Chapter 10

Acids \& Bases

CHAPTER OUTLINE

- General Properties
- Arrhenius Acids \& Bases
- Bronsted-Lowery Acids \& Bases
- Strength of Acids \& Bases
- Ionization of Water
- pH Scale

GENRAL PROPERTIES OF ACIDS \& BASES

a Many common substances in our daily lives are acids and bases.
\square Oranges, lemons and vinegar are examples of acids. In addition, our stomachs contain acids that help digest foods.
\square Antacid tablets taken for heartburn and ammonia cleaning solutions are examples of bases.

GENRAL PROPERTIES OF ACIDS \& BASES

- General properties associated with acids include the following:

```
sour taste
```

$>$ change color of litmus from blue to red
$>$ react with metals to produce \mathbf{H}_{2} gas
$>$ react with bases to produce salt $\&$ water

GENRAL PROPERTIES OF ACIDS \& BASES

- General properties associated with bases include the following:
bitter taste
slippery, soapy feeling
$>$ change color of litmus from red to blue
react with acids to produce salt $\&$ water

ARRHENIUS
 ACIDS \& BASES

Accorfiengeottbenmmeneniafsindtifinioitioacids and bases
 ($_{3}{ }_{3}$ beninsaique88s•solution.
$\mathrm{HCl}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
Commonly written as

$$
\mathrm{HCl}(\mathrm{~g}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

ARRHENIUS
 ACIDS \& BASES

According to the Arrhenius definition,
\square Bases are substances that produce hydroxide ion $\left(\mathrm{OH}^{-}\right)$in aqueous solution.

$$
\mathrm{NaOH}(\mathrm{~s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

BRONSTED-LOWRY ACIDS \& BASES

- TheotdingrituBrdefistitiblhofvacidefinitibnsesnis

A substance that can act as a Bronsted-Lowry acid and base (such as water) is called amphiprotic.
deveropea oy bremstea and Lowry in the earty $20^{\text {th }}$ century.

Base Acid
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

BRONSTED-LOWRY ACIDS \& BASES

- In Bronsted-Lowry definition, any pair of molecules or ions that can be inter-converted by transfer of a proton is called conjugate acid-base pair.
$\mathrm{HCl}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$

BRONSTED-LOWRY ACIDS \& BASES

$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

Example 1：
Identify the conjugate acid－base pairs for each reaction shown below：
$\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}^{\text {図 }} \rightarrow \mathrm{HCl}+\mathrm{OH}^{\text {目 }}$

Example 1：
Identify the conjugate acid－base pairs for each reaction shown below：
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{\text {図 }} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{\text {図 }}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

Example 2：
Write the formula for the conjugate acid for each base shown：

$$
\begin{gathered}
\underset{\text { 㘝 }}{\mathrm{HS}}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{~S} \\
\mathrm{NH}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{NH}_{4}^{+} \\
\mathrm{CO}_{3}^{2} \text { 図 }+\mathrm{H}^{+} \rightarrow \mathrm{HCO}_{3} \text { 図 }
\end{gathered}
$$

Example 3：
Write the formula for the conjugate base for each acid shown：

ACID \& BASE STRENGTH

- Stacorglingide ahd masheniusthofinitianjodhżze stompgetedf incidsatard bases is based on the - smang tafidseindogizatianeistrbatgrelectrolytes.
$\mathrm{NaOH}(\mathrm{s}) \nVdash{ }^{\mathrm{H}} \mathfrak{\mathrm { O }} \nsupseteq \mathrm{Ea}{ }^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

100	100	100
$1 M$	$1 M$	$1 M$

ACID \& BASE STRENGTH

\square Weak acids and bases are those that ionize partially in water.

- Weak acids and bases are weak electrolytes.
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \cdots$ 能 $\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
100

$$
\sim 1 \quad \sim 1
$$

$1 \mathrm{M} \sim \mathbf{\sim 0 . 0 1 M} \sim \mathbf{0 . 0 1 M}$

IONIZATION OF STRONG vs. WEAK ACIDS

COMMON				
BASES				
Strong Bases			Weak Bases	
$\mathbf{L i O H}$	Lithium hydroxide	$\mathbf{N H}_{3}$	Ammonia	
$\mathbf{N a O H}$	Sodium hydroxide	$\mathbf{C O}\left(\mathbf{N H}_{2}\right)_{2}$	Urea	
$\mathbf{C a}(\mathbf{O H})_{2}$	Calcium hydroxide			
$\mathbf{K O H}$	Potassium hydroxide			
$\mathbf{B a (O H})_{2}$	Barium hydroxide			

COMPARISON OF ACIDS \& BASES

Characteristic	Acids	Bases
Reaction: Arrhenius	Produce H^{+}	Produce OH^{-}
Reaction: Brønsted-Lowry	Donate H^{+}	Accept H^{+}
Electrolytes	Yes	Yes
Taste	Sour	Bitter, chalky
Feel	May sting	Slippery
Litmus	Red	Blue
Phenolphthalein	Colorless	Pink
Neutralization	Neutralize bases	Neutralize acids

IONIZATION
 OF WATER

- Water can act both as an acid and a base.
\square In pure water, one water molecule donates a proton to another water molecule to produce ions.

IONIZATION
 OF WATER

- Marletix HKR tiqfickansedinnequilibrium shift that causes
[Themunsbein dfieoakhprocheced in pure water is very small, as indicated below:

$$
\begin{gathered}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{M}} \\
\mathrm{~K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{O} \mathrm{H}^{-}\right]=\left[1.0 \times 10^{-7}\right]\left[1.0 \times 10^{-7}\right]=1.0 \times 10^{-14}
\end{gathered}
$$

ACIDIC \& BASIC SOLUTIONS

 solution, it is neidical.
\square For example, if $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is $1.0 \times 10^{-4} \mathrm{M}$, then $\left[\mathrm{OH}^{-}\right]$would be $1.0 \times 10^{-10} \mathrm{M}$.
$\left[\mathrm{OH}^{-}\right]=\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}=\frac{1.0 \times 10^{-14}}{1.0 \times 10^{-4}}=1.0 \times 10^{-10} \mathrm{M}$

ACIDIC \& BASIC SOLUTIONS

$\square \quad$ When $\left[\mathrm{OH}^{-}\right]$is greater than $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in a solution, it is basic.

- For example, if $\left[\mathrm{OH}^{-}\right]$is $1.0 \times 10^{-6} \mathrm{M}$, then $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$would be $1.0 \times 10^{-8} \mathrm{M}$.

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]}=\frac{1.0 \times 10^{-14}}{1.0 \times 10^{-6}}=1.0 \times 10^{-8} \mathrm{M}
$$

ACIDIC \& BASIC SOLUTIONS

Example 1:
Calculate the $\left[\mathrm{OH}^{-}\right]$in a solution with $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.3 \times 10^{-4} \mathrm{M}$. Classify the solution as acid or basic.

$$
\left[\mathrm{OH}^{-}\right]=\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}=\frac{1.0 \times 10^{-14}}{2.3 \times 10^{-4}}=4.3 \times 10^{-11}
$$

| Solution
 is acidic |
| :---: |$\quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>1.0 \times 10^{-7}$

Example 2:
Calculate the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in a solution with $\left[\mathrm{OH}_{-}^{-}\right]=3.8 \times 10^{-6} \mathrm{M}$. Classify the solution as acid or basic.

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]}=\frac{1.0 \times 10^{-14}}{3.8 \times 10^{-6}}=2.6 \times 10^{-9}
$$

> | $\begin{array}{c}\text { Solution } \\ \text { is basic }\end{array}$ | $\left[\mathrm{OH}^{-}\right]>1.0 \times 10^{-7}$ |
| :---: | :---: |
| | $\left[\mathrm{O}^{+}\right]<1.0 \times 10^{-7}$ |

Example 3:
Calculate the $\left[\mathrm{OH}^{-}\right]$in a solution with $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=5.8 \times 10^{-8} \mathrm{M}$. Classify the solution as acid or basic.

$$
\left[\mathrm{OH}^{-}\right]=\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}=\frac{1.0 \times 10^{-14}}{5.8 \times 10^{-8}}=1.7 \times 10^{-7}
$$

Solution is basic	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<1.0 \times 10^{-7}$
	$\left[\mathrm{OH}^{-}\right]>1.0 \times 10^{-7}$

Example 4:

Calculate the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in a solution with $[\mathrm{OH}]=1.3 \times 10^{-2} \mathrm{M}$. Classify the solution as acid or basic.

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]}=\frac{1.0 \times 10^{-14}}{1.3 \times 10^{-2}}=7.7 \times 10^{-13}
$$

$$
\begin{array}{c|c}
\begin{array}{c}
\text { Solution } \\
\text { is basic }
\end{array} & {\left[\mathrm{OH}^{-}\right]>1.0 \times 10^{-7}} \\
\left.\hline \mathrm{H}_{3} \mathrm{O}^{+}\right]<1.0 \times 10^{-7}
\end{array}
$$

pH SCALE

[The acidity of a solution is commonly measured on a pH scale.
$\square \quad$ The pH scale ranges from $\mathbf{0 - 1 4}$, where acidic solutions are less than 7 and basic solutions are greater than 7 .

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

\qquad

pH SCALE

Acidic solutions
$\mathbf{p H}<7$
$\mathrm{H}_{\mathbf{3}} \mathrm{O}^{+}>\mathbf{1 \times 1 0 ^ { - 7 }}$

Neutral solutions $\quad \mathbf{p H}=\mathbf{7} \quad \mathbf{H}_{\mathbf{3}} \mathbf{O}^{+}=\mathbf{1 \times 1 0} \mathbf{1 0}^{-7}$

$$
\text { Basic solutions } \quad \mathrm{pH}>7 \quad \mathrm{H}_{3} \mathrm{O}^{+}<\mathbf{1} \times 10^{-7}
$$

Example 1:
The $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of a liquid detergent is Calculate its pH .

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log [1.2) \text { is basic }
$$

The number of decimal places in a logarithm is equal to the number of significant figures in the measurement.

Example 2:

Example 3:

Example 4:

Example 5:
The $\left[\mathrm{OH}^{\boxed{*}}\right]$ of a cleaning solution is $1.0 \times 10^{\boxed{*} 5} \mathrm{M}$. What is the pH of this colution?

Example 6:

The $\mathrm{p} y$-ution is 11.50. Calculate the $\left[\mathrm{H}_{3} \mathrm{C}\right.$ Solution $\begin{array}{c}\text { Slution. } \\ \text { is basic }\end{array}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=$antilog $\left.p \mathrm{pH}\right)=10^{-\mathrm{pH}}=10^{-11.50}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=3.2 \times 10^{-12}$

