Chapter 5A

Compounds and Their Bonds

1

CHAPTER OUTLINE

- Octet Rule and Ions
- Ionic Charges
- Ionic Compounds
- Naming and Writing Ionic Formulas
- Covalent Compounds
- Naming and Writing Covalent Formulas
- Polyatomic Ions
- Naming Acids

OCTET RULE & IONS

- Most elements, except noble gases, combine to form compounds. Compounds are the result of the formation of chemical bonds between two or more different elements.
- ☐ In the formation of a chemical bond, atoms lose, gain or share valence electrons to complete their outer shell and attain a noble gas configuration.
- ☐ This tendency of atoms to have eight electrons in their outer shell is known as the octet rule.

3

FORMATION OF IONS

An ion (charged particle) can be produced when an atom gains or loses one or more electrons.

A cation (+ ion) is formed when a neutral atom loses an electron

4

5.1

CHEMICAL BOND

- ☐ The nature and type of the chemical bond is directly responsible for many physical and chemical
- properties of a substance: (e.g. melting point,
 Whise of the reconcidentivity
 conductivity)
 appaluativity platecel insalt
 sald solgations, the buthe
 wiffelight types of bonds
- between their placed in sugar solution, the bulb does not light.

BINARY IONIC COMPOUNDS (TYPE I)

- **□** Binary compounds contain only two elements.
- **□** Type I ions are those cations that form only one ion.
- ☐ In these compounds, charges of the cations must equal the charges of the anions since the net charge is zero.
- Subscripts are used to balance the charges between cations and anions.

Example 1: Write formulas for the following ionic compounds: calcium chloride Sodium sulfide $Ca^{2+} \quad Cl_2^{-} \qquad Na_2^{+} \quad S^{2-}$ $+22-12 \boxed{10} \qquad \qquad +1222 \boxed{10} \qquad \qquad Na_2S$

BINARY IONIC COMPOUNDS (TYPE I)

- ☐ When naming ionic compounds, name the cation first and the anion last.
- ☐ The cation name is the same as the name of the metal it forms from.
- ☐ The anion name takes the root of non-metal and the ending "-ide".

sodium phosphid	e
barium chloride	

COMMON MISTAKES TO AVOID

When naming ionic compounds DO NOT use prefixes

MgCl₂

magnesium dichloride

AlF₃

aluminum trifluoride

21

BINARY IONIC COMPOUNDS (TYPE II)

- ☐ Type II ions are those cations that form more than one ion.
- When naming compounds formed from these ions, include the ionic charge as Roman numeral, in parentheses, after the metal's name.
- ☐ This method of nomenclature is called the "stock" system.

BINARY IONIC COMPOUNDS (TYPE II)

- ☐ Type II cations can also be named by an older method (classical).
- ☐ In this system, cations with the higher charge end in —ic, while cations with the lower charge end in —ous.
- ☐ In this system, some cations are named based on their Latin roots.

POLAR & NON-POLAR BONDS

- **□** Polar covalent bonds occur between different atoms.
- ☐ In these bonds the electron pair is shared unequally between the two protons.
- As a result there is a charge separation in the molecule, and partial charges on each atom.

(Video on polarity of water)

Examples:

Identify each of the following substances as ionic, polar covalent or non-polar covalent:

1. PCl₃

Polar covalent

 $2. MgF_2$

Ionic

3. O₂

Non-polar covalent

4. SO₂

Polar covalent

2 Different
non-metals
Metal &
non-metal
Same nonmetals

2 Different non-metals

NAMING & WRITING COVALENT FORMULAS

Binary Covalent Compounds

- ☐ These compounds are named similar to ionic compounds, with the second element named based on its root and suffix "-ide".
- ☐ Greek prefixes are used to indicate the number of atoms in these compounds.

3.

BINARY MOLECULAR COMPOUNDS

Number	Prefix	Number	Prefix
1	mono-	6	hexa-
2	di-	7	hepta-
3	tri-	8	octa-
4	tetra-	9	nona-
5	penta-	10	deca-

Example 2: Write formulas for the following binary molecular compounds: carbon tetrachloride CCl₄ indicates 1 carbon atom chlorine atoms

POLYATOMIC IONS

☐ Some judjcatomicaiond a contain polyatomic ions, an ion composed of several atoms bound together.

NH ₄ ⁺	ammonium	OH-	hydroxide
NO ₃ -	nitrate	CN-	cyanide
SO ₄ ²⁻	sulfate	C ₂ H ₃ O ₂ -	acetate
PO ₄ ³⁻	phosphate	HCO ₃ -	bicarbonate
CO ₃ ²⁻	carbonate		

NAMING ACIDS

☐ Acids are molecular compounds that form ions when dissolved in water.

Binary Acids

☐ Formulas are written similar to binary ionic compounds, assigning a +1 charge to hydrogen.

+1 -1 +1 -2 HCl H₂S

57

NAMING BINARY ACIDS

When naming the acids, use hydro-prefix, followed by the name of the non-metal with an −ic ending, followed with the word acid.

HCl hydrochloric acid

H₂S hydrosulfuric acid

HF hydrofluoric acid

POLYATOMIC ACIDS

- ☐ Several polyatomic acids are important in the study of chemistry, and their names must be learned.
- ☐ These acids and the polyatomic ions that form from their ionization are as follows:

