patients with T1D, 
standard insulin therapy is effective for maintaining euglycemia and minimiz-
ing diabetes-associated complications (cardiovascular disease, nephropathy, 
retinopathy, and neuropathy)11-13. It is difficult to mimic the extremely precis 
glucose control of a healthy pancreas. Patients with T1D have an increased 
mortality and a reduced life expectancy compared to the general population, 
in certain studies by more than 10 years14-16. 

Additionally, a small number of patients, despite intensive treatment, show 
extreme glycemic variability and suffer repeated and unpredictable hypogly-
cemic episodes. This leads to an unawareness of hypoglycemia and is often 
associated with defective counter-regulatory mechanisms and autonomous 
neuropathy17. For this group of patients, it is possible to achieve a restoration 
of pancreatic endocrine function through transplantation of either a whole pan-
creas or islets of Langerhans only. However, the clinical utility is limited be-
cause of the necessity of life-long immunosuppressive treatment, which is af-
flicted with adverse side effects such as opportunistic infections, malignan-
cies, and drug toxicity18. 

Pancreas and Islet Transplantation 

Currently, the outcome after whole pancreas transplantation is an average 
graft survival rate of 50 % after 10 years. Pancreas transplantation can either 
be performed alone or as a simultaneous pancreas-kidney transplantation in 
patients with T1D and chronic renal failure19. The procedure is associated with 
risks of technical failure, thrombosis, infections, pancreatitis and acute or 
chronic graft rejection20. However, the success rate is improving and patient 
survival rate is 90 % at 4 years20,21. 

For patients where insulin therapy is unsuccessful and it is not suitable to 
receive a whole pancreas, islet transplantation (IT) has become an optional 
treatment. The islet isolation technique using collagenase, was developed in 
the 1960s by Lacy et al.22, and the first experimental trials performed in the 
1970s23. It is, as opposed to whole pancreas transplantation, a minimally inva-
sive procedure in which a radiologically guided percutaneous transhepatic in-
jection allows islets to reach the liver via the portal vein. The procedure is 
associated with low morbidity and low risks of adverse effects, such as bleed-
ing (7 %) and portal thrombosis (3.7 %)24. Ever since Shapiro et al. introduced 
the Edmonton protocol25 with a greater transplanted islet mass and steroid-
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free immunosuppression, IT got a revival and outcomes have since become 
increasingly better, owing to ongoing improvements in isolation techniques 
and refined immunosuppressive regimes26. The number of patients who 
achieve insulin independence after IT has dramatically improved during the 
last two decades (44 % at 3 years after transplantation) and is currently almost 
on par with the results of whole pancreas transplantation26,27. 

Islet Isolation and Engraftment 

Studies have revealed that, although islets only constitute 1-2 % of the pan-
creatic mass28, they receive 10-15 % of the total pancreatic blood flow. The 
vessels inside and surrounding the islet cells are fenestrated, further implying 
a close connection between the vasculature and the endocrine function of the 
islets29. These integrated vessels account for 8-10 % of total islet volume30 and 
are believed to play a role in paracrine signaling31, beyond supplying islets 
with oxygen and nutrients. 

As islets are isolated, they are inevitably deprived of their native vascular 
network. Consequently, the isolated islets must solely rely on diffusion of ox-
ygen and nutrients during culture and during the initial phase after transplan-
tation. Beyond the fact that islets are already subjected to hypoxic conditions 
during culture, additional factors (islet size, reduced viability, and thrombus 
formation) can further aggravate the hypoxia, resulting in an anoxic islet 
core32,33. Hence, reestablishment of vasculature is a vital part of the engraft-
ment process, i.e. the adaptation of islets to the surrounding tissue at the im-
plantation site. Engraftment also encompasses reinnervation and reorganiza-
tion of adjacent stroma, and the conditions for successful engraftment differ 
between implantation sites34. 

Islet Transplantation to the Liver 

Recent advances in IT outcome have been accomplished through enhanced 
procurement of islets and refined immunosuppressive therapies. However, IT 
often needs to be repeated and even in autologous or in experimental, synge-
neic transplantations, a great amount of islet mass is quickly lost35. Factors 
affecting islet quality, and thus transplant success, are: donor condition, is-
chemic time, isolation procedure, degree of exocrine contamination, and cul-
ture time36-39. Later on, allogeneic islets grafts are further exposed to autoim-
munity, alloimmune rejection and toxicity of immunosuppressive treatment. 

Both before and after transplantation, islets are exposed to hypoxic and me-
chanical stress, as well as activation of inflammatory cytokines (IL-1b, TNF-
a and HIF-1), leading to impaired function and beta-cell death40,41. Inflamma-
tion is induced by both innate immune cells, islet resident macrophages, and 
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specialized macrophages in the liver (Kupffer cells)41-46. Studies have shown 
that anti-inflammatory treatment and strategies to increase levels of antioxi-
dants inside the islets have improved islet function47. Treatment of islets with 
mesenchymal stem/stromal cells are suggested to mediate their effect in a sim-
ilar way48.  

The use of liver as implantation site is associated with further disad-
vantages linked to islet infusion and engraftment. First, when islets are in-
jected through the portal vein, an immediate blood mediated inflammatory re-
action (IBMIR) occurs, which has been shown to damage the endocrine cells 
and cause a loss of islet mass by up to 50 % in the earliest phases after trans-
plantation49,50. Second, once the islets have settled in the liver, gluco- and lipo-
toxicity51, amyloid formation52, and immunological attack53 may all influence 
graft survival to various extents. Hyperglycemia per se has also been shown 
to hamper the islets, if euglycemia is not fully reached after transplanta-
tion54,55. 

Furthermore, the liver does not provide optimal conditions for revasculari-
zation and islet oxygenation. Even under normal physiological conditions, the 
oxygen tension of the liver is only 5-10 mmHg, as compared to 40 mmHg in 
native islets56,57. In the liver, islets have been shown to get revascularized from 
the hepatic artery58,59 A new vascular network is gradually established from 
the first week after transplantation. However, even after revascularization is 
complete, the oxygenation of intraportally transplanted islets remains low60,61.  

Islet grafts implanted in liver in mice have, in previous studies, exhibited 
an altered gene expression compared to control islets. These genes, vital for 
beta-cell function, include PDX-1, a marker of differentiation. This marker 
was decreased in islets transplanted to liver as well as to pancreas62. Similar 
findings have recently been demonstrated in humans, where all beta-cells in 
allogeneic islet grafts were lacking the differentiation marker urocortin-363. In 
the same report, cells were found positive for both glucagon and insulin which 
indicates that islet cells exhibit some plasticity. It is unclear exactly what 
causes these changes. Of note, treatment with GABA has been shown to in-
duce alpha-to-beta-cell conversion in vivo64. 

Alternative Implantation Sites 

The renal capsule has historically been readily used for islet transplantations 
in experimental models, but translating studies into humans have failed65. In 
humans, the renal capsule is not suitable due to volume restriction. Despite the 
numerous sites that have been evaluated, in both experimental and clinical 
setting (muscle, omentum, bone marrow, pancreas, gastric submucosa, kidney 
and spleen26,62,65-72), none have in humans reported improved outcomes when 
compared to the intraportal site. Table 1 lists comparative studies of islet trans-
plant sites in mice.  
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Each site is associated with specific technical complications, volume ca-
pacity and engraftment conditions. Furthermore, studies show that the liver 
appears superior to bone marrow and renal capsule from an immunological 
point of view73,74. Also, the liver is the target organ for insulin, and choosing 
sites with a portal drainage is presumably preferable to systemic insulin re-
lease in order to mimic a physiological pancreatic insulin secretion75. 

 

Table 1. Comparative studies of islet transplant sites in C75BL6J, modified from re-
view in Cell Medicine76.  

Stem Cell Therapy in Type 1 Diabetes 

The development of stem cell research has enabled cellular therapies in vari-
ous disorders, including diabetes. The term “stem cells” is wide and includes 

Authors Implantation sites Islet type Islet vol-
ume tx 

Major outcome 

Korsgren O et 
al. 1993 77 

Liver, spleen and re-
nal capsule 

Murine 300 islets Better nerve in growth in renal cap-
sule compared to liver and spleen  

Lau J et al. 
2007 62 

Pancreas vs liver Murine 200 islets Glucose stimulated insulin release 
and oxidation rates were markedly 
decreased in liver 

Kim HI et al. 
2010 34  

Renal capsule, liver, 
muscle and omentum 

Murine marginal 
mass 

Renal capsule, liver, muscle and 
omentum required 100, 600, 600, 
200 islets to cure 50 % of engrafted 
diabetic mice, respectively.  Kid-
ney had shortest time to reach 
euglycemia (3 days), muscle the 
longest (27 days) 
 

Christof-
fersson G et 
al. 2010 78 

Muscle vs liver Human and 
murine 

300 islets Improved revascularisation and re-
sponse to glucose challenge in in-
tramuscular transplantation, on par 
with intrahepatic transplantation   

Espes D et al. 
2016 79 

Omentum vs liver Human and 
murine 

200-300  
islets 

Normalized vasculature and better 
response to IVGTT 1-month post-
transplant in the omentum  

Stokes RA et 
al. 2017 80      

Renal capsule, mus-
cle, liver, spleen cap-
sule, liver capsule 

Human and 
murine 

220-250 is-
lets / 2000 
IEQ human 
islets 

Renal capsule best site for murine 
and human IT (Renal capsule used 
as control). Muscle and intraportal 
site had similar cure rate for human 
islets, however both inferior to re-
nal capsule 
 

Cantarelli E et 
al. 2017 73   

Bone marrow vs 
liver 
 

Murine (two 
different 
strain 

450 IEQ Treating the animals with anti-
CD3, islet rejection is prolonged 
when transplanted to liver com-
pared to bone marrow  



 16 

cells found in the embryo as well as adult stem cell populations present in 
most tissue, on standby, ready to participate in tissue regeneration. Of current 
interest, protocols for induced pluripotent stem cells have come into practice, 
opening for personalized stem cell treatments. 

Stem cells are capable of self-renewal and possess either totipotency, plu-
ripotency (embryonic stem cells) or multipotency of differentiation into vari-
ous tissues from one or more germ layers. Ideally, these cells could provide a 
source for beta-cell replacement, and thus resolve the issues of both immuno-
suppression and lack of donors81,82. Nevertheless, the underlying autoimmun-
ity of diabetes would not be avoided. 

The biology of stems cells is complex, and there is no common standardi-
zation and few guidelines. Before safely introducing stem cells into clinical 
trials, investigations need to be conducted regarding mechanism of action, and 
protocols developed for isolation, culture, and administration, all of which af-
fect the phenotype of stem cells. 

Mesenchymal Stromal Cells 

A commonly used type of stem cell is the mesenchymal stromal cell (MSC), 
first described in the 1960-1970s83,84. MSCs are classified as multipotent stem 
cells due to their capacity to differentiate into various lineages that develop 
from mesoderm85,86. MSCs have been used in a great number of animal models 
for human disease as well as in veterinary medicine87. Furthermore, they have 
been evaluated for clinical cell-based therapies in a wide range of ailments, 
such as osteogenesis imperfecta, GVHD, myocardial infarctions, autoimmune 
diseases, and diabetes88-91.  

These cells were first identified in bone marrow84, but today we know that 
cells fulfilling MSC criteria can be isolated from most tissues. The Interna-
tional Society of Cellular Therapy (ISCT) proposed the following criteria in 
200692: 

 
1. Plastic adherence  
2. >95 % of the cells must express surface molecules such as CD105, 

CD73, or CD90 
3.  <2 % expression of CD45, CD34, CD14 and MHC II 
4. Multipotent differentiation potential 

The initial hypothesis for the regenerative properties of MSCs was based on 
their multipotent capacity. Early on, MSCs were shown capable of differenti-
ating into non-mesodermal cells93,94, and studies have even demonstrated that 
MSCs can develop into insulin producing cells95. Currently, MSCs are be-
lieved to mediate their main effect through soluble trophic and immunomod-
ulatory factors, regulating the surrounding environment96 (Figure 1). 
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Contributing reasons for the frequent use of these cells are the property of 
self-renewal (although only for a limited time), permitting in vitro expansion, 
and that they are “immunologically privileged”, allowing allogeneic MSC 
transplantation without the need for immunosupression97. 

 
Figure 1. Simplified model of potential mechanism of actions facilitated by MSCs. 
When tissue injury occurs (due to damage or disease), MSCs can either home, if sys-
temically injected, or be locally administered to the site of event. Inflammatory cyto-
kines may then stimulate/activate MSCs, which will respond by releasing growth 
factors, producing immunoregulatory chemokines and interleukins, and remodeling 
the extracellular matrix, all of which will affect the inflammatory process. 

MSC Safety and Legislation  

Registered data from clinical trials show few and minor adverse events of 
treatment with MSCs91. Their genomic stability and the fact that MSCs do not 
seem to engraft inside the recipient may explain why few cases of ectopic 
tissue formation or malignancy are reported98,99. Human stem cells can be ex-
tensively expanded in culture, and several studies show maintained karyotype 
for >30 passages100,101. After too many passages, however, the biological func-
tion has been reported to be lost98,102. Notably, only 1 % of systemically ad-
ministered MSCs persist longer than a week following injection103. Still, an 
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immunomodulating effect may be lasting, a phenomenon known as “hit-and-
run”. Even if intravenously administered MSCs have been shown to end up in 
the pulmonary bed, they can still mediate a systemic action104. The route of 
administration is not unimportant, considering that some MSC sources ex-
press tissue factor, and thereby are much more prone to thrombus building and 
to induce IBMIR, resembling the response seen in islet lodging. However, 
bmMSCs express relatively low levels of tissue factor, and when used for 
coating of islets, and subsequent exposure to blood (in an in vitro tubing sys-
tem), no increased reaction was found compared to uncoated control islets105. 

MSCs are considered to be an advanced therapy medicinal product 
(ATMP), and thus guidelines from European Medicines Agency (EMA) re-
quire potency assays that can predict clinical effect. This demands an under-
standing of the mechanism of action. 

MSC and Islet Transplantation 

Additional positive effects beyond immunomodulation are seen in several 
studies using MSCs in IT research106,105. In rodents, MSCs have contributed 
to enhanced engraftment of islets implanted to muscle, renal capsule, and 
omentum, with reduced formation of fibrosis and increased vascularization107-

109. The mechanism for this effect is MSC production of angiogenic factors, 
including VEGF, IL-6 and IL-8, which supports islet graft revasculariza-
tion108,110-113. Also, MSCs express markers important for homing114, which has 
enabled intravenous administration where the cells migrate to implanted islets 
(renal capsule) and contribute to neovascularization and islet cell prolifera-
tion110. Islets and MSCs have also successfully been co-transplanted to the 
liver111,115. However, donor and recipient species (for both islets and MSCs) 
vary, as well as administration routine, culture condition, number of passages, 
and site of implantation, which makes comparisons difficult. Furthermore, 
MSC and islet co-culture can be performed allowing physical cell-cell inter-
actions or in an indirect fashion where islets only come in contact with MSC-
secreted factors, alternatively in conditioned medium116-118. A review on the 
topic presented that a higher viability was obtained when choosing an indirect 
contact system as opposed to culture with direct cell-cell contact119. However, 
results are not conclusive and specific MSC source is likely to affect the re-
sults120,121.  

Placenta as a Source of MSCs 

During pregnancy, the decidual layer is formed from the uterine lining (the 
endometrium). The process of decidualization creates a specialized tissue 
composed by glands, immune cells, blood and lymph vessels, and decidual 
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stromal cells (DSCs)122. It forms part of the placenta, the functions of which 
are to provide exchange of nutrients, oxygen and excretion, whilst maintaining 
the fetomaternal tolerance. 

DSCs are a type of MSCs that, just like bmMSCs, are easily expanded and 
exhibit potent immunosuppressive effects123,124. Studies comparing bmMSCs 
and DSCs have found many similarities with regards to appearance in light 
microscope, size, and surface marker phenotype125. The ability of mesodermal 
differentiation has been described as equally good or somewhat reduced com-
pared to bmMSCs125,126. DSCs are currently used to improve acute inflamma-
tory disorders such as steroid-refractory GVHD and radiculomyelopathy, 
where no other effective therapy exists127,128. The placenta, otherwise dis-
carded after a birth, may provide eligible MSCs in large quantities for evalu-
ation of their possible cell-therapeutic utility and mechanism of action in islet 
research. 
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Aims  

The overall aim of the work presented in this thesis was to investigate central 
factors in islet transplantation and finding strategies to improve beta-cell func-
tion and transplant outcome. The specific aims for each study were: 

Paper I  
To investigate human islet engraftment and graft survival within the first 
month after intraportal transplantation 

Paper II 
To investigate the possibility of enhancing islet engraftment to the liver 
through repeated islet transplantation 

Paper III 
To compare islet graft function and gene expression following transplan-
tation to greater omentum or abdominal muscle 

Paper IV 
To isolate and characterize decidual stromal cells from human placenta, 
their alterations in culture, and investigate their effect on human islets  
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Materials and Methods 

Experimental Animals 

Papers I-III 
The animal housing and all experimental procedures were approved by the 
local Animal Ethics Committee at Uppsala University, Sweden. All animals 
were housed under standardized conditions with free access to food and water. 
Adult male immunodeficient C57BL/6 (nu/nu) mice, obtained from Taconic 
M&B, Bomholtgaard, Denmark, were used as recipients for human islets in 
paper I. In paper II, a transgenic mouse model that expresses green fluorescent 
protein (GFP), under control of the mouse insulin I gene promoter (MIP) on 
C57BL/6 background (Taconic M&B), was used as donors for islet isolation 
for the first transplantation. C57BL/6 male mice, wild type and transgenic, 
purchased from Taconic M&B, Ejby, Denmark, were used for transplantation 
and islet isolation in papers II and III.  

Isolation and Culture of Human Islets   

Papers I & IV  
The regional ethical board in Uppsala approved the use of human pancreatic 
tissue. Pancreata from donors after brain death were generously provided by 
the Nordic Network for Clinical Islet Transplantation and isolated at the hu-
man islet isolation facility, Rudbeck Laboratory, Uppsala University Hospital. 
The human islets were cultured according to the standard protocol at the Rud-
beck laboratory. For the first 24 hours, islets were incubated in 95 % O2 and 5 
% CO2 at 37°C, thereafter at 25°C until the islets were transferred to our la-
boratory and to CMRL 1066 medium (Gibco, Grand Island, NY, USA) con-
taining 10 % vol/vol fetal calf serum, 50 mmol/L L-glutamine (Sigma-Al-
drich, St Louis, MO, USA) and 5 U/mL Penicillin Streptomycin (Roche, 
Sigma-Aldrich). The mean culture time before transplantation was 6.2 ± 0.5 
days.  
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Isolation and Culture of Murine Islets  

Papers II & III 
Pancreatic islets from non-diabetic C57BL/6 mice were isolated using colla-
genase digestion and density gradient purification as previously described61 
(Figure 2). Briefly, mice were anesthetized with sodium pentobarbital (200 
mg/kg, Apoteket AB, Stockholm, Sweden). Collagenase A from Clostridium 
histolyticum (2.5 mg/mL Roche Diagnostics, Mannheim, Germany) sus-
pended in cold HBSS (National Bacteriological Laboratory, Stockholm, Swe-
den) was injected via the common bile duct. The pancreas was inflated, surgi-
cally removed and placed in 37!C for 18 minutes. Density gradient centrifu-
gation by adding Histopaque-1077 and serum-free RPMI 1640, both pur-
chased from Sigma-Aldrich, was performed for separation of islets from 
exocrine tissue. Islets were handpicked and cultured free-floating at least over-
night in 5 mL of culture medium consisting of RPMI 1640 (Sigma-Aldrich) 
supplemented with L-glutamine (2 mmol/L; Sigma Aldrich), 10 % vol/vol fe-
tal calf serum (Sigma-Aldrich) and Penicillin Streptomycin (100 U/mL and 
0.1 mg/mL, respectively; Roche Diagnostics) in paper II. In paper III, the an-
tibiotic used was Benzylpenicillin (100 U/mL; Roche Diagnostics), otherwise 
the procedure was the same as detailed above.  

 

 
 
Figure 2. Islet isolation through density gradient purification after retrograde injection 
of collagenase I digestion solution through the common bile duct. In papers I and II, 
islets were transplanted after having recovered for 1-2 days in culture before trans-
planting them to the liver of recipients through the portal or appendicular vein. In 
paper III, islets were instead implanted to either the greater omentum or abdominal 
muscle. 
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Induction of Diabetes 

Paper III 
Diabetes was induced in C57BL/6 mice by a single intravenous injection of 
alloxan (75 mg/kg, Sigma-Aldrich). Mice were defined as diabetic when re-
peated blood glucose concentrations exceeded 15 mmol/L on two consecutive 
days, using blood glucose reagent strips (Freestyle Lite, Abbot, Alameda, CA, 
USA). Blood glucose concentrations were monitored daily for the first week 
posttransplantation and then every fifth day. 

Islet Transplantations  

In papers I, II, and III, all animals were anesthetized by an intraperitoneal in-
jection of 0.02 mL/g body weight Avertin (Kemila, Stockholm, Sweden). In 
paper II, IT through the appendicular vein to the liver was made under spon-
taneous inhalation of isoflurane (first transplantation). All transplantations to 
the liver were made after a midline abdominal incision and islets were infused 
into the portal vein system through a butterfly needle. In paper I, islets were 
transplanted selectively into the right liver lobe by temporarily clamping other 
portal vein tributaries during the islet infusion61. This procedure enabled us to 
evaluate a greater proportion of islets transplanted, and is not believed to affect 
the engraftment negatively. 

Paper I  
Human islets (300 islets per transplantation) were injected in the livers of 
C57BL/6 (nu/nu) mice, as detailed above. Two hours before animals were 
killed by cervical dislocation, the hypoxia marker pimonidazole (60 mg/kg; 
Hypoxyprobe, Burlington, MA, USA) was injected intravenously through the 
tail vein of awake animals.  

Paper II 
Two groups of animals received IT twice, one week apart, while mice in a 
control group received a sham transplantation with saline infusion only, fol-
lowed by one IT a week later (Figure 3). The first islet transplant consisted of 
125 syngeneic GFP-expressing islets, while the second transplant consisted of 
125 syngeneic non-GFP-expressing islets of similar size (50-100 µm). Islets 
were infused into the appendicular vein or portal vein with a butterfly needle 
(25G). The total volume of infusion at each time was ≤ 100 µL. The animals 
were killed 1 day or 1 month after the second transplantation. Animals in the 
control group were killed 1 month after IT. 
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Paper III 
200 mouse islets were transplanted under aseptic conditions into the ab-
dominal muscle or omentum of recipient non-diabetic or alloxan-diabetic 
C57BL/6 mice. Islets were transplanted to the abdominal muscle after a mid-
line incision in the skin, as previously described129. In order to transplant islets 
to the greater omentum, a midline incision in the skin and the abdominal mus-
cle was made and the stomach was exposed. The greater omentum was local-
ized and carefully extended by holding the omental fat and a ligature was 
placed, but not fixed, around the omentum. An opening between the sheets of 
the omentum was made with a cannula, a braking pipette filled with islets was 
inserted, the islets were infused into the pouch, and the ligature was thereafter 
closed. The abdominal muscle was carefully sutured, followed by suturing of 
the skin.  

 
 
Figure 3. Experimental design paper II. A first transplantation was performed with 
either GFP-positive islets or a shame saline infusion to a control group. After one 
week, a second transplantation to the liver with non-GFP C75BL/6 murine islets was 
performed in all groups.  

Function of Transplanted Islet Grafts 

Paper III 
Thirty days posttransplantation, an intravenous glucose tolerance test 
(IVGTT, 2 g/kg) was performed in cured animals (defined as a non-fasting 
blood glucose concentration <12 mmol/L for two consecutive measurements 
on separate days). Blood glucose concentrations were monitored for two hours 
following glucose injection. On the following day, an intravenous insulin tol-
erance test (ITT; 2 U/kg NovoRapid, Novo Nordisk, Bagsvaerd, Denmark) 
was performed, during which blood glucose concentrations were monitored 
for two hours. Non-diabetic C57BL/6 mice were used as controls for both the 
IVGTT and the ITT. When the animals subsequently were killed, the pancreas 
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was surgically removed, placed in acid ethanol (0.18 mol/L HCl in 95 % 
vol/vol ethanol), sonicated in order to disrupt the cells and subsequently fro-
zen. The remaining insulin content in the pancreas was measured with an in-
sulin enzyme-linked immunosorbent assay (ELISA) (Mercodia, Uppsala, 
Sweden) in order to exclude endogenous beta-cell regeneration. An insulin 
content > 10 % of that of the pancreas in control non-diabetic animals was 
used as an exclusion criterion for the study. 

Immunohistochemistry 

Sampled tissue was either fixated in 4 % vol/vol paraformaldehyde before 
paraffin embedding or snap-frozen for cryosectioning. Frozen tissue was im-
bedded in TissueTek OCT (Sakura Finetek, Torrance, CA, USA) and sec-
tioned using Leica CM 1950 cryostat (Leica Biosystems, Germany). 

Paper I 
The paraffin embedded liver lobes were sectioned to a thickness of 7 µm and 
every fifth slide was stained for insulin. Adjacent slides were stained, respec-
tively, for blood vessels, amyloid, hypoxia and apoptosis according to Table 
2 and counter-stained with Mayor’s hematoxylin (HistoLab Products AB, 
Gothenburg, Sweden). Insulin and caspase-3 were dye developed using 3,3´-
Diaminobenzidine (DAB) (Dako, Glostrup, Denmark).  

Sections from human pancreata were simultaneously stained with the lectin 
Bandeiraea simplicifolia (BS-1) and evaluated for vascular density, as previ-
ously described130, for comparison between native and transplanted islets. 

Paper II 
Graft bearing livers were initially fixated in 4 % vol/vol paraformaldehyde 
overnight at 4°C, transferred to 15 % wt/vol sucrose in PBS (2 h) and finally 
to 30 % wt/vol sucrose in PBS overnight at 4°C, to preserve GFP-expression. 
The livers were sectioned (10 µm) to a depth of 4.0 mm. Islet grafts were 
identified in sections stained with hematoxylin, while consecutive sections 
were saved for later performed immunostainings (Table 2). Only islets with 
an area exceeding 50 µm2 were evaluated in order to avoid misestimations 
based on single cell residues. 

Paper III 
Tissue sections were collected from the same tissue block for insulin staining 
of the islet graft. Cryosections and paraffin sections were prepared for im-
munohistology using antibodies outlined in Table 2. ProLong Gold Antifade 
reagent with 4´,6-diamidino-2-phenylindole (DAPI) (Life Technologies, 
Rockville, MD, USA) was used for mounting and nuclei staining for frozen 
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sections. Hoechst 1:10,000 (Life Technologies) was used for nuclei staining 
of paraffin embedded pancreas and grafts from muscle and omentum. 

 

Table 2. Stainings and antibodies used for histological evaluations 
Primary antibody Dilution Manufacturer  

Guinea pig anti-insulin 1:400 Fitzgerald Industries International 
Concord, MA, USA 

Paper  
I 

Rabbit anti-caspase-3 1:100 Cell Signaling Technology, Danvers, 
MA, USA 

Paper  
I 

Lectin Bandeiraea simplicifolia 1:100 Sigma-Aldrich Paper  
I 

Mouse anti-pimonidazole  1:100 Bioscience Research Reagents, 
Temecula, CA, USA 

Paper  
I 

Alkaline Congo Red   VWR International, Radnor, PA, USA Paper  
I 

Rat anti-mouse CD31  1:100 BD Biosciences, San Jose, CA, USA Paper 
II 

Guinea pig anti-insulin  1:400 Ken-EN-Tec Nordic, Tåstrup, Den-
mark 

Paper 
II 

Rabbit anti-Ki67  1:250 Abcam, Cambridge, UK Paper 
II 

Guinea pig polyclona 1:400 Fitzgerald, Acton, MA, USA Paper 
III 

Mouse monoclonal anti-glucagon  1:800 Abcam, Cambridge, UK Paper 
III 

Anti-mouse FABP4 10 µg/mL R&D systems Paper 
IV 

Anti-human Aggrecan  10 µg/mL R&D systems Paper 
IV 

Anti-human Osteocalcin  10 µg/mL R&D systems Paper 
IV 

Secondary antibody Dilution Manufacturer  

Swine anti-rabbit antibody  1:40 Dako, Glostrup, Denmark Paper 
I 

Biotinylated goat anti-rabbit anti-
body  1:300 Southern Biotech, Birmingham, AL, 

USA 
Paper  

I 
TrekAvidin-AP Lable and Vulcan 
Fast Red   Biocare Medical  Paper  

I 

Biotinylated goat anti-mouse  Southern Biotech Paper  
I 

Alexa Flour 647 donkey anti-rat  1:300  Jackson ImmunoResearch Laborato-
ries, West Grove, PA, USA   

Paper 
II 

Alexa Flour 488 donkey anti-
guinea pig  
 

1:300 Jackson ImmunoResearch Laborato-
ries   

Paper 
II 

Alexa Flour 488 donkey anti-rab-
bit  1:300 Jackson ImmunoResearch Laborato-

ries   
Paper 

II 
Alexa Fluor 488 goat anti-guinea 
pig 1:1000 Invitrogen, Carlsbad, CA Paper 

III 
Alexa Fluor 594 donkey anti-
mouse 1:250 Invitrogen Paper 

III 

Alexa Fluor 594 donkey anti-goat 1:300 Jackson ImmunoResearch Laborato-
ries   

Paper 
IV 

Alexa Fluor 594 donkey anti-
mouse 1:300 Jackson ImmunoResearch Laborato-

ries   
Paper 

IV 
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Paper IV 
To evaluate differentiation capacity of DSCs in paper IV, cells were stained 
with Oil Red O (Santa Cruz Biotechnology, CA, USA), Alizarin Red (Sigma-
Aldrich), and Alcian Blue (Sigma-Aldrich) following fixation with 4 % or 10 
% vol/vol paraformaldehyde. Parallel fixated cells or, for chondrogenic dif-
ferentiation performed in 3D-culture, sections of the fixated pellet, were 
stained with mFABP4, osteocalcin, and anti-aggrecan antibody (R&D Sys-
tems, McKinley Place, MN, USA). 

Cell death assessment was performed by staining with Live-or-Dye NucFix 
Red Staining Kit (Biotium, Fremont, CA, USA) and bisbenzimide 20 µg/mL 
(Hoechst 33324, Sigma-Aldrich). 

Image Analysis 

Paper I   
Images were captured with Leica Leitz DMRBE microscope (Leica Microsys-
tems, Wetzlar, Germany). Assessment of islet vascular density and evaluation 
for percentages of caspase-positive cells were made using ImageJ (National 
Institutes of Health, Bethesda, MD, USA). In order to determine the intra-islet 
capillary density, only vessels surrounded by islet tissue were counted and 
compared to native human pancreas, assessed with the same criteria. 

The percentage of pimonidazole-positive islets was assessed. Islet amyloid 
was evaluated by fluorescence microscopy and polarized microscopy, in the 
latter amyloid displays an apple-green birefringence131.  

Paper II  
Images were captured using the laser scanning confocal microscope Zeiss 
LSM 780 (Carl Zeiss AG, Oberkochen, Germany) with Plan-Apochromat 
10x/0.45 M27 and 20x/0.8 M27 objectives. For image analysis of islet area 
and vascular density, a macro was built in Fiji software with the assistance of 
staff at the BioVis facility platform of Uppsala University. 

Paper III  
Light microscopy images were acquired with a Leica LMD6000 laser micro-
dissection microscope (Leica Microsystems). Fluorescent immunohistochem-
istry images were acquired with Zeiss LSM780 confocal (Zeiss).  

The respective areas of insulin and glucagon were calculated using the im-
age software Imaris (Bitplane AG, Zurich, Switzerland) with a fixed intensity 
cut-off value for each staining. The percentage in each image was combined 
into an average for each animal and considered as one experiment. 
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Paper IV 
A macro using Fiji software performed threshold-based calculations of the ra-
tio of dead cells, taken as a relative measure of islet resistance to cytokine 
stress.  

Glycogen Assay 

Paper III 
Glycogen concentration in muscle and liver was measured from 10 mg of ho-
mogenized tissue from cured and control animals by a Glycogen Assay Kit II 
(Abcam, Cambridge, UK). Reading of the plate was performed using a Spark 
Microplate Reader (Tecan, Männedorf, Switzerland). 

Decidual Stromal Cell Isolation 

Paper IV 
Human placentas were obtained from mothers at Uppsala University Hospital. 
The following inclusion criteria were used: healthy women planned for rou-
tine caesarian section in week 37-42 of gestation. Exclusion criteria: positive 
test for HIV, hepatitis or Treponema pallidum, smokers, patients suffering 
from diabetes, preeclampsia, placenta accreta or known tumor disease. After 
collection of the placentas, the isolation process started within four hours. For 
decidual stromal cell isolation, the protocol from Pelekanos et al was used132. 
The placenta was washed inside a biosafety cabinet and the decidua was dis-
sected into pieces of 5 g. The tissue was washed in HBSS, minced, divided 
into portions of 10 g and incubated in 25 mL of the following digestion solu-
tion: Dispase 2.4 U/mL (Thermo Scientific, Waltham, MA, USA), DNase I 
15µL, ³ 2500 U/mL (Thermo Scientific) and Collagenase I 100 U/mL 
(Thermo Scientific). Incubation was sustained until the solution assumed a 
cloudy appearance, approximately 1.5 hours at 37°C during vigorous shaking. 
The tissue was then washed, pulse centrifuged and passed through a 100 µm 
filter. The single cells were seeded in T75-bottles (Corning, New York, NY, 
USA) in DMEM culture medium with low glucose from Thermo Scientific, 
supplemented with FBS (Sigma-Aldrich) and Penicillin Streptomycin (100 
U/mL and 100 µg/mL respectively, Thermo Scientific). Medium was changed 
every three days. When 80-90 % confluency was reached, cells were passaged 
by trypsinization with TrypLE (Thermo Scientific). Dissociated cells were 
pelleted by centrifugation 200 rcf for 5 minutes, the supernatant discarded and 
cells resuspended in culture medium. 
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DSC Characterization  

STR Analysis 
Short tandem repeats (STR) were analyzed to confirm the origin of expanded 
DSC culture. DNA was recovered from blood samples and from cell cultures 
by Qiagen DNA Mini Kit (Qiagen, Hilden, Germany) and STR analysis was 
performed by Uppsala Genome Center.   

Differentiation Capacity 
Multilineage differentiation capability was evaluated by a differentiation kit 
(R&D Systems). For differentiation experiments, cells from passage 2 were 
seeded in 24-well dishes (Sarstedt, Nümbrecht, Germany) and differentiation 
medium was changed every third day. As controls, cells seeded or pelleted at 
the same cell density and cultured in standard culture medium were used. 

Flow Cytometry 
Cells from passages 1-10, isolated from different donors (n=15), were de-
tached from flask using TrypLE, washed in DPBS (Thermo Scientific) and 
stained with a multifluorescent panel for MSC markers CD29-APC, CD90-
FITC, CD73-BV605, CD105-BV421 (Biolegend, San Diego, CA, USA); 
hematopoietic markers CD45-PE, CD34-PE; endothelial marker CD31-PE, 
immunological markers HLA-ABC-PE-Cy7, HLA-DR-BV786; and the co-
stimulatory molecule CD80-PE. All antibodies except CD105 were purchased 
from BD Biosciences (San Jose, CA, USA). The stained cells were assessed 
on the LSRFortessa (BD Biosciences) at the core facility BioVis at Uppsala 
University. Results were analyzed in FlowLogic software (Inivai Technolo-
gies, Australia). 

Islet and DSC Co-Culture  

Human islets were co-cultured with DSCs in either direct contact conditions 
upon a DSC monolayer (group 1) or in an indirect setting (group 2), where 
islets were placed inside a cell insert with pore diameter 0.4 µm, which al-
lowed medium exchange but not cell-cell contact with a DSC monolayer. 
DSCs (group 3) and human islets (group 4) were also cultured separately. 

Analysis of Inflammatory Biomarkers  
Inflammatory biomarkers were measured in medium and lysates from DSCs 
and human islets after 48 hours of co-culture. Analysis was performed with 
an inflammatory biomarker panel provided by Olink (Uppsala, Sweden). 
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Cytoprotective Properties of DSCs on Human Islets  
Islets were cultured in the presence of cytokines IL-1b 50 U/mL, IFN-g 1,000 
U/mL, and TNF-a 1,000 U/mL (PeproTech, London, UK) for 24 hours in the 
different co-culture conditions detailed above.  

Islet Function 
Duplicates of 50 islets, after DSC co-culture or not, were evaluated for insulin 
release in response to glucose and forskolin perifusion. The islets were ini-
tially perifused with KRBH-buffer, then primed to low glucose solution (2.0 
mM) before exposure to high glucose (20.0 mM). The same procedure was 
repeated with addition of forskolin 1 µM. Samples were assessed for their in-
sulin content by a human insulin ELISA (Mercodia, Uppsala, Sweden). 

Gene Expression Analysis 

Papers III and IV 
For complete descriptions of preparation of tissue for microdissection, RNA 
isolation, PCR, and microarray analysis, see respective paper. Genes analyzed 
in paper III are specified in Table 3.  

 

Table 3. Specifications of genes analyzed in paper III. 

  
Gene Name Function 
GCK Glucokinase Glucose metabolism 
GLUT2 Glucose transporter type 2 Glucose transporter 
GPD2 Glycerol-phosphate dehydrogenase 2, 

mitochondrial 
Mitochondrial enzyme, 
glycolysis 

INS1 Insulin 1 Peptide hormone 
INS2 Insulin 2 Peptide hormone 
LDHA Lactate dehydrogenase A Anaerobic glycolysis 

PCX Pyruvate carboxylase Mitochondrial enzyme 
PDX1 Pancreatic and duodenal homeobox 1 Transcription factor, beta 

cell differentiation marker 
GAPDH Glyceraldehyde 3-phosphate dehydro-

genase 
Glycolytic enzyme, 
reference gene  

HPRT Hypoxanthine guanine phosphoribosyl 
transferase 

Metabolic enzyme, 
reference gene  
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Statistical Analysis 

Statistical analysis was performed using GraphPad Prism. All values are ex-
pressed as means ± SEM. Comparisons between two groups were performed 
by unpaired or paired two-tailed Student’s t-test. For all comparisons, p-values 
< 0,05 were considered statistically significant. 

Paper I 
Pearson’s product moment correlation was used for linear regression analysis. 
Multiple comparisons between data were performed using analysis of variance 
(ANOVA) and Bonferroni post-hoc test. Kruskal Wallis test was used for non-
parametric data (the data was considered non-parametric based on Shapiro-
Wilk normality test). 

Paper II 
Comparisons between three groups were performed using ANOVA and Tuk-
ey's multiple comparisons test. For the multiple comparisons regarding the 
angiogenic markers a two-way ANOVA was performed with Sidak's multiple 
comparisons test.  

Paper III 
For comparison of relative gene expression data, a non-parametric one-way 
ANOVA was applied with Dunn’s post-hoc test using native pancreatic islets 
as control. For comparison of blood glucose measurements between the three 
groups, a one-way ANOVA with Tukey’s post-hoc test was applied. Compar-
ison of time to normoglycemia was performed as a survival curve using Log-
rank test (Mantel-Cox).  

Paper IV 
For comparisons between more than two groups, one-way ANOVA was per-
formed using Dunnett’s correction for multiple comparisons. One-way 
ANOVA was calculated on AUC for islet function. Inflammatory biomarkers 
were analyzed with multiple t tests using False Discovery Rate (FDR) ap-
proach, where FDR was set to 1% and using the two-stage step-up method of 
Benjamini, Krieger and Yekutieli.  
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Results and Discussion 

In this thesis, factors affecting islet transplantation and methods for improving 
its outcome were investigated. Human islet engraftment and surviving beta-
cell mass after intraportal transplantation, the site of golden standard, was 
evaluated in paper I. Islets expressing GFP were used in paper II for repeated 
IT. Abdominal muscle and greater omentum were assessed as alternative sites 
in paper III. Finally, DSCs, a type of MSC isolated from human placenta, were 
isolated and characterized for possible use in IT. 

Beta-Cell Loss after Intraportal Transplantation 

The question if the liver is the optimal site for islet transplantation has yet to 
be answered. Understanding which factors affect engraftment are of im-
portance in order to optimize intraportal transplantation or to find a site more 
suitable for islet transplantation. In paper I, we investigated the engraftment 
of human islets intraportally transplanted to nude mice. We have previously 
investigated the oxygenation of intraportally transplanted islets in mice60, and 
comparing those results to human islets were of interest since the architecture 
of human and murine islets differ133,134. When performing an islet transplanta-
tion to the liver, an instant loss of graft tissue occurs due to IBMIR. We com-
pared beta-cell mass 1 day and 30 days after transplantation and investigated 
the degree of hypoxia. 

We found that human islets undergo substantial graft loss beyond the im-
mediate transplantation phase. The graft loss in our study was found to depend 
on both necrotic damage of islets and a high rate of apoptosis at 1 day, which 
remained at 30 days posttransplantation (21 % and 34 % respectively). Ne-
crotic areas were common at 1 day posttransplantation and were also found to 
affect the surrounding liver parenchyma. The high rate of caspase-3, an apop-
tosis marker, at 30 days correlated with the time the islets had spent in culture, 
in line with what has previously been reported39. Consequently, a negative 
correlation was observed between a high rate of apoptosis at 30 days post-
transplantation and a low retained islet mass. The rate of apoptosis was even 
higher at 30 days than 1 day posttransplantation, which indicates that more 
regulated cell death persists in intraportally transplanted human islets than 
what was observed in murine islets, using the same apoptosis marker60.   
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The total graft area was reduced by 52 % after 30 days compared to that 
found at 1 day posttransplantation.  

 The vascular density doubled within the first month, but still remained only 
one third of that in native human islets, again demonstrating a hypoxic pro-
pensity in the liver135. In line with a low rate of revascularization, 44 % of 
islets were found positive for the hypoxia marker pimonidazole at 1 day post-
transplantation, which indicates a tissue oxygen tension < 10 mmHg136,137. 
Since necrotic and apoptotic cells do not accumulate pimonidazole138, the de-
gree of hypoxic cells at 1 day may even have been underestimated. 

Amyloid Formation in Transplanted Islets  

IAPP, predominantly produced in beta-cells, can form amyloid fibrils, known 
to be toxic for beta-cells139. To evaluate amyloid content, consecutive slides 
of islet-bearing sections were stained with Cong Red. No amyloid or very low 
amounts were found in islets at 1 day posttransplantation, similar to levels 
observed in control islets, whereas 27 % of islets contained amyloid deposits 
1 month posttransplantation. Islets that already did contain amyloid at 1 day 
might reflect a known tendency for amyloid formation during culture52 or even 
preexistent amyloid in the islet donor. The amyloid observed at 30 days sup-
ports previous findings of a predisposition for progressive amyloid formation 
when human islets are transplanted to renal capsule as well as to the liver140. 
A case report with autopsy material from a patient that received allotrans-
planted islets showed that 43 % of the islets contained amyloid141. One possi-
ble reason for this may be inadequate drainage, since substantial formation of 
amyloid has previously been reported in avascular setting studies of both mi-
croencapsulated human islets and recombinant human IAPP murine is-
lets142,143. Although mostly associated with type 2 diabetes, extensive amyloid 
formation in transplanted islets are likely to contribute to graft failure144. 

Beneficial Effect of Repeated Islet Transplantation  

The need of repeated islet transplantation in the clinic is common when islet 
graft function starts to decline. To evaluate the differences in engraftment be-
tween a first and second transplant, we performed intraportal islet transplan-
tation to the same animal twice. We found a consistently better-preserved islet 
mass (in terms of both remaining number of individual islets and total islet 
area) from the second islet transplant. A control group, which was injected 
with a saline infusion instead of a first transplantation, showed an islet mass 
on par with the first islet injection in the double transplanted group. A tentative 
explanation that we investigated was whether the first transplantation induced 
an angiogenic niche through tissue expression of hypoxia, inflammatory 
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processes and liver microinfarctions. The latter was actually observed in paper 
I. However, there was no increase in angiogenic factors in serum immediately 
preceding the second transplantation and also no increase in islet vascular den-
sity between the control group and double transplanted group at 30 days post-
transplantation. 

 The reason for the obtained findings is therefore obscure, but it is likely 
that the lodging of the second transplant in the liver differs from the first trans-
plant due to some of the portal vein tributaries already being obstructed. More-
over, it is possible that gene expression in the liver parenchyma is changed by 
a first transplantation, inducing hypoxia and survival genes not necessarily 
reflected in circulating concentrations of angiogenic factors. 

 It is interesting to note that disruption of islets and compensatory growth 
(after unilateral nephrectomy or partial hepatectomy) in recipient tissue have 
previously been reported to have a positive impact on islet implantation61,145. 
Autologous IT following pancreatectomy has demonstrated increased vascu-
lar density146. 

Islet Transplantation to Muscle or Greater Omentum  

Numerous sites have been tested in attempts to improve islet transplantation. 
Along with new cell therapies and beta-cell replacement by stem cells, the 
requirements for a site with regards to monitoring and retrieval are even 
greater.  

Islets implanted into muscle and into omentum are known to rapidly revas-
cularize with a restoration of vascular network superior to the liver78,79. Synge-
neic transplantation of 200 islets to striated muscle or omentum was sufficient 
to cure the majority of diabetic animals in paper III.  

Of the two investigated sites, islets transplanted to omentum had a slightly 
more favorable response to both intravenously administered glucose and in-
sulin. This dysfunction in the muscular site might be due to exposure to pre-
vailing hypoxia in the first week after transplantation, as previously reported 
by our group129. Another explanation may be a marginal surviving islet mass 
in the intramuscular site, resulting in graft exhaustion. Substantial fibrosis for-
mation has previously been reported for IT to striated muscle147,148. In a study 
comparing different sites in the same mouse model, a higher number of islets 
were required, and it took longer time to reach euglycemia, for the mice re-
ceiving an IT to the intramuscular site as compared to the omentum34. Of note, 
the surgical technique used in that study may differ from ours.   

Blood glucose levels two hours after insulin injection were increased in 
animals with intramuscular islet grafts when compared to controls, indicating 
an exaggerated counter-regulatory response to hypoglycemia. Previous stud-
ies indicate that the glucagon response to hypoglycemia may be site-depend-
ent, and a dysregulation of alpha-cells has been reported for the intraportal 
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site149,150. A more recent study reported that glucagon secretion does increase 
in response to insulin-induced hypoglycemia, although not to the same extent 
as in healthy controls151.  

 A difference between the sites investigated in this study is their venous 
drainage. Since the hepatic cells are a major target for insulin, the importance 
of portal drainage (as in omentum) has been one of the main arguments for 
using the liver as an islet implantation site. It has also been shown that a sys-
temic venous drainage of islet grafts induces hyperinsulinemia through a de-
creased insulin clearance rate, causing insulin resistance75.  Since neither in-
sulin nor C-peptide levels were measured in the current study, it cannot be 
excluded that the reduced clearance of glucose during IVGTT in animals with 
intramuscular islet grafts in part reflects an insulin resistant state. The initial 
glucose lowering response during ITT was identical to controls in both groups 
of transplanted animals, which at least is indicative of a normal response to 
insulin in peripheral tissue. Glycogen content in liver and muscle did not dif-
fer, indicating a functional glucose uptake regardless of transplantation site. 

In contrast to our previous observations of a decreased percentage of glu-
cagon-positive cells in islets experimentally transplanted to the liver59, in this 
study we found that islet composition was unaltered in both islets transplanted 
to muscle and to omentum. 

Gene Expression of Islet Transplants 

The studied genes are involved in glucose metabolism within the beta-cells, 
which in turn secrete insulin, a prerequisite for the glucose uptake of almost 
every other cell type. Glucose is the major catabolic and anabolic substrate for 
our cells, and in itself, glucose regulates gene transcription, enzyme activity, 
and hormone secretion152. This explains the huge range of consequences and 
complications, short- and long-term, that occur when normal glucose control 
is lost.  
Gene analysis demonstrated an upregulation of GLUT2 (glucose transporter), 
PCX (metabolic enzyme), PDX1 (beta-cell differentiation marker), and INS1 
and INS2 in islets transplanted both to omentum and muscle, compared to 
native islets (as opposed to humans, mice have a two-gene system for insulin 
transcription153,154). GCK (enzyme), regulating the initial step of glucose-in-
duced ATP synthesis, was unaltered. LDHA (enzyme) was downregulated, 
indicative of a low production of lactate. When LDHA was overexpressed in 
a beta-cell line, lactate stimulated insulin secretion even in the absence of glu-
cose155. Moreover, in contrast to our findings, previous experimental studies 
have observed altered gene expression in islets transplanted to liver62,156, renal 
capsule157, and pancreas62. 
In this study, as well as in papers I-II, normoglycemic recipients were used to 
avoid differences in blood glucose levels, which may affect islet grafts. We 



 36 

have previously not observed any differences in engraftment and function of 
islet transplants to normoglycemic or successfully cured diabetic 
mice156,158,159. 

Using Placenta as a Source of MSCs  

More than 1,000 studies involving MSCs were registered with ClinicalTri-
als.gov as of January 20th, 2020. Human MSCs with the desired characteristics 
(rich secretome, immune-privileged, accessible, demonstrated genomic stabil-
ity) and that fulfill the ISCT criteria can be obtained from numerous 
sources160. Bone marrow is a commonly used source where MSCs only repre-
sent 0.01–0.001 % of the total amount of cells, and the proportion declines 
with age86,161. Several studies demonstrate loss of function when using cells 
from later passages, e.g. better survival when using passages 1-2 instead of 
passage 3-4 bmMSCs, as a therapy for GVHD98. MSCs from placenta would 
be a suitable source to avoid unwanted expansion in culture. Prolonged culture 
is also associated with a risk of malignant transformation, even though this 
risk appears low in human MSCs162. The almost non-existent proportion of 
cell engraftment in vivo may also contribute to the low occurrence of ectopic 
tissue formation reported98,99. The genomic stability of adult stromal cells is 
another major advantage of MSCs as compared to embryonic stem cells and 
induced pluripotent stem cells. 

Few ethical considerations are connected to harvest of cells when using the 
placenta, a tissue that would otherwise be discarded. Adequate testing of 
blood-borne disease prior to isolation can easily be performed during routine 
visits at the maternity ward for safe handling. Using elective caesarian section, 
instead of placenta after vaginal delivery, minimizes stress on the cells, result-
ing in a great number of viable cells without the need of too many passages. 

Alterations of DSCs in Culture  

Surface marker evaluation of DSCs was undertaken and demonstrated a typi-
cal display of MSC markers, with a decreasing donor variability the longer the 
cells stayed in culture. The uneven proportion of DSCs (PE-negative popula-
tion) seen in early passages (1-2) likely reflects additional cell types that came 
with the isolation procedure but regressed later on. From passage 5-10, the 
cell populations were quite homogeneous from this aspect. The HLA-DR 
marker was only expressed in the first 1-2 passages. The generally low allore-
activity mobilized by MSCs is believed to be due to the lack of MHC II mol-
ecules, which we also confirmed for DSCs. Of note, this expression may how-
ever change in vivo. 
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Donor variability has been cited as a contributing reason why clinical trials 
with MSCs have not delivered the hoped-for results163,164. Our characterization 
of surface marker expression and subsequent gene analysis from different pas-
sages is promising for a “steadiness” of DSCs without too large inter-donor 
variation. The passage number had a greater impact than the donor in regards 
to the number of differentially expressed genes, and the changes seen were 
relatively small. The relative limitation of age and gender regarding the donors 
might also work to our advantage in the quest for an unswerving DSC proto-
col163. Additionally, cells were shown to be of maternal origin and exhibited a 
limited capacity of multilineage differentiation, in line with what has been 
previous described126. The differentiation capacity and the other ISCT criteria 
do not necessarily predict biological outcome, which is most likely dependent 
on the DSC secretome165. 

Impact of DSCs on Human Islets in Vitro 

Previously, MSCs have been used to increase both rodent and human islet 
viability and to improve transplantation115,166. These effects are mainly medi-
ated by anti-inflammatory effects, secreted angiogenic factors, and induction 
of tolerance for allogeneic grafts106,111,167. The type of co-culture (direct vs in-
direct cell contact) is of importance, but exact mechanisms remain unclear119. 
To investigate if similar effects are induced by DSCs, a co-culture experiment 
using both direct and indirect contact culture, the latter with a transwell sys-
tem, was set up.  

Assessment of medium after 48 hours from all co-culture groups (including 
control DSCs and islets) revealed consistently elevated levels of inflammatory 
markers in DSC-containing medium. Co-culture of islets and DSCs resulted 
in altered levels (compared to control DSCs) of several markers, including 
VEGF-A, CXCL11 and PD-L1, involved in chemotaxis and T-cell activation. 
The same markers were analyzed in cell lysates where no differences were 
observed between islets from the co-culture settings. Meanwhile, DSCs from 
indirect culture displayed altered levels of 31 out of 65 detectable inflamma-
tory biomarkers.  

DSCs had no cytoprotective effect on islets during 24 hours of exposure to 
a cytokine mixture. Yeung et al. demonstrated a protective effect of MSC-islet 
co-culture; however, co-culture was initiated 24 hours before cytokine expo-
sure48. Different culture times, dosage of cells, culture set up, as well as cell 
and islet source may affect the contrary results obtained in our experiment. 
The absolute levels of inflammatory markers measured cannot be determined 
by the arbitrary NPX-unit, used for relative quantification in this study. Nev-
ertheless, incubation in a pro-inflammatory milieu for too long will likely 
hamper islets, especially if their prior condition adds to a “pro-inflammatory” 
state of DSCs88,168,169. 
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Islet function after co-culture exhibited three different responses to high 
glucose and forskolin perifusion, likely reflecting the variability of human is-
let condition and its importance for the interactions that take place between 
islets and DSCs. However, our results suggest that the choice of co-culture 
system does not alter the effect of DSCs on islet function. Forward, assessing 
islet viability beforehand would be useful in order to understand which sets of 
islets would or would not benefit from DSC treatment. 

Gene expression analysis demonstrated no differentially expressed genes 
in DSCs from co-culture groups, whereas islets from the direct contact culture 
group demonstrated a greater number of differentially expressed genes com-
pared to control and indirect cultured islets. Further evaluation of these 
changes is needed to elucidate what categories of genes constitute these 
changes and how they may alter the islets. Co-culture setup that allows cell-
cell contact has demonstrated alterations in MSCs in close connections to the 
islets, which started expressing insulin and PDX1, a key protein for insulin 
production118. Recent findings demonstrate mitochondrial transfer as a mech-
anism of MSC effect on beta-cells in co-culture170. This exchange is also re-
ported to depend on cellular stressors of human islets, which increased the 
mitochondrial transfer compared to undamaged murine islets.  
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Conclusions  

Paper I 
• Substantial loss of approximately 50 % of human islet tissue occurs 

between 1 and 30 days after intraportal transplantation 
• The vascular density increases after 30 days but is only one third of 

that in native islets  
• One third of human islets contain amyloid after 30 days and those is-

lets express a higher rate of apoptosis  

 Paper II 
• Islets from a second transplantation show better survival if per-

formed 1 week after a primary islet transplantation 
• This was not due to improved islet vascular density  

Paper III 
• The majority of diabetic animals were cured by 200 islets trans-

planted to omentum or muscle 
• The islet grafts maintained or increased the expression of genes im-

portant to beta-cell function 
• The glycogen levels in muscle and liver were not deranged depend-

ing on systemic or portal insulin release 

Paper IV 
• DSCs can easily be isolated from human placenta  
• DSCs display similar characteristics and low inter-donor variability 
• Gene expression of DSCs is altered in culture, especially between 

passage 2 and 5  
• Changes in medium content as well as gene expression occur in hu-

man islets after co-culture with DSCs, and the functional outcome 
may be dependent on islet viability 
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Sammanfattning på svenska 

Diabetes typ 1 är en sjukdom som beror på brist på insulin, ett hormon som 
gör att kroppens alla celler kan ta upp socker från blodbanan. När betacellerna 
som bildar hormonet förstörs måste personer tillföra insulin via dagliga injekt-
ioner för att överleva. Forskningen har lett till väldiga framsteg i diabetesbe-
handling och det går rentav att bota sjukdomen hos de som trots insulininjekt-
ioner har svårt att kontrollera sin diabetes. Det kan göras genom transplantat-
ion av så kallade Langerhanska öar, cellgrupper innehållande bland annat just 
betaceller, som finns spridda i bukspottskörteln och kan isoleras från organ-
donatorer. I de flesta fall brukar man transplantera öar till levern. 

Att inte alla kan erbjudas transplantation beror på flera faktorer, dels bristen 
på donatorer, dels att effekten av en transplantation avtar med tiden och att 
ingreppet därför ofta behöver upprepas, och dels behovet av immunhämmande 
behandling för att inte transplantatet ska stötas bort.  

Delarbeten 
Olika faktorer, både före och efter transplantation, inverkar på hur många av 
öarna som överlever och därmed avhjälper diabetes. I det första arbetet under-
söktes transplanterade öar i mikroskop för att utvärdera deras tillstånd. Öar 
som isolerats från människa transplanterades till levern på en musstam som 
tillåter xenogen (mellan arter) transplantation. Mängden betaceller minskade 
med hälften under första månaden. Kärlförsörjning till öarna återetablerades 
till viss del men efter en månad var den fortfarande endast en tredjedel av den 
hos normala öar. I många öar bildades också amyloid, ett plack av det felveck-
ade proteinet IAPP som produceras av ö-cellerna. Detta fenomen ses annars 
hos personer med diabetes typ 2 där sjukdomsutvecklingen istället för immu-
nangrepp är förknippad med insulinresistens och överproduktion av insulin 
och IAPP, som på sikt leder till utmattning och celldöd.  

I delarbete II fick samma mus två transplantationer för att se om öarnas 
infästning i levern förändras. För att kunna skilja på första och andra trans-
plantationen var de första öarna infärgade med en grön markör. I denna studie 
överlevde genomgående fler öar från andra transplantationen. Vi hittade ingen 
skillnad i t.ex. kärlinväxt så varför det blev så går inte att säga säkert. Möjligt-
vis påverkar den första transplantationen var nästkommande öar hamnar, al-
ternativt påverkas levern på ett sätt som inverkar positivt på andra omgångens 
öar.  
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Många studier på djur har undersökt andra möjliga ställen dit öar kan trans-
planteras, som på vissa sätt kan innebära bättre förutsättningar för deras över-
levnad. I delarbete III undersökte vi möjligheten att bota diabetiska möss med 
transplantation av öar till bukmuskel eller tarmkäx. Mössen blev botade men 
efter sockerbelastning hade vissa möss högre blodsockernivåer vilket kan tyda 
på att funktionen inte är optimal. När öarna studerades med mikroskop och 
deras genuttryck undersöktes liknade de normala öar. De uppvisade i vissa 
aspekter bättre resultat än öar transplanterade till lever eller mjälte, undersökta 
i tidigare studier. En annan fördel med muskel och tarmkäx jämfört med le-
vern är att man lättare kan övervaka (med röntgenteknik) men också ta ut 
transplantat vilket inte går om öarna är utspridda i levern. Med nya metoder 
där man använder stamceller istället för öar är dessa förutsättningar mycket 
viktiga ur ett säkerhetsperspektiv och för att kunna utvärdera resultaten.   

I sista arbetet isolerades en typ av stamceller från moderkakor efter kejsar-
snitt. Ett stort antal celler kunde då utvinnas utan några risker för donatorn. 
Dessa celler har liknande egenskaper som andra stamceller från t.ex. benmärg, 
men för att isolera stamceller från benmärg krävs ett kirurgiskt ingrepp och 
cellerna behöver växa till i odling. Varianter av stamceller från människa och 
mus har tidigare visat sig kunna bidra till bättre resultat vid transplantation av 
öar men mekanismerna för detta är inte klarlagda. För att ta reda på om stam-
celler från moderkaka kan användas undersöktes celler från flera donatorer för 
att se hur de skiljer sig och vad som sker under odling. Cellerna har samodlats 
med öar varefter genuttryck samt faktorer som frisätts från cellerna har analy-
serats för att bättre förstå deras funktion. 
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