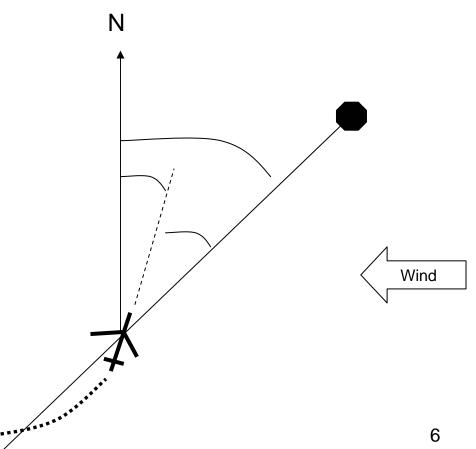

Navigation Systems - Enroute

Nolan, Chap 2

Navigation

- Guide aircraft from origin to destination
 - Optimum route (fuel, time)
 - Wind, altitude
 - Avoid terrain, airspace restrictions
- Navigation has Three parts:
 - 1. Aircraft Position Fixing
 - Where am I?
 - 2. Flightplanning
 - Where do I want to go?
 - What route?
 - 3. Guidance (also called Navigation)
 - What do I do to follow route?
 - What leg of route?

Aircraft Position Fixing


- Determine position in 4-D space
 - Latitude/Longitude
 - Altitude (ft)
 - Time (Greenwich Mean Time GMT, Zulu Time)

Flightplanning

- Origin
- Destination
- Lateral Route
 - String of Legs along Airways
- Vertical Route
 - Altitudes, Speeds

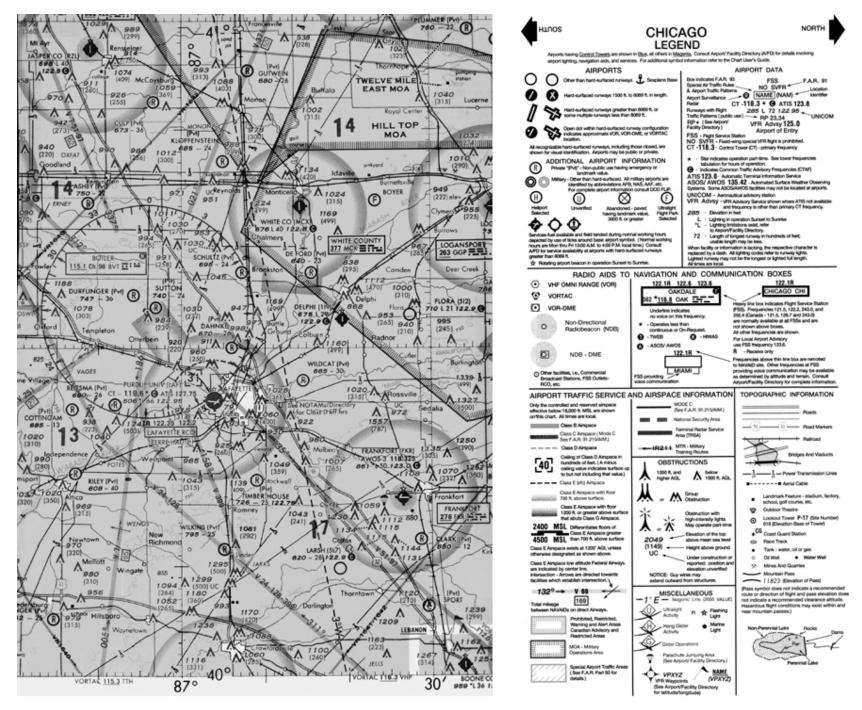
Guidance (also Navigation)

- Lateral leg
 - Desired Ground Track
 - Desired "breadcrumbs" on surface of earth
 - Desired Course
 - direction over earth (True) to get to Active Fix for Lateral Leg
 - Degrees from North
 - Actual Ground Track
 - "breadcrumbs" on surface of earth
 - Actual Course
 - Direction over earth surface (True) flown by aircraft
 - Aircraft Heading
 - Direction aircraft is pointing (True)
 - Degrees from North
 - Cross-wind Correction Angle
 - Degrees between Heading and Ground Track

Visual Navigation

- Use visual references to navigate
 - Limited to day-light flying in good conditions/weather
 - Use visual references (e.g. horizon) to control aircraft attitude for level flight
 - Use prominent landmarks to guide path
 - Adjust for crosswinds
 - Cross wind correction angle
 - Ground track course

Visual Navigation - Pilotage


- Use map of surrounding area as a reference
- Draw line on map for route
 - Identify landmarks to use as reference
- Adjust aircraft course to fly to landmarks
- Adjust aircraft course to compensate for crosswinds
- Trial-and-Error

Visual Navigation – Dead Reckoning

- Used in combination with pilotage
- Predict (not Trial-and-Error)
- Predict Desired Course
 - Compute required heading to fly desired course (and track) based on forecast winds aloft
- Forecast winds aloft not accurate

Aeronautic Charts

Sectional Charts

©2004 Thomson - Brooks/Cole

©2004 Thomson - Brooks/Cole

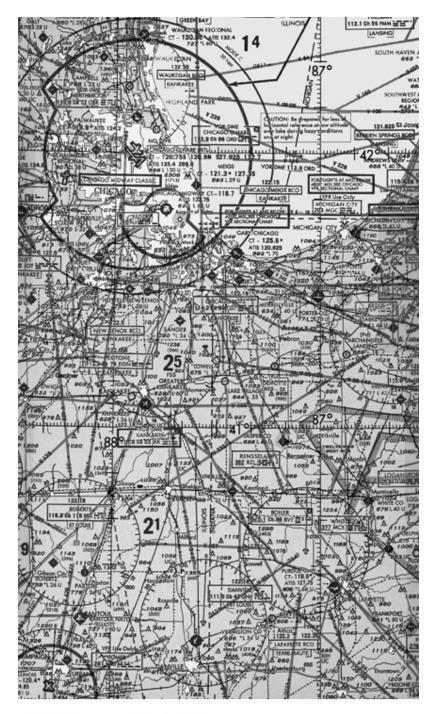
11

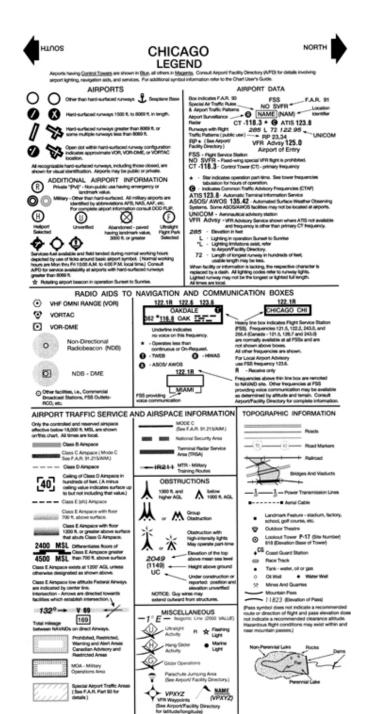
Frankfort Airport

- Class E Airspace with floor 700 ft above surface
- Hard-surface runways (2)
 - East-West runway
 - North-South runway, short
- Frankfort (FKR) Airport
 - AWOS-3 118.325 Automated Weather Observation System, Frequency
 - 861 Airport Elevation
 - L Lighting in Operation Sunrise to Sunset
 - 50 Longest runway 5000 ft
 - 123.0 Unicom Frequency, Aeronautical Advisory Station
 - © Common Traffic Advisory Frequency (CTAF)
- Frankfort Navigation
 - Non-directional Beacon (NDB)
 - 278 Frequency
 - Morse Code for checking
 - Rotating airport beacon in operation sunset to sunrise
- Miscellaneous
 - Located west of Frankfort City
 - Fuel Services 24 hours
 - Parachute jumping area west of airport
 - Mountains North-east and South-west less than 1000ft Above Ground Level (AGL)
 - Railroad
 - North-South, south of airport
 - East-West, east of airport

Page 44, Chap 2, Nolan

Boiler VORTAC

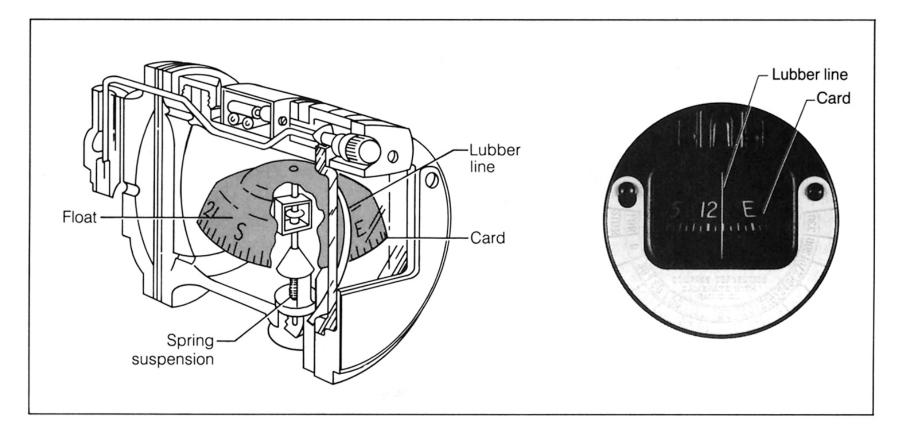

- Located at top of small mountain
 - 984 feet above Mean Sea Level
 - 239 feet above Ground Level
- Name BOILER
- Frequency 115.1
- Channel 98
- ICAO Identifier BVT
- Morse Code Identification
- HWAS


Airway – Victor 7

- Airway Name Victor 7
- 65 nm between VORTAC TTH and VORTAC BVT
- Fly northbound on 5 degree Radial from TTH
- Fly southbound on 186 Radial from BVT
- WENGS Intersection using Radials from BVT and <not shown>

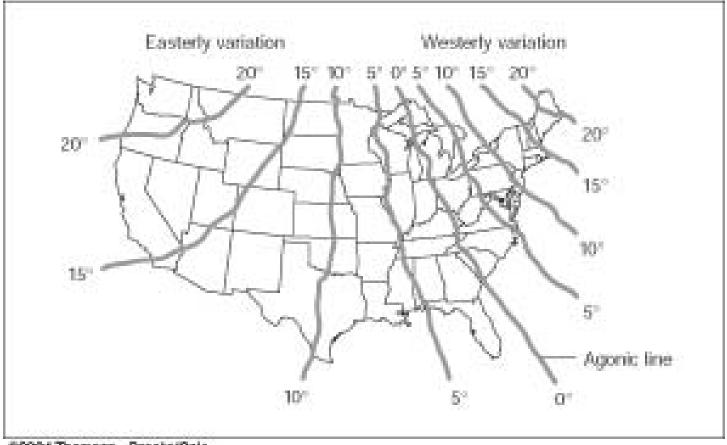
In-class Exercise

- White County (MCX) Airport using chart on page 42, Chap 2, Nolan
- Describe VOR from hand-out
- Describe Airway from hand-out


©2004 Thomson - Brooks/Cole

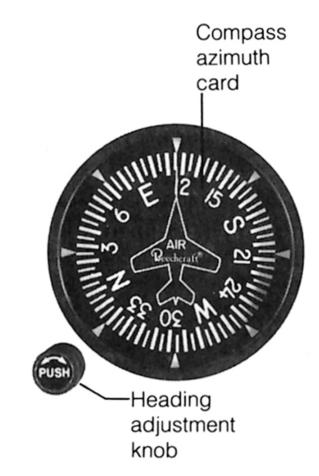
©2004 Thomson - Brooks/Cole

Aircraft Instruments – Magnetic Compass


- Aircraft heading is required to navigate using charts
 - Aeronautic charts drawn to True North
- Use Magnetic compass
- Magnetic compass points to Magnetic North (not True North) due to Magnetic Variation of earth
- Magnetic Variation = True North and Magnetic North
- In U.S. variation ranges from 0 to 20 degrees
- Magnetic compass subject to inaccuracies due to:
 - Aircraft accelerations
 - Aircraft turns
 - Stray magnetic fields of aircraft electrical equipment (e.g. windshield heater)

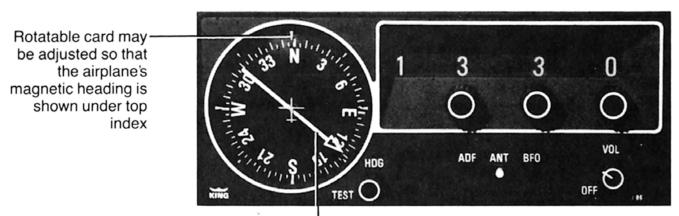
Aircraft Instruments – Magnetic Compass

©2004 Thomson - Brooks/Cole


Aircraft Instruments – Magnetic Compass – Magnetic Variation

62004 Thomson - Brooks/Cole

Aircraft Instruments – Heading Indicator


- Heading indicator uses
 spinning gyroscope
- Initialized prior to takeoff using compass rose
- Subject to drift, must be reset during flight
- Possible inaccuracies:
 - Initialization errors
 - Internal bearing friction
 - Drift
 - Mechanical failures

©2004 Thomson - Brooks/Cole

Electronic Navigation – Non-Directional Beacon

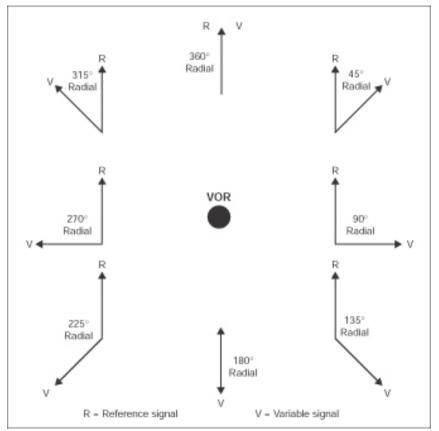
- NDB transmits radio signal
 - Omni-directional signal
 - Low-medium frequency (190 540 kHz)
- Automatic Direction Finder (ADF) on aircraft
 - Displays (relative) bearing to the NDB
- Nowdays, located at smaller airports as instrument approach aids

Bearing pointer shows only relative bearing of navigational station

©2004 Thomson - Brooks/Cole

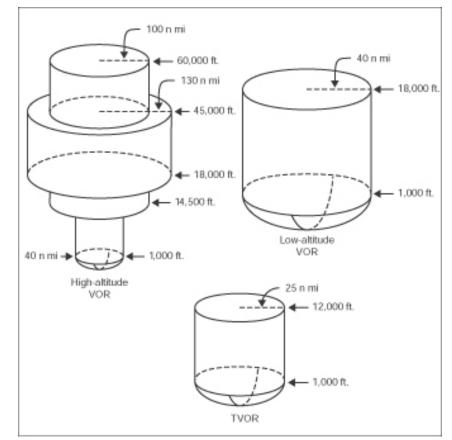
Electronic Navigation - VOR

- VOR ground station transmits navigation courses (radials) around the compass
- Each VOR assigned a radio frequency 108.10 to 117.90 mHz
 - Adjacent VORs have different frequencies


VOR ground-station

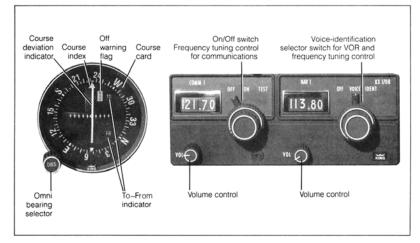
02004 Thomson - Brooks/Col

VOR - Operation


- VOR transmits two signals:
 - Reference signal (constant in all directions)
 - Variable-phase signal (phase varies with azimuth)
- VOR Course is determined by difference in phase between Reference and Variable-phase signals
 - At Magnetic North, Variablephase is in phase with Reference signal
 - At Magnetic South, Variablephase is 180 out of phase with Reference signal

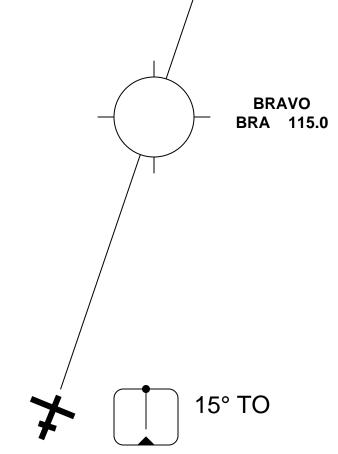
02004 Thomson - Brooks/Cale

VOR Service Volumes

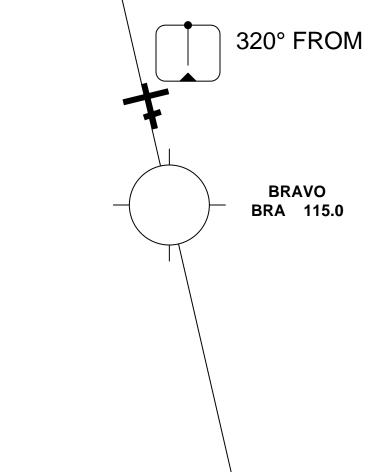

- High-altitude VORs
 - Frequency 112.00 to 117.90 mHz
 - 200 nautical mile range, between 18,000 and 60,000 feet
- Low-altitude VORs
 - Frequency 108.10 to 111.80
 - 40 nautical mile range, below 18,000 feet
- Terminal VORs
 - 2.5 nautical mile range

02004 Thomson - Brooks/Cole

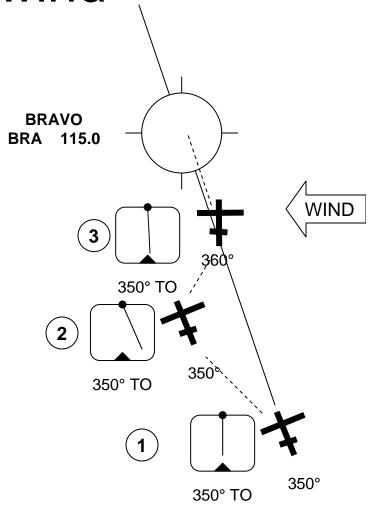
Using VOR in Cockpit


- Dial in VOR frequency
- Dial in desired VOR course using Omni-bearing Selector (OBS)
- Device shows TO or FROM flag
- Device shows if aircraft to the left or right of desired course (OBS course)
 - Known as (lateral) deviation indicator

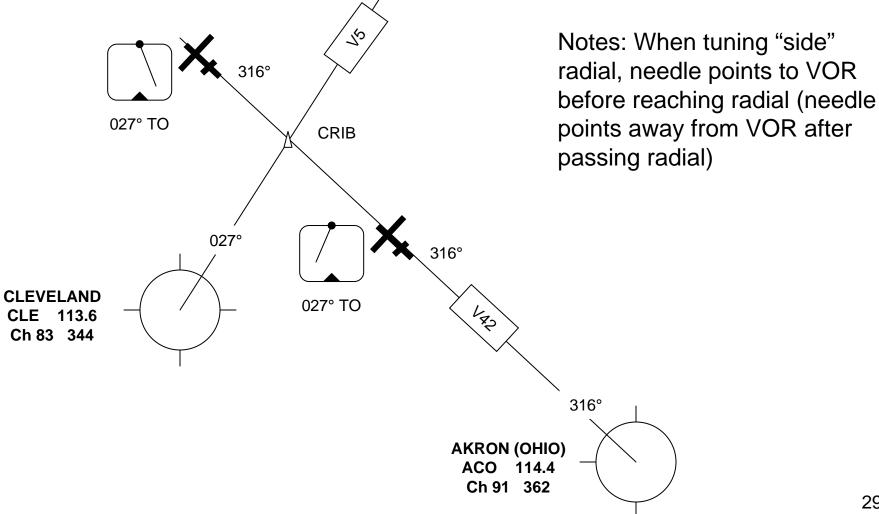
@2004 Thomson - Brooks/Cole


ATC: "From present position, DIRECT TO BRAVO VOR"

- 1. Tune the VOR
- 2. Identify the VOR (Morse Code)
- 3. Rotate OBS until leftright needle is centered AND To-From Indicator is TO
- 4. Number is Course to VOR (inbound)
 - Inbound Course (195°) is reciprocal of Radial
- 5. Turn and fly heading, keep needle centered

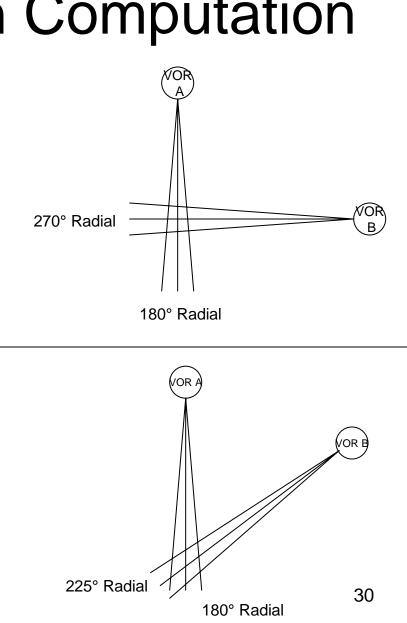

ATC: "From present position intercept and fly outbound on 320 radial from BRAVO VQR"

- 1. Tune and identify station
- 2. Select 320 on OBS
 - Outbound: Course = Radial
- 3. To-From Indicator is FROM



ATC: "Cleared direct BRAVO" 20 knot cross wind

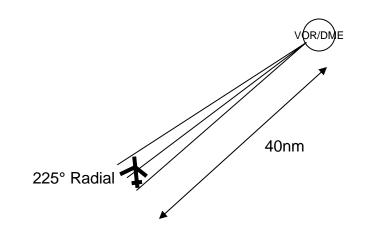
- 1. Tune and identify VOR and steer heading 350°
- 2. If heading 350° is maintained, aircraft will drift to left of 350° radial
- Turn and fly heading 360° until needle centered
- Repeat "bracketing" maneuver until find heading to compensate for crosswind



Flying V42 airway. ATC: "Report crossing CRIB Intersection"

Rho-Rho Position Computation

- Pilot obtain bearing from two VORs
- Plot lines from each VOR
- Intersection is location of aircraft
- Best VOR geometry is 90°
 - VOR receiver accurate to +/- 6°
 - Smallest intersection area is when VORs at right angles



Distance Measuring Equipment (DME)

- DME provides aircraft distance to ground-station
 - Slant-range distance
- Interrogator on aircraft transmits pulsed interrogation signal
- Transponder on ground responds to interogator signal
- Elapsed Range Time is computed
- Range Time for signal to travel 1 nm is 12.36 microseconds
- Slant Range = (Interrogator Time Reception of Transponder Time)/ 12.36 micro-sconds

Rho-Theta Position Computation

- Position is based on Bearing from VOR and Distance from DME
- VOR and DME colocated at know location

Airways

- Airways defined by radials between VORs
- Airways dimensions
 - 4nm on either side of center-line
 - Spread-out due to VOR radials
- Changeover Point (COP)
 - Fix between two navigational aids where pilot ceases to track radial FROM VOR and starts to track radial TO VOR
- Airways designated with identifying numbers
 - Preceded by V (Victor), if low altitude
 - Preceded by J (Jet), if high altitude

MEAs and MOCAs

- Minimum En-route Altitude (MEA)
 - Designated for each airway
 - Aircraft operating above MEA guaranteed clear on obstruction, terrain
 - Guaranteed proper VOR reception (200nm or 40nm)
- Minimum Obstruction Clearance Altitudes (MOCAs)
 - Designated for some airways
 - Less than MEAs
 - Used in case of emergency require lower altitude
 - Guaranteed proper VOR reception only iof within 22nm of VOR

Global Navigation Satellite System (GNSS)

- GNSS (GPS in US)
 - Min 21 operational satellites in orbit
 - + 3 spares
 - GPS computes:
 - Position (latitude/longitude)
 - Altitude
 - Velocity (ground speed)
 - Time

GPS Operation

- Position computation based on ranging and triangulation
 - GPS receiver on aircraft measures distance from satellite to aircraft using (fixed) travel time of a radio signal
 - Satellite transmits Course/Acquisition (C/A) code with info on satellite position (=ephemeris)
 - GPS compares actual time with Satellite transmitted time and uses difference to compute distance (= pseudo-range)
- GPS requires distance from 3 satellites (+ time from fourth)

GPS Accuracy

- Receiver Autonomous Integrity Monitor (RAIM)
 - Independent means to determine if satellite is providing corrupted information
 - Requires data from 5th satellite

WAAS

- Wide Area Augmentation System (WAAS)
 - Differential GPS signal
 - 35 ground-reference stations
 - Accurately surveyed location
 - Receive signals from satellites
 - Determine errors
 - Corrections broadcast from geo-stationary satellite above US
- Used for all enroute navigation
 - Also Category I approaches

LAAS

- Local Area Augmentation System (LAAS)
 - Complement WAAS for Cat II, Cat III approaches
 - Transmits correction information from airport to 30nm radius

Inertial Navigation System

- Equipment on aircraft
- Computes position (3-D) and velocities
 - Computations based on accelerometers and angular rate gyros
 - Initialized with lat/lon prior to flight in stationary position
 - Accelerations measured and integrated to yield velocities, integrated to yield position
 - Very expensive units accurate to +/-2.5nm for 14 hour flight
- Used for en-route navigation in conjunction with radios and GPS

Inertial Navigation Systems

- Measures accelerations in 3-D space
 - Integrate accelerations to get velocities
 - Integrate velocities to get position
- INS records movement relative to Celestial Sphere (not Earth)
 - Mount INS and turn on.
 - Hour later, INS has not moved, accelerometers have detected earths rotation
- Drift
 - Any errors in accelerations amplified in velocities and position
 - Compensating for errors, leads to designs for < 0.8nm/hr
- Schuler Drift
 - 84 minute periodic error (period of pendulum length of diameter of Earth)
 - Over long time, error nulls itself

Homework

- 1. Describe the difference between dead-reckoning and pilotage
- 2. Using VFR Chart VFR Terminal Area Chart: Baltimore-Washington
 - Describe Airport SHANNON
 - Describe VOR BROOKE
 - Describe Airway V286
- 3. Describe the operation of GNSS to determine aircraft position
- 4. What are the basic principle(s) of operation of WAAS and LAAS
- 5. What are the limitations of GNSS

Prepare for quiz (fill in the blank, multiple choice) next class