Chapter 9

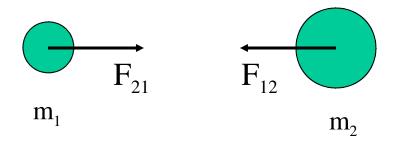
Linear Momentum

Linear Momentum

- Conservation of Linear Momentum
- Kinetic Energy of a System
- Collisions
- Collisions in Center of Mass Reference Frame

Momentum From Newton's Laws

Consider two interacting bodies with $m_2 > m_1$:



If we know the net force on each body then

 $\Delta \mathbf{v} = \mathbf{a} \Delta t = \frac{\mathbf{F}_{\text{net}}}{m} \Delta t$

The velocity change for each mass will be different if the masses are different.

MFMcGraw-PHY 2425

Momentum

Rewrite the previous result for each body as:

$$m_1 \Delta \mathbf{v}_1 = \mathbf{F}_{21} \Delta t$$

$$m_2 \Delta \mathbf{v}_2 = \mathbf{F}_{12} \Delta t = -\mathbf{F}_{21} \Delta t$$
 From the 3rd Law

Combine the two results:

$$m_1 \Delta \mathbf{v}_1 = -m_2 \Delta \mathbf{v}_2$$

$$m_1 (\mathbf{v}_{1f} - \mathbf{v}_{1i}) = -m_2 (\mathbf{v}_{2f} - \mathbf{v}_{2i})$$

MFMcGraw-PHY 2425

Momentum

Simplified notation:

Before:
$$v_1, v_2$$

After: u_1, u_2

Rewrite the previous results with new notation:

$$m_1\left(\mathbf{v}_{1f}-\mathbf{v}_{1i}\right)=-m_2\left(\mathbf{v}_{2f}-\mathbf{v}_{2i}\right)$$

$$m_1(u_1-\mathbf{v}_1)=-m_2(u_2-\mathbf{v}_2)$$

MFMcGraw-PHY 2425

Define Momentum

The quantity (mv) is called momentum (p).

 $\mathbf{p} = \mathbf{m}\mathbf{v}$ and is a vector.

The unit of momentum is kg m/s; there is no derived unit for momentum.

MFMcGraw-PHY 2425

Momentum

From a previous slide: $m_1 \Delta \mathbf{v}_1 = -m_2 \Delta \mathbf{v}_2$ $\Delta \mathbf{p}_1 = -\Delta \mathbf{p}_2$

The change in momentum of the two bodies is "equal and opposite". Total momentum is conserved during the interaction; the momentum lost by one body is gained by the other.

$$\Delta \mathbf{p}_1 + \Delta \mathbf{p}_2 = \mathbf{0}$$

MFMcGraw-PHY 2425

Momentum With Calculus

$$\vec{p} = m\vec{v}$$

$$\frac{d\vec{p}}{dt} = \frac{d(m\vec{v})}{dt} = m\frac{d\vec{v}}{dt} = m\vec{a}$$

$$\therefore \vec{F}_{net} = \frac{d\vec{p}}{dt}$$

The above is not true, in this form, if the mass is changing, i.e. a rocket using up its fuel.

MFMcGraw-PHY 2425

Center of Mass Momentum

$$\vec{P}_{sys} = \sum_{i} m_{i} \vec{v}_{i} = \sum_{i} \vec{p}_{i} = M \vec{V}_{cm}$$

$$\frac{d\vec{P}_{sys}}{dt} = M \frac{d\vec{V}_{cm}}{dt} = M \vec{A}_{cm}$$

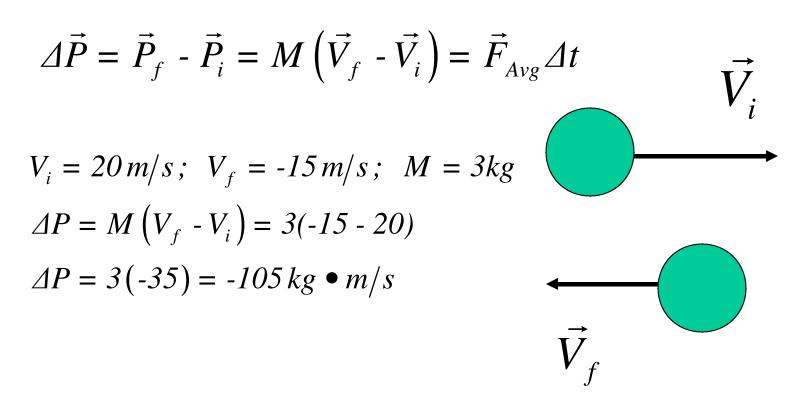
$$\sum_{i} \vec{F}_{ext} = \vec{F}_{net \ ext} = \frac{d\vec{P}_{sys}}{dt}$$

$$If \sum_{i} \vec{F}_{ext} = 0 \ then$$

$$\vec{P}_{sys} = \sum_{i} m_{i} \vec{v}_{i} = M \vec{V}_{cm} = Constant$$

MFMcGraw-PHY 2425

Impulse



Since we are applying the change of momentum over a time interval consisting of the instant before the impact to the instant after the impact, we ignore the effect of gravity over that time period

Impulse and Momentum

The force in impulse problems changes rapidly so we usually deal with the average force



MFMcGraw-PHY 2425

Work and Impulse Comparison

Work changes E_T

Work = 0 \longrightarrow E_T is conserved

Work = Force x Distance

Impulse changes \vec{P} Impulse = 0 $\longrightarrow \vec{P}$ is conserved Impulse = Force x Time

MFMcGraw-PHY 2425

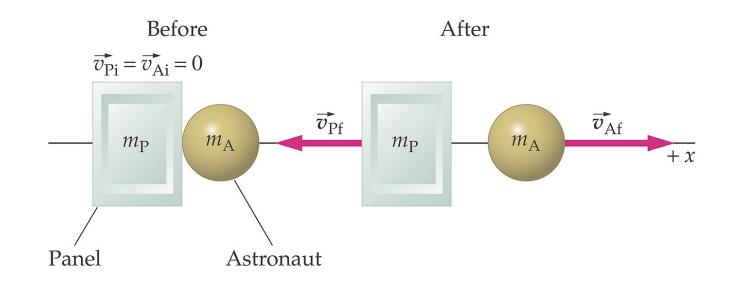
Chap09Ha-Momentum-Revised-10/2/2012

Typical Momentum Problems

MFMcGraw-PHY 2425

Chap09Ha-Momentum-Revised-10/2/2012

Generic Zero Initial Momentum Problem

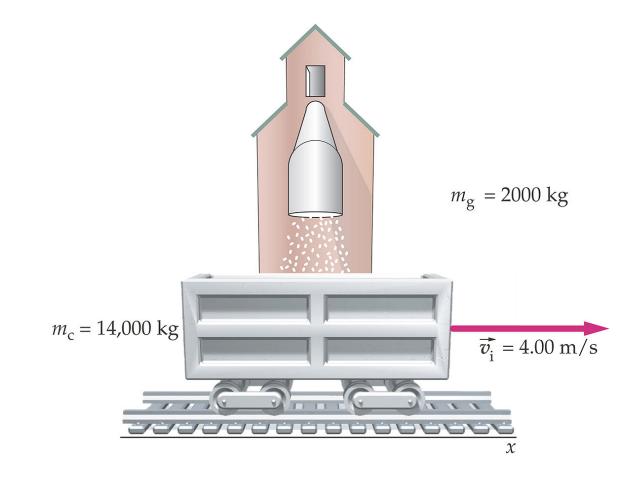


$$\sum \vec{p}_{i} = \vec{p}_{P} + \vec{p}_{A} = 0 \qquad \sum \vec{p}'_{i} = \vec{p}'_{P} + \vec{p}'_{A} = 0$$

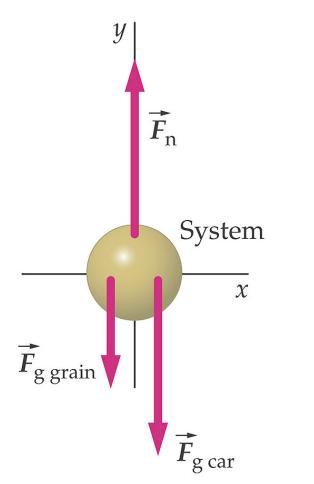
These problems occur whenever all the objects in the system are initially at rest and then separate.

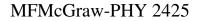
MFMcGraw-PHY 2425

Changing the Mass While Conserving the Momentum

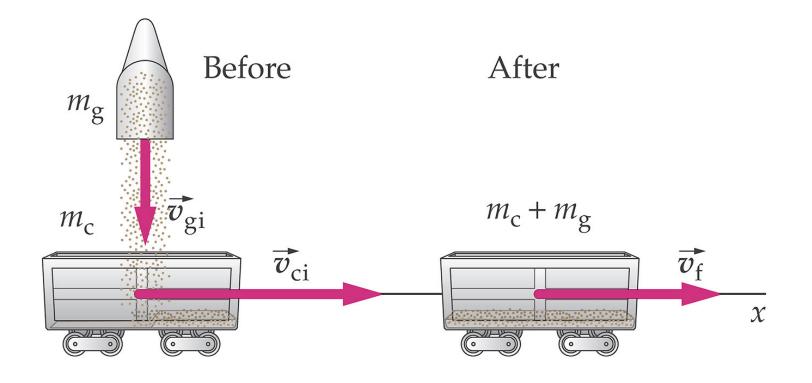


Changing the Mass While Conserving the Momentum





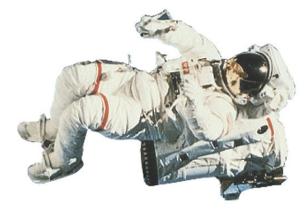
Changing the Mass While Conserving the Momentum

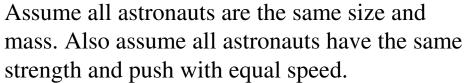


MFMcGraw-PHY 2425

Astronaut Tossing

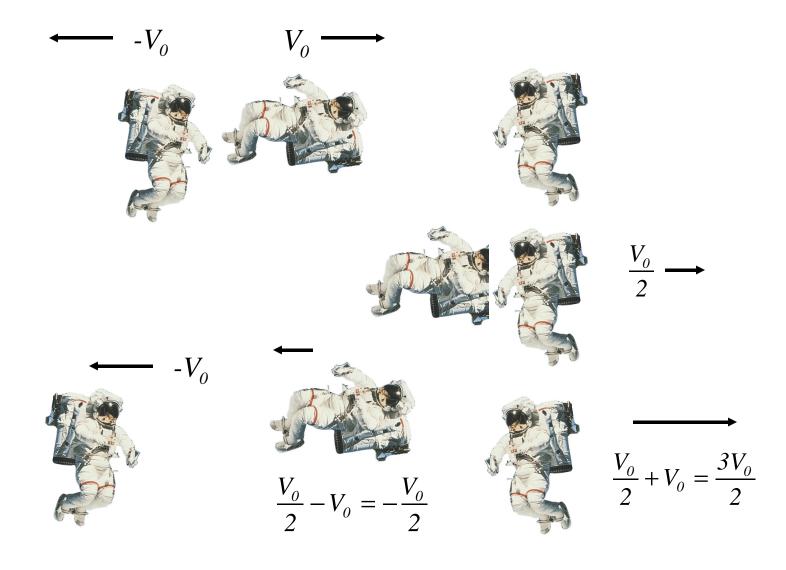
How Long Will the Game Last?





MFMcGraw-PHY 2425

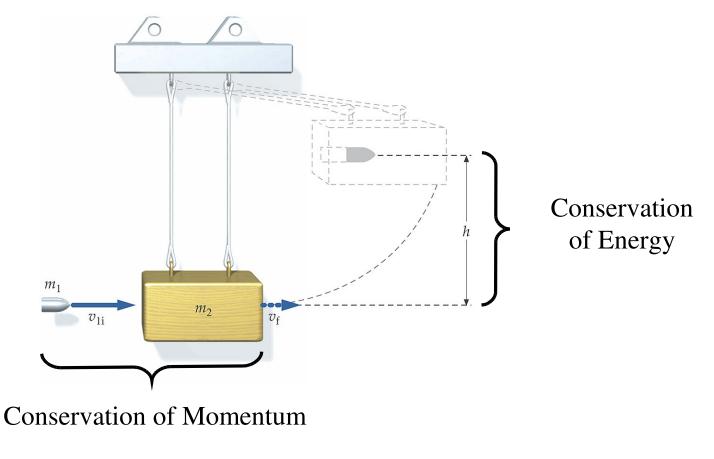
How Long Will the Game Last?



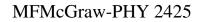
MFMcGraw-PHY 2425

Chap09Ha-Momentum-Revised-10/2/2012

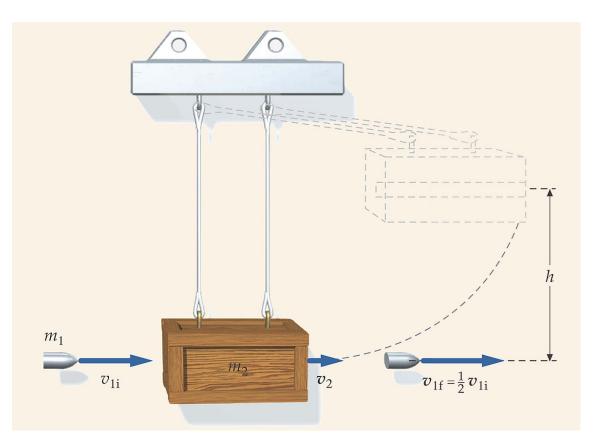
The Ballistic Pendulum



Bullet remains in the block



The High Velocity Ballistic Pendulum



Bullet exits the block

MFMcGraw-PHY 2425

Relative Speed Relationship

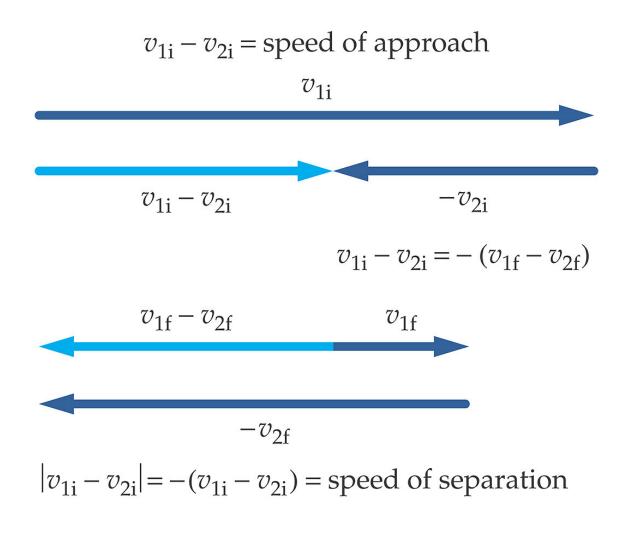
The relative speed relationship applies to *elastic* <u>collisions</u>.

In elastic collisions the total kinetic energy is also conserved.

If a second equation is needed to solve a momentum problem, the relative speed relationship is easier to deal with than the KE equation.

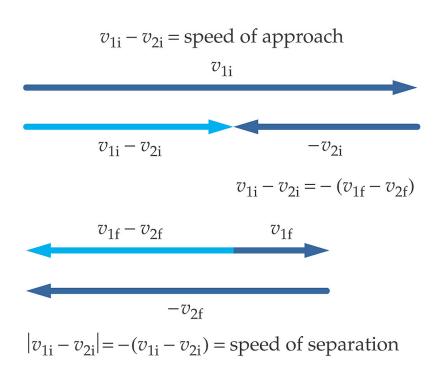
MFMcGraw-PHY 2425

Relative Speed Relationship



MFMcGraw-PHY 2425

Relative Speed in Problem Solving



Need a second equation when solving for two variables in an elastic collision problem?

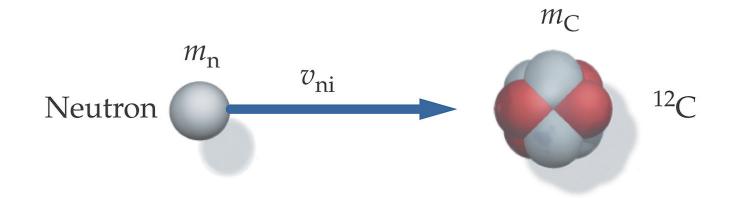
The relative speed relationship is preferred over the conservation of kinetic energy relationship

In the simpler notation:

$$v_1 - v_2 = -(u_1 - u_2)$$

MFMcGraw-PHY 2425

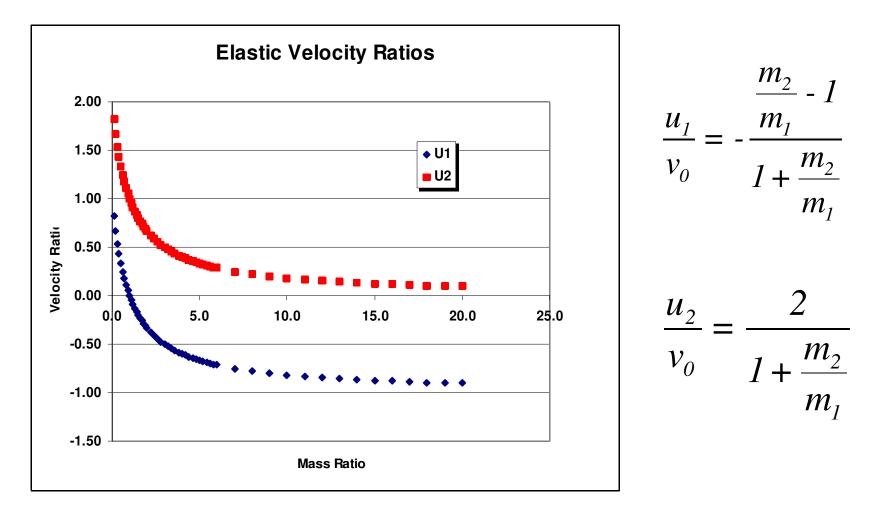
Elastic Collision - Unequal Masses



In the later slides, the initially moving mass, m_n , will called be m_1 while the initially stationary mass, m_c , will be m_2 .

MFMcGraw-PHY 2425

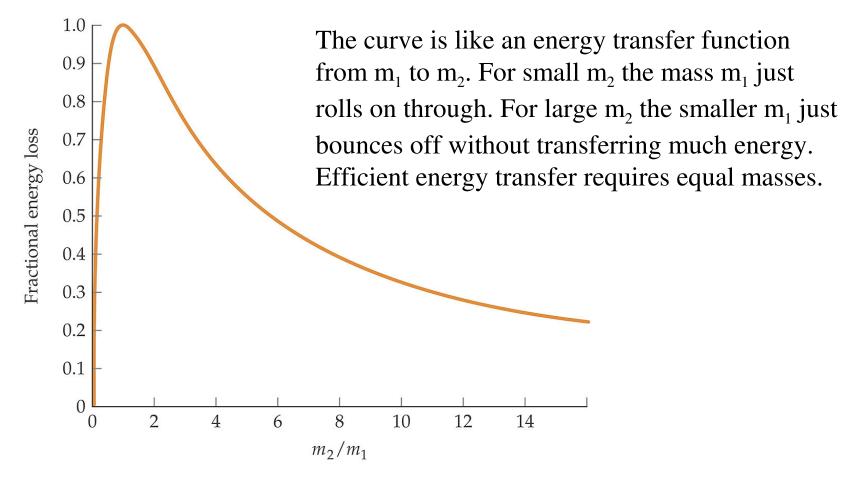
Elastic Collision – Velocity Ratios

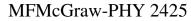


MFMcGraw-PHY 2425

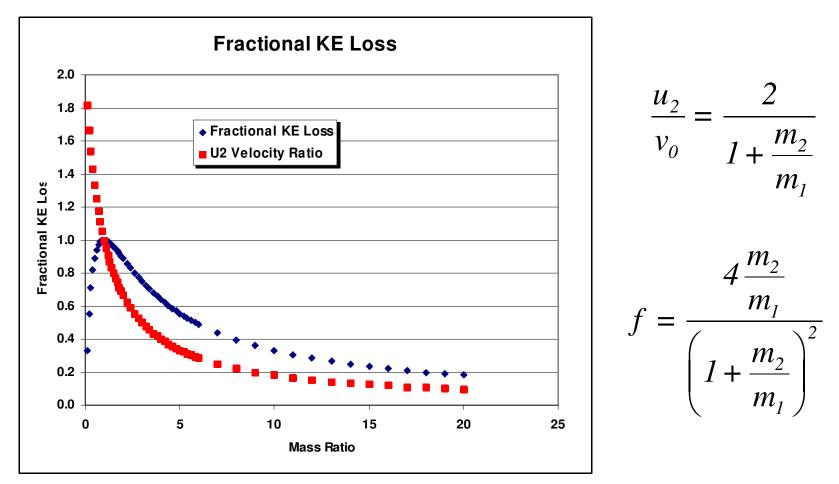
Elastic Collision - Fractional KE "Loss"

For equal masses all of the KE is transferred from m_1 to m_2





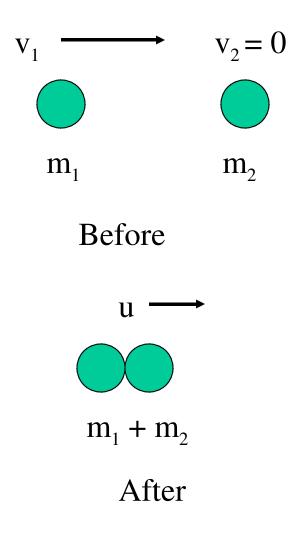
Elastic Collision - KE Transfer



For $m_2 > m_1$ the velocity of the 2nd mass gets a smaller velocity and even the larger mass can't overcome the shrinking v² factor in KE₂

MFMcGraw-PHY 2425 Chap09Ha-Momentum-Revised-10/2/2012 28

Inelastic Collision - Equal Masses



Momentum

$$m_1 v_1 = (m_1 + m_2)u; \quad u = \frac{m_1}{m_1 + m_2}v_1$$

Kinetic Energy
 $KE_i = \frac{1}{2}m_1v_1^2; \quad KE_f = \frac{1}{2}(m_1 + m_2)u^2$
 $KE_f = \frac{1}{2}(m_1 + m_2)\left[\frac{m_1}{m_1 + m_2}\right]^2v_1^2$
 $KE_f = \frac{1}{2}\frac{m_1}{m_1 + m_2}m_1v_1^2 = \frac{m_1}{m_1 + m_2}KE_i$
 $\frac{KE_f}{KE_i} = \frac{m_1}{m_1 + m_2}$

MFMcGraw-PHY 2425

Chap09Ha-Momentum-Revised-10/2/2012

Elastic and Inelastic Collisions

Elastic Collision \vec{P}_{Total} is conserved Total KE is conserved

Inelastic Collision \vec{P}_{Total} is conserved Total KE is NOT conserved

MFMcGraw-PHY 2425

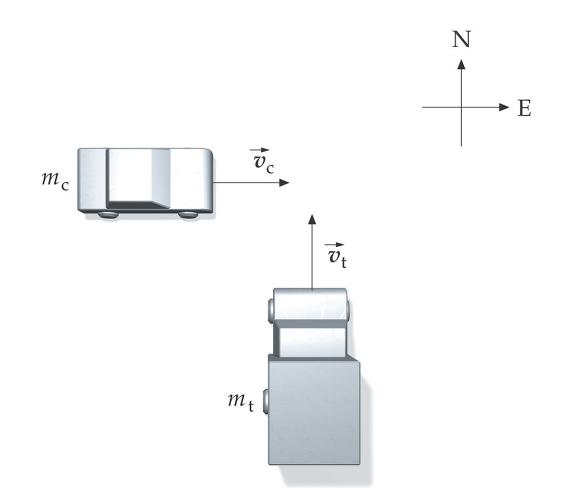
Chap09Ha-Momentum-Revised-10/2/2012

Collisions in Two and Three Dimensions

MFMcGraw-PHY 2425

Chap09Ha-Momentum-Revised-10/2/2012

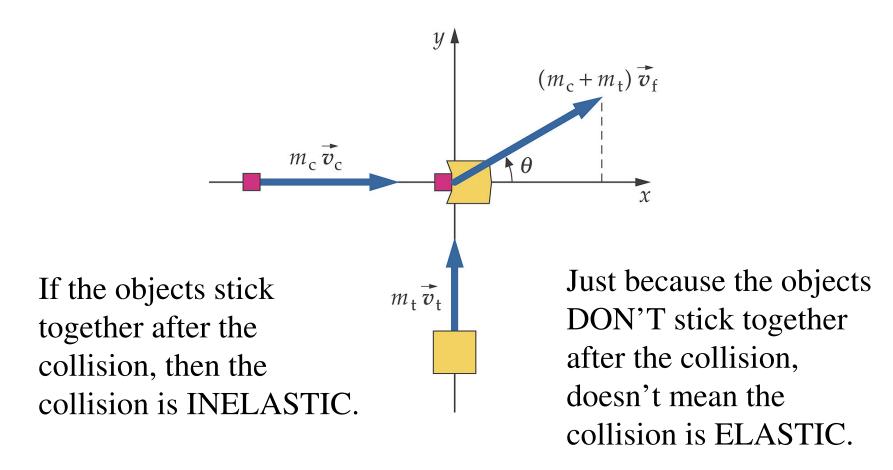
Totally Inelastic Collision



MFMcGraw-PHY 2425

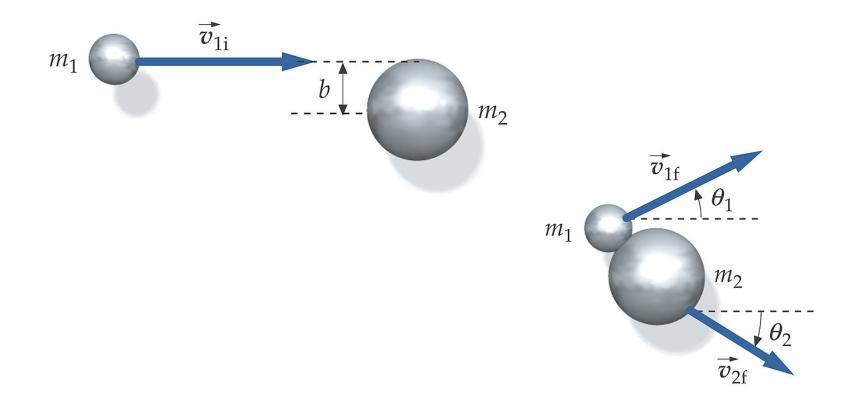
Chap09Ha-Momentum-Revised-10/2/2012

Totally Inelastic Collision

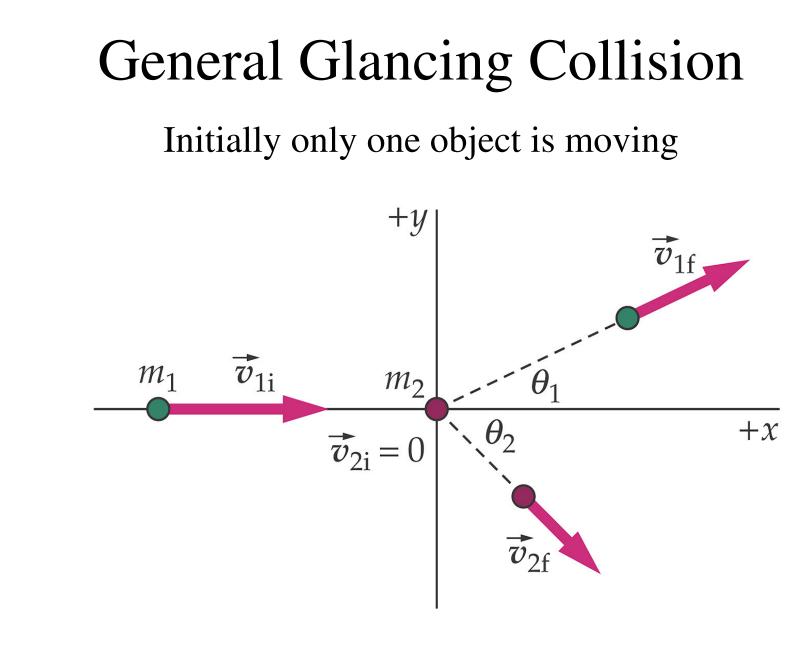


General Glancing Collision

Initially only one object is moving

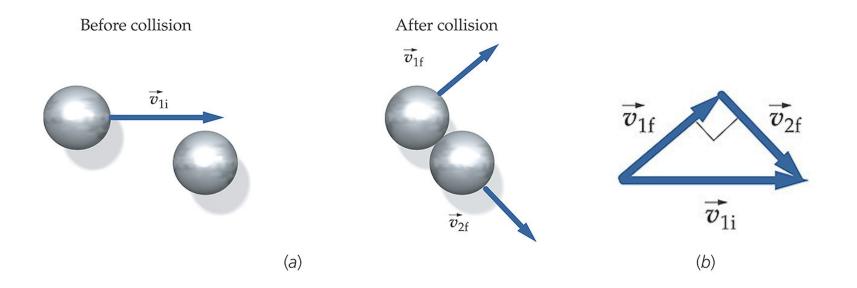


MFMcGraw-PHY 2425



Another 3-Vector Problem

Special Case – Equal Masses



Momentum problems where one of the objects is initially at rest yield 3-vector problems that can be solved using triangles, instead of simultaneous equations.

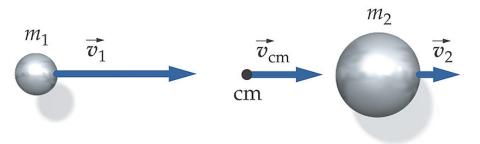
Center of Mass Reference System in Momentum Problems

MFMcGraw-PHY 2425

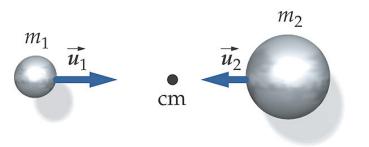
Chap09Ha-Momentum-Revised-10/2/2012

Center of Mass Reference System

Original reference frame

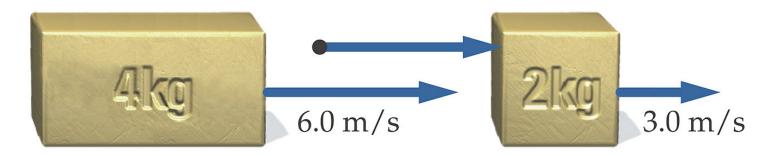


Center-of-mass reference frame



Initial conditions

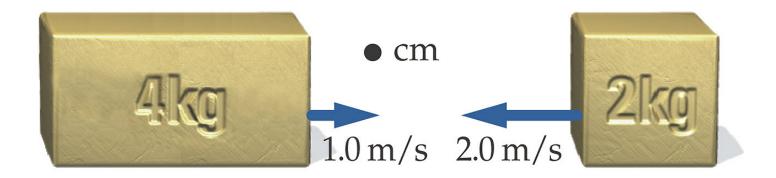
 $v_{\rm cm} = 5.0 \, {\rm m/s}$



MFMcGraw-PHY 2425

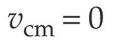
Transform to the center-of-mass frame by subtracting $v_{\rm cm}$

 $v_{\rm cm} = 0$



MFMcGraw-PHY 2425

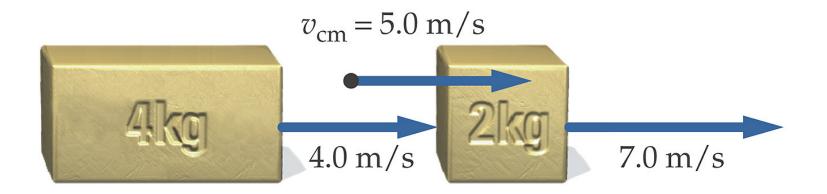
Solve collision



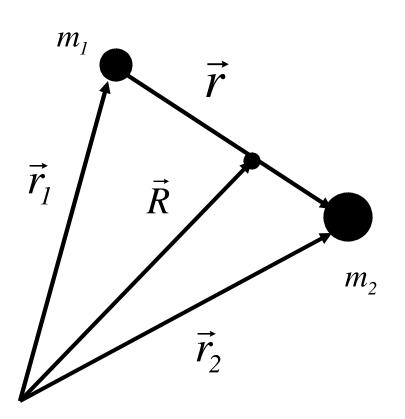
Chap09Ha-Momentum-Revised-10/2/2012

2.0 m/s

Transform back to the original frame by adding $v_{\rm cm}$



Center of Mass Reference System



Center of Mass System

$$\vec{R} = \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2}{m_1 + m_2}$$
$$\vec{r} = \vec{r}_2 - \vec{r}_1$$

Laboratory System

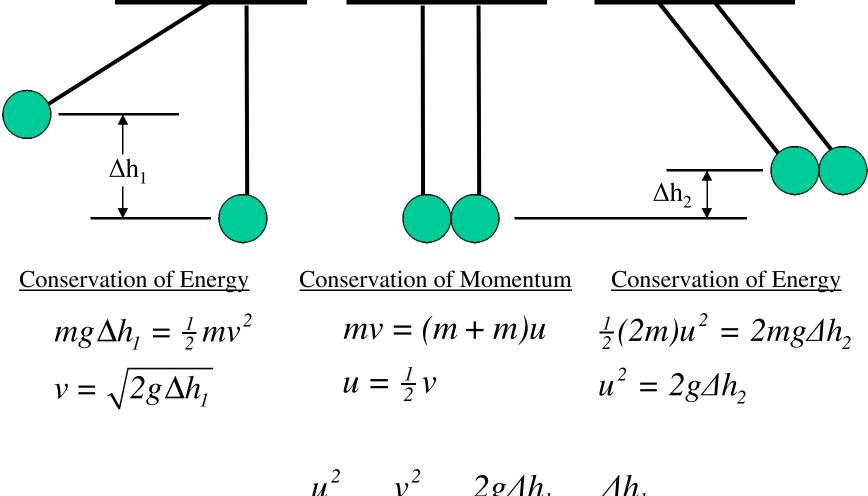
$$\vec{r}_1 = \vec{R} - \frac{m_2}{m_1 + m_2} \vec{r}$$

$$\vec{r}_2 = \vec{R} + \frac{m_1}{m_1 + m_2}\vec{r}$$

MFMcGraw-PHY 2425

Combining Conservation of Energy, Momentum, and KE Transfer in Equal Mass Inelastic Collisions

MFMcGraw-PHY 2425



$$\Delta h_2 = \frac{u^2}{2g} = \frac{v^2}{8g} = \frac{2g\Delta h_1}{8g} = \frac{\Delta h_1}{4}$$

MFMcGraw-PHY 2425

Chap09Ha-Momentum-Revised-10/2/2012

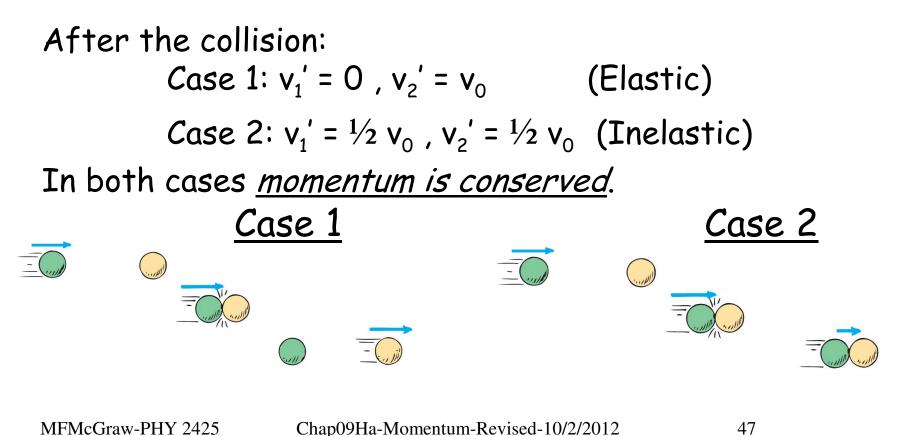
KE Transfer in Equal Mass Inelastic Collisions

MFMcGraw-PHY 2425

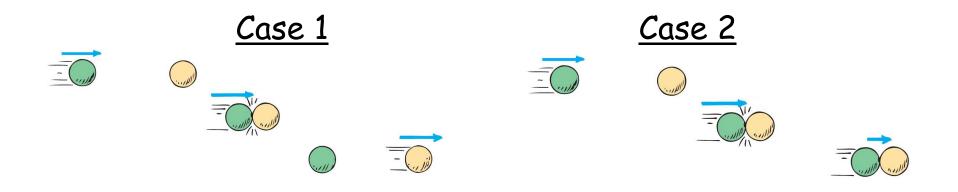
Chap09Ha-Momentum-Revised-10/2/2012

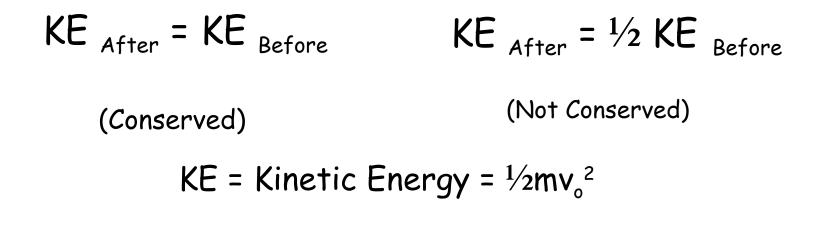
Conservation of Momentum

Two objects of identical mass have a collision. Initially object 1 is traveling to the right with velocity $v_1 = v_0$. Initially object 2 is at rest $v_2 = 0$.



Conservation of Kinetic Energy?

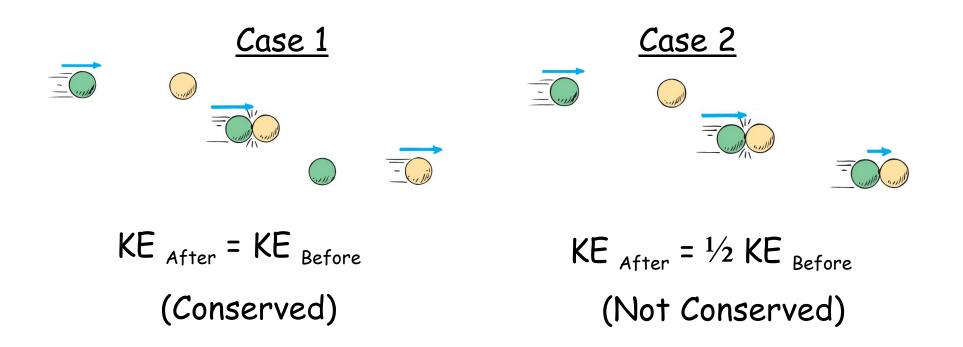




MFMcGraw-PHY 2425

Chap09Ha-Momentum-Revised-10/2/2012

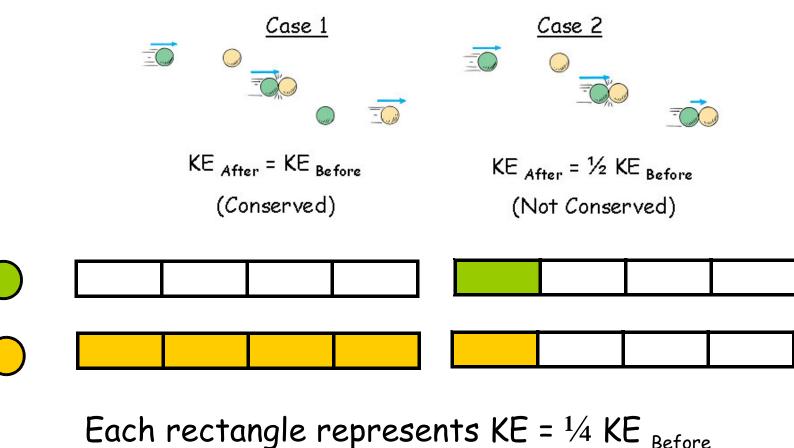
Where Does the KE Go?



In Case 2 each object shares the Total KE equally. Therefore each object has KE = 25% of the original KE $_{\rm Before}$

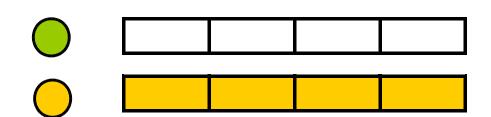
MFMcGraw-PHY 2425

50% of the KE is Missing



Turn Case 1 into Case 2

Each rectangle represents $KE = \frac{1}{4} KE_{Before}$



Use one half of the 50% taken to speed up object 1. Now it has 25% of the initial KE

Use the other half of the 50% taken to slow down object 2. Now it has only 25% of the the initial KE Take away 50% of KE. Now the total system KE is correct

But object 2 has all the KE and object 1 has none



Now they share the KE equally and we see where the missing 50% was spent.

MFMcGraw-PHY 2425

Extra Slides

MFMcGraw-PHY 2425

Chap09Ha-Momentum-Revised-10/2/2012