
 

CHAPITRE 2. INTRODUCTION AUX SYSTEMES UBIQUITAIRES  - UBIQUITOUS COMPUTING SYSTEMS 
 
This chapter presents the fundamental challenges and requirements for building Ubiquitous Computing  systems.  
The main reference for this chapter is the following: 

Jakob Bardram and Adrian Friday, Ubiquitous Computing Systems, Book Chapter 2 in John Krumm’s “Ubiquitous 
Computing Fundamentals  ”CRC Press (2010), p. 394 http://www.crcpress.com/product/isbn/9781420093605. 
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2.1 INTRODUCTION 
 The prevalent computing paradigm is designed  

o for personal information management, including personal computers (PCs) such as 
desktops and laptops with fixed configurations of mouse, keyboard, and monitor; wired 
local area network;  

o dedicated network services with fixed network addresses and locations, such as printers 
and file servers; and  

o a user interface consisting of on-screen representation and manipulation of files  

documents, and applications through established metaphors such as the mouse pointer, 
icons, menus, and windows. 

 Ubiquitous computing (ubicomp) strives at creating a completely new paradigm of computing 
environment in almost all of these respects.  

 Ubicomp systems aim for a heterogeneous set of devices, including  
o invisible computers embedded in everyday objects such as cars and furniture,  
o mobile devices such as personal digital assistants (PDAs) and smart phones,  
o personal devices such as laptops, and  
o very large devices such as wall-sized displays and tabletop computers situated in the 

environments and buildings we inhabit.  
o All these devices have different operating systems, networking interfaces, input 

capabilities, and displays.  
o Some are designed for end user interaction—such as a public display in a cafeteria area—

whereas other devices, such as sensors, are not used directly by end users. 
o The interaction mode goes beyond the one to- one model prevalent for PCs, to a many-to-

many model where the same person uses multiple devices, and several persons may use 
the same device. 

 Interaction may be implicit, invisible, or through sensing natural interactions such as speech, 
gesture, or presence; 

o  a wide range of sensors is required, both sensors built into the devices as well as sensors 

embedded in the environment.  
o Location tracking devices, cameras, and three-dimensional (3-D) accelerometers can be 

used to detect who is in a place and deduce what they are doing.  
o This information may be used to provide the user with information relevant in a specific 

location or help them adapt their device to a local environment or the local environment 
to them.  

o Networking is often wireless and ad hoc in the sense that many devices come in contact 
with each other spontaneously and communicate to establish services, when they depart, 
the network setup changes for both the device and the environment.  

 Ubicomp environments involving technologies such as the ones described above have been 
created for a number of application domains, including  

o meeting rooms (also known as smart rooms), classrooms, cars, hospitals, the home, 
traveling, and museums.  

 In order to get a feeling of what ubicomp systems would look like, let us consider some examples 
from a future hospital (Bardram et al., 2006): 

o Doctors and nurses seamlessly move around inside the hospital using both personal 
portable displays (e.g., a super lightweight tablet PC) as well the large multitouch displays 

available on many walls inside the wards, conference rooms, operating rooms, and 
emergency departments.  



 

o Indoor location tracking helps in keeping track of clinicians, patients, and equipment, as 
well as assisting the clinicians and patient with location- and context-dependent 

information.  
o For example, the patient is constantly guided to the right examination room, and  

o on the doctor’s portable devices, relevant information on the nearby patient is fetched 
from the central servers and presented according to the doctor’s preference on this 
specific type of devices.  

o If he needs more display space, he simply drops the portable display in a recharge station, 
and moves to a wall display where the information is transferred.  

o In the conference room, the large conference table is one large display surface that allows 
for colocated collaboration among the participating physicians. 

o The location tracking system as well as biometric sensors keep track of who is accessing 
medical data, and prevents nonauthorized access.  

o Unique identification tags and medical body sensor networks attached to patients as well 
as to the patient’s bed and other equipment inside, for example, the operating rooms, 

constantly monitor the patient and provide a high degree of patient safety.  
o Not only are critical medical data such as pulse, electrocardiogram(ECG), and heart rate 

monitored, but also more mundane safety hazards such as wrong side surgery and lack of 
relevant instruments are constantly monitored and warnings issued if the “system” 

detects potential problems. 
 

 Ubicomp systems research is concerned with the underlying technologies and infrastructures that 
enable the creation and deployment of these types of ubicomp applications.  

 Ubicomp systems research addresses a wide range of questions such as:  
o how to design hardware for sensor platforms,  

o how to design operating systems for such sensor platforms;  
o how to allow devices to find each other; 
o how to allow devices to use the services on each other; 
o how to design systems support for resource impoverished devices that run on batteries 

and need to save energy;  
o how to run large distributed infrastructures for seamless mobility and collaboration in 

creating applications for such settings as smart rooms and hospitals; and a wide range of 
other systems aspects.  

 To some degree, ubicomp systems questions and challenges overlap and coexist with other 
systems research questions, but as outlined in this chapter, the ubicomp vision and the nature of 
ubicomp applications, present a unique set of challenges to ubicomp systems research. 

 
The chapter commences with a discussion of  

 the key topics and challenges facing ubicomp systems, highlighting assumptions that are often  
made in traditional systems thinking that are unreliable in this problem domain.  

 Then, design rationale and process for creating “good” ubicomp systems is explored, leading 
to advice on how to choose hardware and software components well and consolidated tips on 
what to look for when deploying ubicomp systems “in the wild.”  

 discuss the process of evaluating and documenting ubicomp systems—essential if the system 
is to be of any importance in moving the field forward.  

 available software and hardware components and datasets that can help you bootstrap your 
experimental systems development.  

 Building ubicomp systems is essential to the progress of the field as a whole.  
 Experimentally prototyping ubicomp systems enables us to  



 

o experience them, discover what they are like to use, and reason about core precepts  
such as the boundaries of the system, its invisibility, the role of its  users, and the 

degree of artificial intelligence endemic to it.  

 By implementing systems, we discover what comprises ubicomp systems, what is and is  not 
computationally tractable, form hypotheses to be tested, and uncover the research challenges 
that underpin and inform the evolving vision of ubicomp itself.  
 

The aim of the chapter is to offer advice to those planning to create ubicomp systems to sensitize 
them to the issues that may face them in the design, implementation, deployment, and evaluation 
stages of their projects.  
 
2.2 UBICOMP SYSTEMS TOPICS AND CHALLENGES 
 

 Creating ubicomp systems entails a wide range of technical research topics and challenges. 
o Compared to existing systems research, some of these topics and challenges are new and 

arise because of the intention to build ubicomp applications.  
o For example, ubicomp applications often involve scenarios where devices, network, and 

software components change frequently. 

 The challenges associated with such extremely volatile executing environments are new to 
systems research. 

 These kinds of challenges are introduced because we intend to build new computing technology 
that is deployed and runs in completely new types of physical and computational environments.  

 Other topics and challenges existed before ubicomp but are significantly aggravated in a ubicomp 
setting. 

 For example, new challenges to security arise because trust is lowered in volatile systems; 
spontaneous interaction between devices often imply have a trusted third party in common.  

 
More significant topics and challenges to ubicomp systems research. 

 
2.2.1 Resource-Constrained Devices 

 Most ubicomp applications and systems involve devices with limited resources.  
 Moore’s law: ever-increasing CPU speed, memory, and network bandwidth in servers and 

desktop computers.  
 With ubicomp, a wide range of new devices are built and introduced, which are much more 

resource-constrained.  
o Devices such as PDAs, mobile phones, and music players have limited CPU, memory, and 

network connectivity compared to a standard PC,  
o Embedded platforms such as sensor networks and smart cards are very limited compared 

to a PC or even a smart phone.  

 When creating systems support in a ubicomp setting, it is important to recognize  
o the constraints of the target devices,  

o that hardware platforms are highly heterogeneous and incompatible with respect to 
hardware specifications, operating system, input/output capabilities, network, etc.  
 

 Resource-aware computing is an approach to develop technologies  where the application is 
constantly notified about the consumption of vital resources, and can help the application (or the 
user) to take a decision based on available resources now and in the future.  

o For example, video streaming will be adjusted to available bandwidth and battery level or 
the user may be asked to go to an area with better wireless local area network coverage. 



 

 Generally speaking, the most limiting factor of most ubicomp devices is  energy:  
o A device that is portable or embedded into the physical world typically runs on batteries, 

o The smaller and lighter the device needs to be, the lower its battery capacity.  
o For this reason, one of the main hardware constraints to consider when building ubicomp 

systems and applications is power consumption and/or opportunities for energy 
harvesting— including recharging.  

o A central research theme within ubicomp is power foraging, that is, technologies for 
harvesting power in the environment based on, for example, kinetic energy from a walking 
person.  

o Cyber foraging is a similar research theme where devices look for places to offload 
resource-intensive tasks, for example, a portable device may offload computations to 
server-based services, or if the user tries to print document located on a file server from a 
PDA, the document is not first send to the PDA and then to the printer, but instead sent 
directly from the file server to the printer. 

 

Computation, accessing memory, and input/output all consume energy.  
 The major drain on the battery is, however, wireless communication, which is also typical for 

mobile or embedded ubicomp devices.  

 Power consumption in wireless communication is hence another major topic in ubicomp  systems 
research, investigating resource-efficient networking protocols that limit power consumption due 
to transmitting data, while maintaining a high degree of throughput and reliability, 
o For example, since processing consumes much less power than communication, mobile ad hoc  

sensor networks (MANETs) seek to do as much in-network processing as possible, that is, 

ensuring that nodes in a sensor network perform tasks such as aggregating or averaging 
values from nearby nodes, and filtering before transmitting values. 

 
2.2.2 Volatile Execution Environments 

 A core research topic in ubicomp systems research is service discovery,  
o Technologies and standards that enable devices to  

 discover each other,  
 set up communication links,   
 start using each others’ services.  

o For example, when a portable device enters a smart room, it may want to discover and 
use nearby resources such as public displays and printers.  

 Several service discovery technologies have now matured and are in daily use in thousands of 
devices. These include: Jini, UPnP, Bonjour/multicast DNS (mDNS), and the Bluetooth discovery 
protocol. 

 Nevertheless, several challenges to existing approaches still exist, including: 
o the lack of support for multicast discovery beyond local area networks,  
o the lack of support beyond one-to-one device/service pairing, and rather cumbersome 

methods for pairing devices, often involving typing in personal identification numbers or 
passwords.  

 Research is ongoing to improve upon service discovery technologies. 

 
 Ubicomp systems and applications are often distributed;  

 They entail interaction between different devices—mobile, embedded, or server-based—and use 
different networking capabilities.  

 Looking at ubicomp from this distributed computing perspective, a fundamental challenge to 
ubicomp systems is their volatile nature: 



 

o The set of users, devices, hardware, software, and operating systems in ubicomp systems 
is highly dynamic and changes frequently.  

 

 One type of volatility arises because of the spontaneous nature of many ubicomp systems: 
devices continuously connect and disconnect, and create and destroy communications links. But 
because from a communication perspective—these devices may leave the room (or run out of 
battery) at any time, communication between the mobile devices and the services in the smart 
room needs to gracefully handle such disconnection.  

 Another type of volatility arises due to changes in the underlying communication structure, such 
as topology, bandwidth, routing, and host naming.  

o For example, in an ad hoc sensor network, the network topology and routing scheme is 
often determined by nodes available at a given time, the physical proximity of the nodes 
in the network, their current workload, and battery status; in addition, this network 
routing scheme should be able to handle nodes entering and leaving the network.  

o A simpler example arises in smart room applications where de vices entering the room do 
not know the network name or addresses of the local services, and in this case services 
discovery would entail obtaining some network route to the service.  

 Volatility arguably also exists in more traditional distributed systems; client software running on 
laptops are being disconnected from their servers in a client-sever setup, and PDAs and cell 
phones whose battery is flat are able to reconnect once recharged.  

o The main difference, however, is that unlike most traditional distributed systems, the 
connectivity changes are common rather than exceptional, and often of a more basic 
nature.  

o For example, in a client-server setup the server remains stable, and both the client and 
server maintain their network name and address.  

 For these reasons, existing distributed computing mechanisms such as the Web (HTTP), remote 
procedure calls, and remote method invocation (Java RMI, .NET Remoting, or CORBA) all rely on 
stable network connections (sockets) and fixed network naming schemes.  

 In a ubicomp environment, these assumptions break down.  
 

2.2.3 Heterogeneous Execution Environments 
 Most ubicomp applications and systems inherently live in a heterogeneous environment. 

 Ubicomp applications often involve a wide range of  hardware, network technology, operating 
systems, input/output capabilities, resources, sensors, etc., 

 In contrast to the traditional use of the term application, which typically refers to software that 
resides on one—at most, two—physical nodes, a ubicomp application typically spans several 

devices, which need to interact closely and in concert in order to make up the application .  
o For instance, the Smart Room is an application that relies  on several devices, services, 

communication links, software components, and end user application, which needs to 
work in complete concert to fulfill the overall functionality of a smart room.  

o Hence, handling heterogeneity is not only a matter of being able to compile, build, and 
deploy an application on different target platforms—such as building a desktop 
application to run on different versions of Windows, Mac OS, and Linux.  

o It is to a much larger degree a matter of continuously— that is, at runtime—being able to 
handle heterogeneous execution environments, and that different parts of  the ubicomp 
application run on devices with highly varying specifications. 

For example,  



 

 when a user enters the smart room and wants to access the public display and print a 
document, this may involve a wide range of heterogeneous  devices, each with their 

specific hardware, operating systems, networks interfaces, etc.;  
 the user may be carrying a smart phone running Symbian;  

 he may be detected by a location tracking system based on infrared sensors on a Berkley 
Mote running the TinyOS;  

 his laptop may use mDNS for device discovery,  
 whereas the public display may be running Linux using the X protocol for sharing its 

display with nearby devices. 

 
 The challenge of heterogeneity partly arises because ubicomp is a new research field and a new 

standard technology stack including hardware, operating system, etc., has yet to mature.  

 Ubicomp applications will always need to use different kinds of technologies ranging from small, 
embedded sensors, to large public display and mobile handheld devices.  

 As such, heterogeneous hardware devices are a fundamental part of ubicomp applications, and 
the corresponding operating systems and software stacks need to be specifically optimized to this 
hardware; the small sensor nodes need a software stack optimized for their limited resources and 
the large display similarly needs a software stack suited for sophisticated graphics and advanced 
input technologies. 

 
Therefore, a core systems topic to ubicomp is to create base technologies that are able to handle 
such heterogeneity by balancing the need for optimizing for special-purpose hardware while trying to 
encapsulate some of the complexities in common standards and technologies. 

 
2.2.4 Fluctuating Usage Environments 

 The challenges discussed above are all concerned with issues relating to the execution 
environment of ubicomp applications.  

 However, there is also a set of challenges that are associated with the nature of ubicomp 

applications and how they are designed to be used. 
 

 Traditional computing usage model 
 Users use PCs for information management locally or on servers;  

 They engage in a one-to-one relationship with the PC;  
 the physical use context is fairly stable and is often tied to a horizontal surface such as an 

office desk or the dining table at home;  
 The number and complexity of peripherals are limited and include well-known devices such as 

printers, external hard drives, cameras, and servers.  
 

 Compared to this usage model, ubicomp applications and hence systems live in a far more 
complicated and fluctuating usage environment.  

 Users have not one but several personal devices, such as laptops, mobile phones, watches, 
etc. 

 The same device may be used by several users, such as the public display in the smart 

room or a smart blood pressure monitor in the patient ward of a hospital.  
 Ubicomp systems need to support this many-to-many configuration between users and devices. 

 Furthermore, compared to the desktop, the physical work setting in ubicomp exhibits a larger 
degree of alternation between many different places and physical surrou ndings.  

 Mobile devices mean that work can be carried around and done in different places, and 
computers embedded into, for example, furniture that is constantly used by different people.  



 

 Finally, doing a task is no longer tied to one device such as the PC, but is now distributed across 
several heterogeneous devices as explained above.  

 This means that users need technology that helps them stay focused on a task without having to 
deal with the complexity of setting up devices, pairing them, moving data, ens uring connectivity, 
etc. 

 
A core research challenge to ubicomp is to create systems, technologies, and platforms allowing the 
creation of applications that are able to handle such fluctuating usage environments.  

 Special focus has, so far, been targeted at handling three types of fluctuation in usage 
environment: (1) changing location of users, (2) changing context of the computer, and (3) 
multiple activities (or tasks) of the users. 

 
1. Fluctuations related to different location of the users arise once mobile devices are introduced. 

1.1. Location-based computing aims to create systems and applications that provide relevant 
information and services based on knowledge about the location of the user.  
 For example, in the GUIDE (Cheverst et al., 2000) project, tourists  were guided around 

historic sites by a location-aware tour guide, which automatically would present 
relevant descriptions based on the tourist’s location.  

 Central to location-based systems research is the challenge of sensing the location of 
the user or device.  

 A wide range of technologies already exist, such as global positioning  systems (GPS). 
But because they all have their advantages and disadvantages, new location 
technologies are still emerging. Hightower and Borriello (2001) provide an older, but 

still relevant, overview of available location technologies  and their underlying sensing 
techniques. More details in the chapter on Location technologies. 

1.2. Context-aware computing aims at adapting the application or the computer in accordance 
with its changing context.  
 “Context of the application” includes information about who is using the computer; 

who else is nearby; ambient information about the room, including light, sound, and 
temperature; physical materials and tools used; and other devices in a room. 

For example,  
 a context-aware hospital bed having embedded computers, displays, and sensors can 

be built to react and adapt to what is happening in its proximity; it may recognize the 
patient in the bed; it may recognize clinical personnel approaching; it may bring up 
relevant medical information on the display for the clinicians; and it may issue a 
warning if the nurse is mistakenly trying to give the patient another patient’s 
medication (Bardram, 2004).  

 The context of a computer/device may change for two reasons: either the device 
moved to a new context (mobile device) or the physical context of an embedded 
computer changed because, for example, new people and devices entered a room.  

 
A core research challenge to ubicomp systems research is to  

 investigate proper technical architectures, designs, and mechanisms for context sensing, 
modeling, aggregation, filtering, inferring, and reasoning; for context adaptation; and for 

distribution and notification of context events.  
(More detail in the chapter on context aware computing) 
 



 

1.3. Activity-based computing (ABC) (Bardram and Christensen, 2007) aims at handling 
fluctuations based on users’ need for handling many concurrent and collaborative activities 

or tasks.  
For example,  

In a hospital each clinician (doctor or nurse) is engaged in the treatment and care of several patients, 
each of whom may have a significant amount of clinical data associated.  
For the clinician, it is associated with a substantial mental and practical overhead to switch between 
different patients, because it involves using several devices, displays, and medical software 
applications.  

 The ABC approach helps users manage the complexity of performing multiple activities in a 
complex, volatile, heterogeneous ubicomp systems setup involving numerous devices in different 
locations.  

 Hence, focus is on systems support for aggregating resources and services that are relevant to an  
activity; supporting those activities, and their associated resources, moving  seamlessly between 
multiple devices; supporting multiple users working together on the same activity—potentially 
using different devices; supporting intelligent and semiautomatic generation and adaptation of  
activities according to changes in the work environment; and supporting  the orchestration of 
multiple services, devices, and network setup to work optimally according to the users’ changing 
activities. 

 
2.2.5 Invisible Computing 

 Invisible computing is central to the vision and usage scenarios of ubicomp , but handling 
and/or achieving invisibility is also a core challenge— 

for example, having embedded sensor technology that monitors human behavior at home and 
provides intelligent control of heating, ventilation, air conditioning, and cooling (HVAC), or pervasive 
computing systems in hospitals that automatically ensure that patient monitoring equipment is 
matched with correct patient ID, and that sensor data are routed to the  correct medical record. In 
many of these cases, the computers are invisible to the users in a double sense. First, the computers 
are embedded into buildings, furniture, medical devices, etc., and are as such physically invisible to 
the human eye. Second, the computers operate in the periphery of  the users’ attention and are 
hence mentally invisible (imperceptible).  
From a systems perspective, obtaining and handling invisible computing is a fundamental change 
from traditional computing, because traditional systems rely heavily on having the users’ attention; 
users either use a computer (e.g., a PC or a server through a terminal or browser) or they do not use 
a computer. This means, for example, that the system software can rely on sending notifications and 
error messages to users, and expect them to react; it can ask for input in the contingency where the 
system needs feedback in order to decide on further actions; it can ask the user to install hardware 
and/or software components; and it can ask the user to restart the device. Moving toward invisible 
computing, these assumptions completely break down. 
A wide range of systems research is addressing the challenges associated with building and running 

invisible computers. Autonomic computing (Kephart and Chess, 2003), for example, aims to develop 
computer systems capable of self-management, in order to overcome the rapidly growing complexity 

of computing systems management. Autonomic computing refers to the self-managing 
characteristics of distributed computing resources, adapting to unpredictable changes while hiding 

intrinsic complexity for the users. An autonomic system makes decisions on its own, using high-level 
policies; it will constantly check and optimize its status and automatically adapt itself to changing 

conditions. Whereas autonomic computing is, to a large degree, conceived with centralized or  
cluster-based server architectures in mind, multiagent systems research (Zambonelli et al., 2003) 



 

seeks to create software agents that work on behalf of users while migrating around in the network 
onto different devices. 

Agents are designed to ensure that lower-level systems issues are shielded from the user, thereby 
maintaining invisibility of the technology. Research on contingency management (Bardram and 

Schultz, 2004) seeks to prevent users from being involved in attending to errors and failures.  
In contrast to traditional exception handling, which assumes that failures are exceptional, 
contingency management views failures as a natural contingent part of running a ubicomp system. 
Hence, techniques for proactive management of failures and resource limitations need to be put into 
place. For example, off-loading an agent before a mobile device runs out of battery, and ensure 

proactive download of resources before leaving network coverage. 
A similar research topic is graceful degradation, which addresses how the system responds to 

changes and, in particular, failures in the environment (Friday et al., 2005). Most existing technology 
assume the availability of certain resources such as Internet connectivity and specific servers to be 

present permanently. However, in situations where these resources are not available, the entire 
system may stop working. Real life demands systems that can cope with the lack of resources, or 

better still, systems should be able to adapt gracefully to these changes, preserving as  much 
functionality as possible using the resources that are available. 

 
2.2.6 Security and Privacy 

Security and privacy is challenging to all computing. With ubicomp, however, the security and privacy 
challenges are increased due to the volatile, spontaneous, heterogeneous, and invisible nature of 

ubicomp systems (particularly imperceptible monitoring). 
First, trust—the basis for all security—is often lowered in volatile systems because the principals 

whose components interact spontaneously may have no a priori knowledge of each other and may 
not have a trusted third party. For example, a new device that enters a hospital cannot be  trusted to 

be used for displaying or storing sensitive medical data, and making the necessary configuration may 

be an administrative overhead that would prevent any sort of spontaneous use. Hence, using the 
patient’s mobile phone may be difficult to set up.  

Second, conventional security protocols tend to make assumptions  about devices and connectivity 
that often do not hold in ubicomp systems. 

For example, portable devices can be more easily stolen and tampered with, and resource-
constrained mobile or embedded devices do not have sufficient computing resources for asymmetric 

public key cryptography. 
Moreover, security protocols cannot rely on continuous online access to a server, which makes it 

hard to issue and revoke certificates. 
Third, the nature of ubicomp systems creates the need for a new type of security based on location 

and context; service authentication and authorization may be based on location and not the user. For 
example, people entering a cafe may be allowed to use the cafe’s printer. In this case, if a  device 

wants to use the cafe’s printer, it needs to verify that this device  indeed is inside the cafe. In other 
words, it does not matter who uses the printer, the cafe cares only about where the user is (Kindberg 

and Fox, 2002). 
Fourth, new privacy challenges emerge in ubicomp systems (Langheinrich, 2001). By introducing 
sensor technology, ubicomp systems may gather extensive data on users including information on 
location, activity, who people are with, speech, video, and biological data. And if these systems are 
invisible in the environment, people may not even notice that data are being collected about them. 
Hence, designing appropriate privacy protection mechanisms is central to ubicomp research. A key 
challenge is to manage that users—wittingly or unwittingly—provide numerous identifiers to the 
environment while moving around and using services. These identifiers include networking IDs such 



 

as MAC, Bluetooth, and IP addresses; usernames; IDs of tags such as RFID tags; and payment IDs such 
as credit card numbers. Chapter 3 examines some of these challenges in more detail. 

Fifth, the usage scenarios of ubicomp also set up new challenges for security. The fluctuating usage 
environment means that numerous devices and users continuously create new associations, and if all 

or some of these associations need to be secured, this means that device and user authentication  
happens very often. Existing user authentication mechanisms are, to a large degree, designed for few 
(1–2) and long-lived (hours) associations between a user and a device or service. For example, a user 
typically logs into a PC and uses it for the whole workday. In a ubicomp scenario, where a user may 
enter a smart room and use tens of devices and services in a relatively short period (minutes), 

traditional user authentication using, for example, usernames and passwords is simply not feasible. 
Moreover, if the devices are embedded or invisible, it may be difficult and awkward to authenticate 

yourself—should we, for example, log into our refrigerator, a shared public display, and the HVAC 
controller in our homes? All in all, a wide range of fundamental challenges exists in creating  security 

and privacy mechanisms that adequately takes into concern the technical as well as the usage 
challenges of ubicomp systems. 

 
2.2.7 Summary 

This section discusses many of the core challenges that are endemic to ubicomp and hence, in a 
supporting role, ubicomp systems research. These include coping with impoverished and resource-

constrained devices, energy harvesting and usage optimization, environmental and situational  
volatility, heterogeneity and asymmetry of device capabilities, adapting  to dynamic and fluctuating 

execution environments, invisibility and its  implications for ubicomp systems, and privacy/security 
challenges. The next section will look at the process of designing systems to meet some of  these 

challenges. 
 

2.3 CREATING UBICOMP SYSTEMS 

Building, deploying, and maintaining ubicomp systems require considerable and sustained effort. You 
should think carefully before you start building, about why you are building it, what you hope to 

learn, and what is going to happen to it in the future. Making good design decisions and being 
pragmatic about your objectives early on can save you enormous  amounts of potentially unrewarding 

effort later on. Understanding why you are building a system can help you think more strategically 
about how to achieve the impact you desire or answer your research question more expediently. This 

section highlights key reasons to build ubicomp systems, best practices for developing systems, and 
common issues and pitfalls facing ubicomp systems developers. 

 
2.3.1 Why Build Ubicomp Systems? 

There are many reasons to build ubicomp systems. What you hope to do with the system, who the 
intended users are (both technically as developers  and in terms of user experience), and the planned 

longevity should shape the design and implementation decisions for the project. Possible targets for 
ubicomp systems research include Prototyping future systems to explore u • biquity in practice 

• Empirical exploration of user reactions to ubicomp  
• Gathering datasets to tackle computational problems relating to ubicomp 
• Creating ubicomp experiences for public engagement or performance  
• Creating research test beds to agglomerate activity and stimulate  further research 
• To explore a hypothesis concerning ubicomp more naturalistically 
• To test the limits of computational technologies in a ubicomp setting 
• Addressing the perceived needs of a problem domain or pressing  societal issue. 
 
 



 

2.3.2 Setting Your Objectives 
How one goes about achieving these objectives effectively should naturally impact how you 

undertake the research. It is important to consider where you will place your engineering effort and, 
importantly, whether parts of the problem need to be fully implemented and indeed are reasonable 

computationally to achieve the outcome you desire. For example, a small-scale study to test how 
users react to context-aware systems would require considerable effort to achieve sufficiently 
reliable context determination automatically, whereas emulating the context determination using 
“Wizard of Oz” techniques may be adequate to gain the results and far easier to engineer. 
Conversely, a system that is intended to run for a long time unattended (research test bed, smart 

room infrastructure) will need a much stronger focus on robust design and defensive programming if 
it is to survive without a high degree of attention and support. It is important to realize that some 

parts of your system will require considerable effort to achieve, but may not in themselves lead 
directly to novel results. The trick is to keep one eye on your objective to ensure that your focus 

never entirely shifts from the goals of the project, ensuring that your efforts are rewarded. Naturally, 
some flexibility is required because the goals of your system may shift over time. An initial 

prototypical exploration may uncover an interesting ubicomp problem to solve or hypothesis to test. 
A project whose initial focus is public engagement may uncover a rationale for wider ubicomp  

systems design that may lead to further exploration and more focused empirical studies. This is a 
natural and intended consequence of the scientific exploration of the ubicomp problem space 

(Figure 2.1), which has two key consequences: (1) that you remain sufficiently aware and agile to 
recognize such changes and plan for them consciously and (2) that the important lessons from your 

exploration are communicated effectively to the community.  
How to achieve this last point is discussed further in Section 2.5.  

 
2.3.2.1 Testing Your Ideas 

Having established the context of your system and its objectives, it is common sense not to rush into 

the design phase without first testing and refining your ideas. There are many possible approaches 
with various time and effort implications, for example, one might create the following:  

 Low-fidelity prototypes, which can be simple scenarios that can be discussed, paper prototypes, 
or even models of devices or graphical storyboards of proposed interactions—anything that can 

add richness to the discussion of the system with potential users.   
 Video prototypes, although considerably requiring more effort to create, can communicate the 

concepts in the system quite effectively and act as a useful reference for explaining the system 
later on. 

 Rapid prototypes of user interfaces using prototyping toolkits  (see Section 2.6) can afford a more 
realistic synthesis of the intended user experience.  

 “Wizard of Oz” prototypes of parts of the system may allow the final behavior of the system to be 
emulated and thus experienced by others. 

 
In general, the more labor-intensive options are only really worth investing in if the project itself is a 
significantly larger undertaking or there is additional value to having the prototypes or associated 
media. One of the cheapest and lightest weight mechanisms is simply to present the proposed 
system to someone else to gain informal feedback. If they find the idea entirely preposterous or can 
see obvious significant flaws, it is certainly worth revisiting your scenario. This works best if the 

person is not a member of the project team! 
 
2.3.3 Designing “Good” Systems  



 

Once you have decided on your system’s objectives and are happy with your ideas, the next 
challenge is to design a system that is fit for its purpose. There are many important concerns unique 

to ubicomp that you should consider in your design. 
 

2.3.3.1 Computational Knowledge of the Physical World 
From a systems design perspective, it is far from clear what the interfaces  and internals of a ubicomp 
system should be, necessitating an experimental approach. In his much-venerated article in Scientific 
American (Weiser, 1991), Weiser espoused embedded virtuality and calm computing: the notion that 
computational devices were effectively invisible to its users  and that interfaces to such systems were 

through entirely natural, sensor driven, and tactile interactions. Arguably, such systems almost 
empathically support the user in their daily tasks, requiring a high degree of  knowledge about the 

user’s desires and intents—in some cases, Artificial Intelligence. Only recently have we begun to see 
researchers challenge some of these precepts and explore other possible visions of ubicomp (e.g.,  

Rogers, 2006). As a discipline, it is important that we continue to explore the boundary between “the 
system” and “the user” to find the balance points for computational tractability and effective user 

support. 
A key challenge for ubicomp systems designers then, is to consider the “barrier” between the 

physical world and virtual (computational) world.  Unlike conventional software applications, 
interfaces to ubicomp systems are often distributed, may have many forms of input and output 

involving several devices, and often incorporate subtle, oblique forms of interaction involving hidden 
or ambient sensors and displays. In their influential article, Fox and Kindberg (2002) encapsulate the 

divide between the responsibilities of the system and the user as the “semantic rubicon”: “*that+  
demarcates responsibility for decision making between the system and the user.” More specifically, 

in terms of system design, crossing the semantic rubicon implies defining the knowledge the system 
can have of the physical world and of user(s) behavior, that is, through sensing and user interaction;  

the counterpart, that is, the knowledge the user has of the system and how they might influence it; 

and the mechanisms and permissible interactions for one to influence the other.  
As a system designer, you must decide what knowledge your system will need about the real world to 

function, how it will get into the system, how to represent it, how this state will be maintained, and 
what to do if it is incorrect. Unless this knowledge is easy to sense, or trivial to reason with, then you 

must also decide what the implications are if the knowledge is imperfect or conclusions are 
erroneously reached. There is clearly a significant difference in implication if the outcome of 

misconstruing the user’s situation while laying still is to call the emergency services rather than dim 
the lighting! Designing when to involve the user with decisions, or in the context of the semantic 

rubicon, when the decision of the system becomes the decision of the user, may well be crucial to the 
acceptability of the system or its fit to its task, especially in sensitive or deployed settings. Key 

questions you should ask yourself are: 
 

1. What can be reliably sensed? 
2. What can be reliably known? 

3. What can be reliably inferred? 
 
The degree to which you can answer these questions for the intended function of your system will 
help determine the feasible scope, or set some of the research challenges. 
 
2.3.3.2 Seamfulness, Sensibility, and Tolerant Ignorance  
There are clearly limits to what your system can know about the physical  world and the people who 
inhabit it. Sensors have innate properties due to their construction and the underlying physics that 
governs how well they sense. They may not be optimally placed or sufficiently densely deployed to 



 

cover the area or activity that you wish to detect. High-level sensors, such as location systems, have 
complex behaviors governed by properties of the built environment and its associated “radio 

visibility”—these are time varying properties that also significantly depend on where they are used. 
The activity you wish to observe may simply be challenging to detect due to its subtlety, or difficult to 

isolate from other activities, noise, or the concurrent activities of other people. There is also the 
question of the reliability of what is sensed in the presence of partial or total sensor failure (e.g., 
erroneous sensor readings may be misinterpreted as activity). 
This was once articulated as the challenge of designing systems that exhibit “tolerance for ignorance” 
(Friday et al., 2005). Although it is certainly challenging to consider how to build systems that 

continue to function well in the face of ongoing indeterminacy and uncertainty, a first step is to 
consider the scope and boundaries to your system. In their paper, Chalmers et al. (2003) present 

“seamful design,” the notion that the seams  or the boundaries and inaccuracies of the system can be 
exploited as a resource for system designers. They consider the example of a locationbased mixed 

reality game called “Can you see me now,” where runners  physically on the streets attempt to catch 
online players virtually overlaid on the same space. The runners (Figure 2.2) were tracked using GPS, 

and it quickly became apparent that the seams of the system—in this case, the ability to track the 
runners—was having an impact on the game play: “analysis of system logs shows estimated GPS 

errors ranged from 4 meters to 106 meters, with a mean of 12.4 meters. Error varied according to  
position in the game area, with some of the more open spaces exhibiting  typically only a few meters 

error while the more narrow built–up streets suffered considerably more” (Chalmers et al., 2003). 
Over the 2 days, the runners had time to talk with each other and develop tactics, as exemplified in 

this quote: 
Crew: What defines a good place to catch them? Runner: A big open space, with good GPS coverage, 

where you can get quick update because then every move you make is updated when you’re heading 
toward them; because one of the problems is, if you’re running toward them and you’re in a place 

where it slowly updates, you jump past them, and that’s really frustrating. So you’ve got to worry 

about the GPS as much as catching them. 
 

In this case, awareness of the limitations and characteristics of the system allowed the longer-term 
players (the runners) to improve their ability to play (use the system). This raises the design issue of 

how far to go toward exposing the seams of the system. As reported by Chalmers et al. (2003),  
Benford is quoted as proposing four strategies for presenting information to the user:  

 Pessimistic: Only show information that is known to be correct 
 Optimistic: Show everything as if it were correct 

 Cautious: Explicitly present uncertainty 

 Opportunistic: Exploit uncertainty (cf. Gaver et al., 2003) 
 
One might regard the pessimistic and optimistic approaches as being a  “more traditional,” perhaps 
engineering-led approaches. It is very common to present a location of a user on a map as a dot, for 
example, although this does not typically communicate any underlying uncertainty or imprecision in 
the location estimate or may not even reflect whether the system believes this to be the true location 
of the user (e.g., if no GPS satellites are in view, this may simply be a historic artifact). Adjusting the 
size or representation of such a dot to reflect the confidence in location would enable the user to 
develop a greater trust and understanding of the system. The cautious approach is widely adopted on 

a typical mobile phone: the “bars of signal strength” indicator provides an intuitive iconographic  
representation of underlying features of the system architecture, which is a resource for the phone 
user both to reason about the success of making a phone call but also a plausible social device for 
claiming they got cut off due to “low signal strength.” Cautious or even opportunistic ubicomp  
designs may offer systems that are amenable to user comprehension or even appropriation. What 



 

can and cannot be sensed or its underlying seams may even be an opportunity for design. Benford et 
al. (2004) present some examples of physical ubicomp interfaces in the context of what is sensible, 

sensable, and desirable (Boucher et al., 2003). This taxonomy helped the authors  categorize uses of 
their devices, but also spot opportunities for other types  of interaction with their devices that they 

had not originally foreseen. 
 
2.3.3.3 User Mental Model and Responsibility 
The corollary of considering the semantic rubicon and seamfulness of your system is to carefully plan 
the role the user will play in the system’s  operation. Ubicomp systems often differ significantly in the 

degree of understanding and “intelligence” they are intended to show toward the  users’ goals and 
desires. There are a spectrum of design choices as to when to involve the user in sensing or 

understanding the physical world and in decision making or instigating actions. For example, at one 
end of the spectrum, we might consider a scenario where the system fully “understands”  the user’s 

wants, and takes actions preemptively in anticipation of these (one can argue the degree and scope 
over which this is achievable). 

At the other extreme, perhaps more cautiously, we might design assuming no action is taken by the 
system without user assent, or where the user provides sensory input (e.g., confirming the activity 

they are currently engaged in, although clearly this could quickly become tiresome). A compromise 
position might involve partially automating to support the user’s  perceived needs, but offering the 

ability for the user to intervene to cancel or override the actions proposed by the system. A further 
approach might be adaptive: for example, using machine learning that starts by involving  the user in 

decisions but learns from this, moving toward automation of common or consistently detected tasks 
(but, crucially, can move back to learning mode again if unreliable or undesirable!). To help consider 

where on this scale parts of your system might lie, consider:  
 The frequency or inconvenience of potential user involvement 

 The severity or undesirability of the consequences if the system gets  it wrong 

 The reliability of detecting the appropriate moment and appropriate action 

 The acceptability to the user of automating the behavior 
 
As an example of how people can cooperate with ubicomp systems  and supplement sensing 
capabilities, consider these two examples. In the GUIDE (Cheverst et al., 2000) context-aware tour 
guide system, city visitors could enter a dialogue with the system (involving selecting a series  of 
photos of landmarks they could see from their position) to reorient the system when it was outside 
the scope of the wireless beacons used to determine location. This extended the effective range of 
the system without requiring the logistical and financial expense of adding additional  microcells. Self-
reported position was used very effectively in “Uncle Roy All Around You” (Benford et al., 2004), 
where players with mobile devices built up trust in unknown online players by choosing when and 
where to declare their position to the system to test and reaffirm the advice being  offered to them. It 
would have clearly been possible to use GPS or cell fingerprinting to automate locating the players, 
but instead this became a key feature of the cooperation between online and mobile players. It is 
worth thinking about how the seams and possible limitations of your system can be used as a 
resource for design.  
A key question is, “What do you intend for the user to understand or perceive of the system in 
operation?” To grow comfortable with it, adopt it, and potentially appropriate it, the user must be 

able to form a mental model of cause and effect or a plausible rationale for its behavior. In more  
playful or artistic ubicomp systems this question may be deliberately provocative or challenging, but 
this should still benefit from being a conscious and designed behavior. 
 
 



 

2.3.3.4 It Is Always Runtime 
Ubicomp systems are composed of distributed, potentially disjoint, and partially connected elements 

(sensors, mobile devices, people, etc.). The term “partially connected” here reflects that these 
elements will often not be reliably or continuously connected to each other; instead, the system is  

the product of spontaneous exchanges of information when elements come  together. Clearly, 
interaction patterns and duration will vary with the design and ambition of any given system, but it is 
important to consider a key precept: once deployed, all changes happen at runtime. In a system of 
any scale, you will typically not have simultaneous access to all the elements to (for  example) 
upgrade them or restart them. This has a number of implications: 

1. Systems requiring a carefully contrived startup order are likely to fail. 
2. If the availability of elements may be sporadic, your system should be able to gracefully handle 

disconnection and reconnection or rebinding to alternate services. 
3. Assume that individual components may fail or be temporarily isolated (which is especially true of 

software elements on mobile devices) and design your system accordingly so that state can be 
recovered. 

4. Decide proactively how to handle data when an element is disconnected: are the data kept (e.g., 
buffered) until reconnection, and if so, how much will you buffer before discarding. What strategy 

will you choose to decide which data to keep or discard (oldest, freshest, resample, etc.)? 
5. Consider including version information in protocols used in systems designed to run longitudinally 

to at least identify version mismatches. 
 

2.3.3.5 Handling Transient Connections 
Network connections (or the lack or failure thereof) can have profound effects on the performance of 

ubicomp systems and, crucially, the end user experience. The effects on unsuspecting software 
throughout a device’s  software stack can be serious: network names stop being resolved, closed  

connections can lead to software exceptions that stop portions of the code from executing, 

input/output system calls can block leading to stuck or frozen user interfaces. Considering what will 
happen if elements in the system that you are assuming to be always available—especially if they are 

on the critical path in terms of system responsiveness—fail, will help you identify and ideally mitigate 
for these potential problems. 

When networks fail, it is common for data to be buffered and dropped at many levels in the protocol 
stack. In ubicomp, where data are often sensor traces informing the system of important events 

relating to interactions in the world, this buffering can introduce an array of associated problems. For 
example, old (buffered) data can be misleading if not timestamped and handled accordingly. 

Consider buffered GPS traces logged on a mobile device while the connection to the backend system 
is down: old locations can appear like current inaccuracy; the fast replay of buffered locations that 

normally occur 1 per second might look like you stopped then started moving very quickly and like lag 
if the replay is rate-paced or there is a perceptible latency in the system. Finally, your fresh data over 

a multiplexed interface will be behind the buffered data—a potentially serious delay can arise if the 
connection speed is low and the buffer large. If fresh data are due to user interaction, then the 

system will appear very unresponsive until the buffer is drained. It is very common for a frustrated 
user to try to interact multiple times or in many ways in the face of inexplicable delays in 
unresponsive interfaces, thereby exacerbating the problem. This is another good reason for revealing 
the connection status to the user using an appropriate metaphor (Cheverst et al., 2000;  
Satyanarayanan, 2001).  
 
2.3.3.6 The State of the World 
Transient connections and component failures have an impact on how consistent the state of your 
overall system will be. It is important to design in strategies for recovering from both of these cases. 



 

Parts of your system may be replicable or sufficiently available to use well-known techniques to mask 
such failures and achieve some degree of fault tolerance. However, in many ubicomp systems, 

software components are often intimately linked to specialist or personal hardware, or may be 
placed in unique locations, which makes traditional techniques involving redundant replication or  

fail-over inappropriate. In such systems, we need an alternative. Techniques  that have been reported 
in the literature include  

 Optimistic replication of state, which allows partitioned elements to continue to function while 
disconnected and then reconcile the journal of changes made offline upon reconnection (e.g., the 
CODA mobile file system [Kistler and Satyanarayanan, 1992] allowed optimistic  writes to cached 
files while disconnected, which were then replayed upon reconnection).  

 Converging on eventually consistent state. Bayou (Terry et al., 1995) used gossip-style “anti-
entropy” sessions during user encounters to  propagate updated state via social networking, 
converging on a final state (e.g., scheduling group meetings by exchanging possible times  and 
availabilities and iterating toward an agreed option—tentative and committed state, in this case 
appointments, was reflected to users in the user interface). 

 Use of persistent stores or journals to allow recovery of state (locally or remotely). A central 
database or state repository is often used. 

 Externalizing state (e.g., to a middleware platform, such as a Tuple Space), so that most 
components are lightweight and can recover state from the middleware (Borchers et al., 2002; 
Friday et al., 1999). 

 Use of peer caches to replicate state for later repair. An on-demand state “repair” scheme (Floyd 
et al., 1997) was used in L2imbo (Friday et al., 1999), where peer replicas detect missing state by 

snooping for sequence numbers and asking neighbors to repair any missing data. Recursively, the 
system converges. 

 Epidemic propagation of state using “gossip”-style protocols (Demers et al., 1987).  
 

Where data do not have to be communicated in real-time (i.e., noninteractive gathering or logging of 
data), they can, of course, be batched and exchanged according to some schedule or when the 

opportunity arises. It is often surprising how quickly persistent data or event debug logs and 
application output can grow to fill a (particularly embedded) device. For long-running systems, 

ensuring capacity by estimating growth based on the running system and considering housekeeping 
will help avoid unexpected problems when the device is full later on. Full disks lead to numerous 

problems with database integrity, virtual memory management, and consequent and typically 
unexpected system call failures. 

 
2.3.3.7 Is It Working? 

Debugging ubicomp systems is extremely challenging. Elements are often distributed and may not be 
available or remotely accessible for debugging. In many cases, embedded elements may not have 

much, if any, user interface. A common requirement is to monitor the system’s output to check  
status messages or to be able to perform tests by injecting commands to emulate interactions and 
test components. Common strategies include  

 Use of conventional mechanisms such as log files • and network packet tracing to passively 
monitor running components  

 Including status protocol messages that can be intercepted (often as periodic heartbeat 
messages) 

 Adding status displays including use of hardware such as LED blink sequences, audible and visual 
feedback 

 Including diagnostic interfaces such as embedded web servers that can be interrogated 

 Enabling remote access to components such as remote shells, etc. 



 

 Externalizing of state or communications by using a middleware such as a publish-subscribe event 
channel, Tuple Space, Message Oriented Middleware, etc. 

 
For example, iROS (Ponnekanti et al., 2003) used the “EventHeap” a derivation of the Tuple Space to 
pass all communications between elements of the Stanford Interactive Workspaces project (Figure 
2.3). All communication is observable, so liveness of a component is easy to establish. By injecting 
events manually, components could be tested. New applications  and devices can be introduced that 
work with existing components by generating or using compatible events. Later, the behavior of the 
workspace could be changed at runtime by dynamically rewriting events to “replumb” the smart 
space. The design based around a central EventHeap contributed to the longevity and adaptability of 
the project, enabling a number of interesting extensions and projects to be built upon the system 
over time. Naturally, the need to communicate via the central entity meant that the performance of 
the system was bounded by the performance over the network to the EventHeap and load on this 
component, and dependent on its availability and robustness. 
 

 
 

FIGURE 2.3 Stanford Interactive Workspaces Project (iWork). 

 
2.3.4 Summary 
Designing good systems, by some metric such as elegance, robustness, extensibility, usability, or 
fitness for purpose, is extremely challenging and requires thoughtful design. This section stressed the 
importance of first setting and being cognizant of your objectives, but also early testing of your ideas. 
Our second, but not secondary, focus is on important boundaries and thresholds between the 
system, its environment, and its users; encouraging purposeful and intentional designs with respect 
to system knowledge of the world, accuracy and dependability of sensing, tolerance to ambiguity, 
and the role of the users and their interplay with the system. Finally, the section discusses  important 
technical differences between ubicomp systems and many conventional system designs: volatility, 
transience of connectivity, handling of state and techniques for evolving, and debugging live ubicomp 

systems. The next section turns to the important business of implementation. 
 

2.4 IMPLEMENTING UBICOMP SYSTEMS 
2.4.1 Choosing “Off-the-Shelf” Components  

As with any computer-based system, the design of your ubicomp system is just the first step in 
realizing it. The design is often refined as implementation choices are made and their limits tested. 

Given the richness and ambition of typical ubicomp systems and the typical development resources 
and timescales, pragmatic choices have to be made as to define what you will build and what you will 

appropriate to construct your system. 



 

It is natural to seek third party components from hardware and software vendors or, increasingly, 
from the public domain. 

A key challenge is balancing this expedient use of off-the-shelf hardware and software against more 
bespoke solutions. Although the latter may offer a better fit to the problem domain or intended 

deployment environment than an off-the-shelf solution, it requires enormous effort to develop new 
technologies that meet the functional, aesthetic, reliability, or time constraints of the project. Again, 
this is a choice best made in the context of your objectives (which may aim to explore the creation of 
novel devices). 
Building using proven components or implementations of standards  may increase robustness or 

extend the range of functionality available to you more quickly, but there are also limitations to this 
approach that you should keep in mind when evaluating your choice:  

1. You should not underestimate how much time can be spent in  attempting to integrate disparate 
pieces of hardware and software. 

2. Software perhaps successful or designed for one domain will not necessarily confer similar 
benefits to your domain. 

3. The chosen software or hardware may place constraints on what  you can build, or offer far more 
functionality than you require (with implications on software complexity and footprint).  

4. Using proprietary hardware or software may imply the need to work around features and 
limitations that are outside of your control.  

5. Versatile toolkits, for all their tempting power and flexibility, may introduce unneeded 
functionality and unwanted software bloat (particularly problematic when working with 

embedded and mobile devices). 
 

Ask yourself critically whether the flexibility is really needed and compare to other strategies, such as 
just taking parts of the toolkit in question or simply coding the portion you need.  

A hidden side effect of using third party libraries is that they may introduce dependencies that are 

not easy to understand or are too tightly integrated into the tool you have chosen to be removed or 
replaced. In longer-lived systems, the interdependencies between different versions of libraries and 

the level of skill and tacit knowledge required to update the system can become a particular burden. 
Do not forget that unknown systems may contain bugs or security vulnerabilities, or exhibit 

unwanted behavior. Because these are components that you do not necessarily fully understand, 
they may be difficult to detect and may take time to fix—a good justification for building with 

components you can get the source code for! It is important not to “let the tail wag the dog,” that is, 
to consider carefully whether the limitations or implications of accepting a constraint or technology 

are worth the compromise to your overall design. Recall the seamful design and role of the user 
design considerations discussed previously, and review carefully whether the perceived limitations 

can be embraced or taken advantage of in some way. 
GAIA: Building on a Solid Foundation 

 
In the GAIA, a meta-operating system for smart rooms (Figure 2.4) (Roman and Campbell, 2000), an 

industry quality CORBA middleware implementation was chosen as the core for the system. System 
components were implemented as distributed objects with CORBA IDL interfaces. This 
implementation choice enabled the project to build on a reliable core and focus on developing the 
higher-level GAIA OS services. As new services for CORBA matured (event channels, Lua scripting), 
these features could be exploited to enrich the GAIA OS. This implementation choice enabled the 
project team to focus their development effort on higher-level services such as security and 
configuration management without worrying about object distribution and lifecycle management. An 
undesirable side effect of the choice was the proprietary dependency it introduced, potentially 
limiting uptake by other sites that might otherwise have wished to adopt GAIA but did not want to 



 

accept the licensing implications. There was also limited scope for optimizing the interconnection and 
performance of the many objects and communication channels underpinning each GAIA smart room 

application. 
 

 
FIGURE 2.4 GAIA meta-operating system integrated a wide range of situated and mobile devices to 

offer an interactive smart room. 
 

Cooltown: The Power of a Well-Chosen Paradigm HP’s Cooltown was a system to support nomadic 
computing by associating digital information and functionality with “people,  places and things” 

(Kindberg et al., 2002). An extremely versatile system, allowing both access to information and access 
to services, Cooltown was based on straightforward and elegant technical  choice: that people and 

artifacts could be tagged, and the tag resolved to a uniform resource identifier (URI) that linked to a 
web point of presence for the person or artifact in question. The flexible use of tags, decentralized 

resolvers, and the innate flexibility in the design of URIs made the entire system extremely 
lightweight and extensible. Infrared beacons (Figure 2.5) broadcast URIs to mobile devices to link 

physical artifacts to digital information.  
In summary, paraphrasing Ockham’s razor: the implementation choice  that makes the fewest 

assumptions and introduces the fewest dependencies  without making a difference to the observable 
behavior of the system is usually the best. 

 
2.4.2 Deploying Ubicomp Systems 

One of the most valuable lessons to take from looking at successful ubicomp systems is the need to 

mature the system through actual use. Colloquially, by “eating your own dog food,” or rather, 
deploying and using the system initially yourself (but ideally also with other users, who are not 

necessarily the developers) can gain early feedback and highlight usability and interaction issues that 
may otherwise get missed until such decisions are too well entrenched to be easily reversed. This 

lends itself to an agile development process where simple prototypes are put out early and refined 
during the development cycle. 

 
FIGURE 2.5 Cooltown beacon that enabled the physical environment to be augmented with digital 

information (top edge, just 3.3 centimeters wide).  

 



 

With many systems, developers are also just another class of user; running  training sessions with 
developers and having to explain the system and its application programming interfaces (APIs) to 

others can be a valuable source of insights. If your aim is to encourage adoption by others, and you 
plan to put the software in the public domain, then doing a “clean room install” helps “quantify the 

magic” and tacit knowledge that the systems’ own developers are able to apply when using and 
installing the system. Documenting this type of information (e.g., as installation and maintenance 
guides) in a wiki associated with the software can help smooth adoption and also provide a resource 
for continuity if there are changes of personnel in the project team over the longer term. Deploying 
systems for people to use is always a costly process. Designing  a system that meets peoples’ 

expectations, and indeed, helping set those expectations requires great care and expertise. The key 
is, of course, identifying the stakeholders and involving them in discussions from an early stage. How 

to design with users, known as participatory design, is a major topic for discussion in its own right; so 
we direct the interested reader to such texts as that published by Schuler and Namioka (1993). See 

also Chapter 6 for further discussion on participatory design. 
Ubiquitously deploying technologies inevitably implies that, at some point, technologies must move 

out of the research laboratory and into the “real world.” Experience has shown that with this comes a 
number of real world constraints and practical concerns that may be unexpected and are  certainly 

worth being highlighted (Fox et al., 2006; see Table 2.1). 
There are many issues due to the real world and organizational settings  that can catch the unwary 

developer by surprise (Hansen et al., 2006; Storz et al., 2006). For example,  
1. The need to comply with health and safety or disabilities legislation, which can constrain the 

citing of equipment and place certain usability requirements for disabled users (for guidance on 
how to design inclusively for all users and design assistive technologies for those with disabilities 

in particular, the reader is referred to Clarkson et al., 2003). 
2. To be sensitive to data protection legislation, which may impact what data you can store, 

whether users have the right to opt-in, opt-out, or declare (e.g., with notices) that the system is in 

operation. Public deployments are by their very nature public, so you should prepare to be 
accountable for your system and prepare yourself, your team, and your work for public scrutiny.  

3. Environmental factors (including weather, pollution, etc.) can have a devastating effect on 
equipment that is not adequately protected. It is worth doing test installs before your main 

deployment to uncover unexpected issues due to environmental factors (particularly important  
for external and outdoor deployments). 

4. Privacy and organizational sensitivity. The nature of putting technologies into real-world 
situations can potentially open vulnerabilities  (perceived or actual) to expose private information 

or interfere with existing systems or processes. This is particularly true for organizations  
managing sensitive data or in high-pressure situations, such as healthcare and emergency 

services. It is always worth approaching such situations responsibly and involving and addressing 
the concerns of local experts. 

 
With any system, there is an ongoing cost in supporting the system that is proportional to the length 

of the deployment. Robust engineering and clever design can help mitigate this cost, but it is a 
research challenge in itself to drive this to zero and make the system self-maintaining. To keep down 
the impact of remote maintenance and support, you should ensure that it is possible to remotely 
monitor it, ideally as the user perceive sit (remote cameras and microphones can be extremely 
valuable, but are unpopular in many deployment settings). Remote access via the network is also 
important for resolving problems, especially if the system is inaccessible or far removed from the 
project team: it i easy to assume that the system will need less ongoing maintenance than perhaps it 
does, in fact, require, especially in the early phases of the project. If the system is physically 
inaccessible, then this is likely to cause problems going forward.  



 

Particularly in unsupervised deployments, there is always a chance of unexpected or accidental 
intervention. Equipment that is installed and left in working order can sometimes find itself 

unplugged unexpectedly (e.g., by cleaners looking for a power socket or due to a power outage). You 
should realize that you cannot mitigate against all eventualities, but if  your system requires complex 

manual setup or cannot be diagnosed and maintained remotely, then you are asking for trouble!  
Runtime Orchestration of the Ambient Wood 

 
Ambient wood was an augmented “ubicomp woodland” (Figure 2.6)  designed to promote learning 
about woodland environments (Rogers et al., 2004). Mobile sensor devices allowed children to collect 

geo-tagged light and moisture readings; installed information appliances allowed information 
concerning tagged objects to be explored. The system also used a mesh of wirelessly connected 

devices installed in the wood to generate ambient sounds based on sensed contextual triggers. 
Technically, all devices synchronized their data to a shared dataspace (“Equip” middleware), allowing  

interactions in the woodland to later be visualized during supervised teaching sessions. This system 
was not designed for unsupervised operation or for longitudinal deployment. To maintain the quality 

of the experience for end users, a degree of orchestration was required to address any problems that 
arose during each teaching session in the wood. To help make orchestration easier (e.g., to introduce 

a new object representing a sound or piece of information, inspect readings being sent from devices, 
etc.), the developers integrated a multiuser dungeon (MUD) into the system to provide another 

interface onto the Equip data. Each area of the augmented woodland was represented in the MUD as 
a “virtual room.” The team could easily use this interface and MUD metaphors to interactively “walk 

around” the representation of the experience and to remotely control it by inspecting, picking up, 
and dropping virtual objects. Orchestration of the configuration of hardware and software beyond 

the game was still largely a laborious manual process. 
 

TABLE 2.1 Self-Check Questions to Consider before Undertaking a Real-World Deployment (Source: 

Hansen et al. (2006), IEEE Pervasive Computing, 5(3): 24–31.) 
Categorie Issues Questions 

Hardware Cost, Security, 
Environment, Power, 
Network, Space, Safety  

issues 

What will  implementation cost? Will  scaling up the system affect the 
price? Is special equipment needed?  
Is the equipment secure? Is there a risk of theft? Does the 

environment pose special requirements on the equipment? Is the 
system going to be used outdoors? Can it handle vandalism? Can it 
withstand being dropped or cleaned? Does the system require a 
power plug? How long can it run without being recharged? Do the 

batteries run flat if radio communication is used excessively? How do 
you recharge the system? How will  the devi ce communicate? Does it 
require an Ethernet connection? Is the wireless infrastructure in 
place? Do you need to transmit data in an external network? How 

much physical space does the system use? Is there space on the wall 
for large wall displays? Is there table space for another computer? Do 
the doctors have enough room in their pockets for another device? Is 

there space on the dashboard for another display? Will  a system 
malfunction affect safety issues? What is the contingency plan in case 
of a full  system crash? Will  the system interfere with other systems? 
Can the system pose a threat to the user? 

Software Deployment and updates, 

Debugging, Security, 
Integration, Performance 
and scalability, Fault 
tolerance, Heterogeneity  

How is the software transferred to the device? Does the deployment 

mechanism scale to a large number of devices? Can you update the 
system? How do you update the different devices? Are the devices 
accessible after deployment? If the system malfunctions, how do you 
find the error? Does the system store debugging information? How do 

you detect serious errors in the system? How is logging done? Does 
the system need to be secure? How does it keep information 
confidential and secure? Is there a concrete security risk? Is the 



 

deployed system stand-alone? Does it need to communicate with 

other deployed systems or integrate with third party systems? Is there 
a public API and converters for communicating between systems? How 
does the system perform? Is system performance acceptable in the 

real-world setting? How many devices are needed for deployment? 
Does the system scale? What happens when an error occurs? Can the 
system recover automatically? Can the daily system users bring the 
system back up to a running state? Is the developer team notified 

about errors? Is the system configured for remote support? Does the 
system run in a heterogeneous environment? Do heterogeneous 
elements need to communicate?  

Using setting Usability, Learning, 
Politics, Privacy, 

Adaptation, Trust, 
Support 

Will  end users use the system? If so, how many? Can the average user  
use the system? Does the interface pose problems? Does the system’s 

overall  usability match the average user? How do the users learn to 
use the system? Is it individual instruction or group lessons? Does the 
system need superusers? Is a manual or help function needed? How 
does the user get support? Who controls the system? Does the system 

change the power balance in the user setting? Who benefits from the 
system? Is the person that benefits from the system the same as the 
person that provides data to the system? Does the system require 

extra work from users? Does the system reveal private information? 
What kind of personal information does the system distribute and to 
whom? Is the organization ready for the s ystem? Is there 
organizational resistance? Will  the system change formal or informal 

structures in the organization? Does the user trust the system? Is the 
information given to users reliable? Who sends the information? Will 
the developers support the system? Does the support organization 

have remote access to the system? 

 

2.4.2.1 Expect the Unexpected 
In all deployments, the unexpected is the hardest thing to prepare for. Volatility is unfortunately 
endemic to the real world and hence to your ubicomp system (Coulouris et al., 2005). As a thought 
experiment and ideally during predeployment testing, consider how your system will  react to 

 Presence or use by unknown users 

 Unrecognized devices (e.g., new phones and laptops) 

 Changes to the wireless environment (new wireless networks) 
 Devices being power cycled 

 Batteries failing (particularly no moving parts or LEDs!) 

 You not being there (it is easy to forget that the developer is present during development and 
testing, potentially impacting the sensing, wireless connectivity, etc.) 

 Improper use (developers can quickly learn which interactions  “break” the system and almost 
subconsciously adapt to avoid exercising these paths) 

 
Anticipating these types of conditions, testing for them, and ideally having a strategy to deal with 

them will serve you well, particularly for longer-term deployments. Even something as simple as 
logging unexpected conditions to a persistent store can help with the posthoc diagnosis  of 

“mysterious” system misbehavior.  
 
2.4.3 Summary 
Constructing ubicomp systems that not only meet the objectives and ambition  of your project, but 
that are also sufficiently robust to be deployed for evaluation purposes, and in extremis, long-term 
use is very challenging. 



 

Off-the-shelf hardware and software can be an expedient means of building ambitious systems more 
quickly, but do not come without strings attached: careful, qualified, and dispassionate evaluation of 

the choices and implications of those choices is called for. The end game as we strive for ubicomp 
“for real,” has to be moving toward daily and widespread use of ubicomp systems. Deployments, 

however, are not to be undertaken lightly; diligent preparation based on, for example, the above 
anticipated issues presented from past deployment-led projects will help you avoid many of the more 
common pitfalls. The next section concentrates on how to evaluate and learn from your built system. 
 
2.5 EVALUATING AND DOCUMENTING UBICOMP SYSTEMS 

In this section, we shall look more closely into how ubicomp systems can be evaluated and how the 
insight from your research can be documented and communicated. 

 
2.5.1 Evaluating Ubicomp Systems  

Evaluation of ubicomp systems and/or their smaller subcomponents  needs to be carefully designed 
from the outset of a research project; different types of research contributions often need to be 

evaluated differently. 
For example, routing protocols and their applicability under given circumstances can often be 

evaluated using network simulation tools, whereas systems support for smart room technologies 
would often involve real-world testing with end users. It is particularly important to ensure a  tight 

coupling between the claims you make about your system and the evaluation methods that you use 
to demonstrate that these claims hold. If, for example, you claim that your network protocol scales to 

many nodes, a simulation is a reasonable evaluation strategy; but if you claim that the protocol 
supports biologists to easily pair devices in a deployment situation, this claim needs to be evaluated 

with biologists using the nodes (and their protocol) in a deployment field study.  
Now, the observations above may seem trivial and obvious. Unfortunately, however, our experience 

is that it is exactly the discrepancy between claims made by researchers and their evaluation 

strategy, approach, and methods that often leads to criticisms of the designed systems. 
Generally speaking, there are a number of approaches to evaluating ubicomp systems with varying 

degrees of ambition and required effort. A few important ones are introduced below. 
 

2.5.1.1 Simulation 
The design of a system can be modeled and subsequently simulated. For example, simulation is the 

research tool of choice for a majority of the MANET community. A survey of MANET research 
published in the premiere conference for the MANET community shows that 75% of all  papers 

published used simulation to evaluate their research, and that the most widely used simulator is the 
Network Simulator (NS-2) (Kurkowski et al., 2005). 

Once a system or a systems feature has been implemented, simulations can also be used to evaluate 
properties of the implementation. Simulations are typically used to evaluate nonfunctional systems 

qualities such as scalability, performance, and resource consumption. For example, the sys tems 
qualities of a ubicomp infrastructure for a smart room may be simulated by deploying it in a test 

setup where a number of test scripts are simulating the use of the infrastructure according to a set of 
evaluation scenarios. 
While running the test scripts, the technical behavior of the infrastructure is gauged with respect to 
responsiveness, load balancing, resource utility, and fault tolerance. Such a technical simulation of a 
complicated piece of system infrastructure is extremely valuable in systems research, and helps 
discover and analyze various technical issues to be mitigated in further research. It is, however, 
important to recognize that this type of technical simulation says absolutely nothing about the 
infrastructure’s functional ability to, for example, support the creation of smart rooms, or about the 



 

usefulness and usability of the application built on top of it. To verify claims about the usefulness and 
usability of a system, you would need to make user-oriented evaluations. 

 
2.5.1.2 Proof-of-Concept 

Just as Marc Weiser coined the concept ubiquitous computing, he also described how these 
technologies were designed at Xerox Palo Alto Research Center (PARC) by building and experimenting 
with so-called proof-of-concepts. A proof-of-concept (PoC) was defined as The construction of 
working prototypes of the necessary infrastructure in sufficient quality to debug the viability of the 
system in daily use; ourselves and a few colleagues serving as guinea pigs. (Weiser , 1993) A PoC is a 

rudimentary and/or incomplete realization of a certain technical concept or design to prove that it 
can actually be realized and built, while also to some degree demonstrating its feasibility in a real 

implementation. 
A PoC is not a theoretical (mathematical) proof of anything; it is merely a proof that the technical 

idea can actually be designed, implemented, and run. In analogy, even though Jules Verne introduced 
the concept of traveling to the moon in his famous 1865 novel, From the Earth to the Moon, the 

actual PoC was not designed, built, and run until a century later. 
Creating PoCs is the most prevalent evaluation strategy in ubicomp systems  research. The original 

work on the pad, tab, and wall sized ubicomp devices and their infrastructure at Xerox PARC is the 
classic example of this. But a wide range of other PoC examples exists, including ABC infrastructures  

for hospitals (Bardram and Christensen, 2007), different PoC for tour guiding systems such as GUIDE 
(Cheverst et al., 2000) and the San Francisco Museum Guide system (Fleck et al., 2002), home-based 

ubicomp systems such as EasyLiving (Brumitt et al., 2000), and ubicomp systems  for smart rooms 
such as Gaia (Roman and Campbell, 2000), iRoom (Borchers et al., 2002), and iLand (Streitz et al., 

1999). 
However, looking at it from a scientific point of view, a PoC is a somewhat weak evaluation strategy. 

A PoC basically shows only that the technical concept or idea can be implemented and realized. 

Actually, however, a PoC tells us very little about how well this technical solution meets the overall 
goals and motivation of the research. For example, even if several  PoCs of an ABC infrastructure have 

been implemented, this actually only tells us that it is possible to build and run a technical 
implementation of the underlying concepts and ideas. A PoC, however, does not tell  us anything 

about whether it actually meets any of the functional and/or technical goals. For example, does the 
ABC framework support the highly mobile and collaborative work inside hospitals? Moreover, the 

PoC does not tell us anything about the nonfunctional aspects of the infrastructure: Does it scale to a 
whole hospital? Is the response time adequate for the life- and time-critical work in a hospital? Is it 

extensible in a manner that would allow clinical applications to be built and deployed on top of it? All 
of these questions can only be answered if the PoC is put under more rigorous evaluation. 

 
2.5.1.3 Implementing and Evaluating Applications 

A stronger evaluation approach is to build end user applications using ubicomp systems component 
and infrastructures, and then put these applications into subsequent evaluation. For example, the 

Context Toolkit was used to build several applications such as the In/Out Board and the DUMMBO 
Meeting Board. These applications can then be evaluated by end users in either a simulated 
environment or in a real-world deployment. For example, the ABC framework was used to implement 
a series of clinical applications, which was subsequently evaluated in a test setup where a hospital 
was simulated (Bardram and Christensen, 2007).  
This evaluation approach is strong in several respects. First, using underlying systems technologies 
such as components, toolkits, or middleware  infrastructures to build real applications, demonstrates 
that the systems components are indeed useful for building systems. Second, the act of building 
these applications helps the systems researcher to judge whether their building blocks actually help 



 

the application developer meet his or her application goals. For example, how easy is it to model,  
capture, and distribute context information using the Context Toolkit?  

Third, once the application is built and put into use, this provides a test bed for the underlying 
systems components and helps you answer more nonfunctional questions, such as: How well does 

the system scale, perform, and handle errors? For example, the implementation of clinical 
applications on top of the Java Context-Awareness Framework (JCAF) framework and the subsequent 
evaluation sessions helped the creators inspect how well the context-aware technology scaled to 
multiple concurrent users, and what happened when clients lost network connectivity.  
The infrastructure and the application were put into pilot use in a hospital and evaluated over a 6-

month period (Hansen et al., 2006). Figure 2.7 shows the use of context-aware public displays and 
smart phone in use. 

However, as pointed out by Edwards et al. (2003), this evaluation strategy has its pitfalls and 
drawbacks. Essentially, if not carefully designed, the application and the subsequent evaluation may 

tell us little, if anything, about the systems aspect of the whole application. It is important to be 
absolutely clear about what your test application will tell you about your systems components, 

infrastructure, or toolkit. It is easy to get distracted by the demands of building useful and usable 
application in themselves and lose sight of the real purpose of the exercise, which may purely be to  

understand the pros and cons of the systems part. Moreover, whether or not the evaluation of an 
application turns out to be extremely successful may have very little to do with the systems 

properties of the application. 
For example, an application may fail simply because of poor usability, or because it is so novel that 

users have a hard time actually using it. This  failure, on the other hand, may say very little about the 
usefulness of the underlying systems support.  

 

 
FIGURE 2.7 Context-aware technology deployed inside a hospital. (From Hansen et al., IEEE Pervasive 

Computing, 5(3), 24–31, 2006. With permission.) 
 

2.5.1.4 Releasing and Maintaining Ubicomp Systems 
The strongest evaluation of ubicomp systems components is to release them for third party use, for 
example, as open source. In this manner, the system research is used and evaluated by other than its 
original designers, and the degree to which the systems components helps the application  
programmers to achieve their goals directly reflects the qualities of the system components. One 

may even argue that there is a direct correlation between the number of application developers and 
researchers using the system in their work, and the value and merits of the work.  

Releasing and maintaining systems software does, however, require a substantial and continuing 
effort. Releasing systems building blocks such as hardware platforms, operating systems, toolkits, 



 

infrastructures, middleware, and programming APIs entail a number of things such as a  stable and 
well-tested code base, technical, and API documentation; tutorials helping programmer to get 

started; example code and applications; and setting up licensing policies. And once the system has 
been released for third party use, issues of bug reporting and fixing, support, general  maintenance, 

and new system releases need to be considered.  
This is a real dilemma in systems research and evaluation. On the one hand, the best way to evaluate 
your systems research is to implement the idea in sufficient quality for the rest of the world to use it, 
and then continuously document, support, maintain, and evolve the technology. The degree to which 
the world adopts your technology is a direct indicator of its usefulness. On the other hand, this limits 

the amount of systems research that you can do within your career to a few contributions, and there 
seems to be an internal and external pressure for continuously moving on to new systems research 

challenges. But—without a doubt— designing, implementing, documenting, releasing, and evolving 
systems contributions for third party use is the golden bar in systems research and is a goal pursued 

and reached by many researchers. Section 2.6 provides  pointers on released ubicomp systems 
research, which can be used in further research. 

 
2.5.2 Learning from What You Build 

All ubicomp systems are complex and time consuming to design, implement, and deploy. It is easy to 
expend all efforts of the project on creating, deploying, and evaluating the system, while neglecting 

to dedicate sufficient resources to communicating your findings and experiences (both positive and 
negative) to others. As attributed to Plutarch between AD 46 and 120, “Research is the act of going 

up alleys to see if they are blind.” If we do not communicate, then others will be doomed to repeat 
our mistakes and not learn from our innovations. It is important not to waste your efforts by sharing 

software, datasets, and knowledge for others to build on (or even contribute to).  
 

2.5.2.1 Communicating Your Findings 

There are many ways to communicate with the community at large, and comparatively recent 
innovations such as open-source software projects and contributory resources such as “wikis” make 

it easier to put work online and marshal interested parties around initiatives. Still, it takes  work to 
engage with a community and provide the resources they will need to be able to work with and/or 

contribute to your system. For this purpose, there are several approaches to use: 
1. Making your system available enables others to try, critique, compare,  adopt, and potentially 

contribute to your project (e.g., the iRos interactive workspaces software (Borchers et al., 2006) 
and equip rapid prototyping toolkit (Greenhalgh and Egglestone, 2005) are both available in 

source form). If you do not just put materials  online, but try to make the initiative open source, 
then it’s important that you remain responsive and keep the information up-to-date, at least 

while the project is in active development.  
2. Publishing datasets is another effective means of providing resources  for the community to build 

on and also invites the scientific practice of experimental validation through repeatability and 
comparative analysis of approaches (the CRAWDAD wireless traces (Kotz and Henderson,  2009) 

and Massachusetts Institute of Technology (MIT) PlaceLab Datasets (Intille et al., 2006) are good 
exemplars of this approach). 

3. Publishing (e.g., online) schematics, instructions, and documentation also provides critical insight 
into how to reconstruct experiments and follow on from your work [e.g., Multitouch table 
(Schmidt, 2009), Smart-Its (Smart-ITs, 2001)]. 

4. Traditional academic routes of dissemination (papers, magazine articles, demonstrations, 
workshop participation, etc.), which provide a means to obtain valuable peer feedback on your 
work.  



 

As with any packaging of the work, be it open source or commercialization activities, any such effort 
should be undertaken advisedly. It takes effort to seed these initiatives, for example, creating 

documentation, putting up example code, instructions and tutorials, making public versions, choosing 
appropriate licenses, etc. However, one has to question whether it is valid to undertake the research 

without considering and budgeting for evaluating it and communicating your findings. 
 
2.5.2.2 Rigor and Scientific Communication 
Ubicomp systems are always difficult to describe due to their complexity and wide-ranging lessons 
that one accrues during a typical project. Not everything that becomes a time sink is worth 

communicating; conversely, it is easy to forget the many problems and compromises that have been 
overcome or bypassed that may hint at important research questions  worth detailing. Keeping a 

laboratory notebook as you progress can be a valuable resource when writing papers and 
dissertations. 

Academic forms of dissemination (e.g., papers) do not always value experience reports or negative 
results as much as they should. This, in turn, has a tendency to encourage some researchers to focus 

on positive contributions of their work and why it is new or different from existing approaches at the 
expense of objectivity; it is far more common in other disciplines to repeat experiments and validate 

the work of other scientists, rather than focus on novelty and differentiation. Your work should be 
grounded in the literature; it is definitely acceptable to learn and build on the work of others, and it is 

acceptable to stress the commonalities as well as the differences. If there is genuinely nothing new to 
learn from your proposed project, then you have to question whether your objectives are correct; an 

early search of the literature is particularly important for this reason. For a thought-provoking 
discussion of experimental methods in Computer Science, the interested reader is directed to 

Feitelson (2005). 
 

2.5.3 Documenting Ubicomp Systems 

This last section shall present what, in our experience, is the best way to document ubicomp systems 
research and what needs to be addressed. This  may work as an outline of your technical 

documentation as well as some basic directions for writing good ubicomp systems papers for the 
research community. 

 Explain the specific (systems) question and challenge that you are addressing. 
 Enumerate and explain the assumptions you make—both technical as well as any assumptions  

on the developers’ and users’ behalf. 

 Carefully relate your work to others, paying special attention to where your work extends the 
work of others, and where it differs. Your work may differ in several areas, but it is important 
to highlight a few significant differences that constitute your main contributions. 

 Divide documentation into 
o Technical documentation—contains all the technical details on the system, its  

implementation, and evaluation.  
o Research paper describing the overall research approach, questions, contribution, 

concepts, and technical innovation—always be careful not to include trivia or 
irrelevant implementation details; refer to the technical document if necessary. 

 Describe your evaluation—especially why the system was evaluated in the manner with which 
it was conducted—addressing the following issues: 

o Evaluation strategy and overall approach.  

o The aim of the evaluation, including a description of how to measure it. Outline 
evaluation criteria and how to measure success. 

o Evaluation setup, including technical setup, configuration, runtime environment, 
simulation parameters, users, their background, the physical setup, etc. 



 

o Results of the evaluation, including measurable results such as  time measurements of 
performance, throughput, and resource contribution, as well as qualitative results 

such as user feedback based on interviews, observations, and questionnaires. 

 Discuss the contribution of the system as related both to the results  of the evaluation as well 
as to the results from others.  
 

In technical and scientific documentation, it is important to maintain objectivity and honesty when 
reporting results and findings. Try to avoid unnecessary adjectives and provide a prosaic description. 
Carefully present and discuss what can be learned from your research and the results you have 
obtained. Documenting and reporting on apparently negative results  may entail a contribution in 
itself; it may be an inspiration for others to try to address this particular challenge or it may be 
associated with a flaw in the evaluation setup, which can be fixed once discovered.  
 
2.5.4 Corollary 
On a final note, it is worth keeping the scientific mindset to the fore in order to cultivate a scientific 

and balanced approach in describing your work. Scientists should be uncertain, open-minded, 
skeptical, cautious, and ethical—readers will question your work and will be cautious to accept your 

claims without appropriate evidence and grounding with respect to other approaches. Balanced and 
objective self-reflective analysis and evaluation of your work is crucial to its acceptability by others  

and particularly by the best quality conferences and journals. Evaluations  must be methodologically 
sound and include adequate explanation of how they were conducted, because this is important for 

confidence in the quality of the results and trustworthiness of the inferences drawn from them.  
Results and lessons should also be clearly and concisely presented. Try, if  possible, to “quantify the 

magic” (Barton and Pierce, 2006) that made your system work for the setting and users you chose; 
understanding the scope and limitations of your system and how seriously these might impact the  

generalization of your work is important for setting the boundaries and research questions for further 
work in that area. 
A simple guiding principle is: “What does the reader learn from reading  my paper?” If a paper lacks 
useful insight, lessons, or results, then it is  highly likely to be rejected. 
 

2.6 GETTING STARTED 
If I have seen further than others, it is by standing upon the shoulde rs of giants Many ubicomp 

systems research projects have put tools, toolkits, and datasets into the public domain. Here are a 
few examples of tools that we, as experimental scientists and designers of next-generation ubicomp 

systems, can download and evaluate. These can provide a quick route to getting your ideas up and 
running and allowing low-cost experimentation with ubicomp systems. You should feel positively 

encouraged to offer feedback to the creators, contribute to projects and dataset archives, and  
objectively compare your work with others in the domain; as a matter of  principle, we can only 

benefit as a community from trying out each other’s  systems and paradigms, and working together to 
address the many challenges ubicomp poses. In general, there a re different types of technology that 

can help you realize your system and prototype your ideas:  
1. Rapid prototyping tools for creating situated or mobile ubicomp systems 

2. Libraries that can form components of your system, for example, handling computer vision, 
gesture recognition, processing sensor data, handling context 

3. Hardware components including wireless sensors for augmenting artifacts or forming sensor 
networks  

 
Given the typical lifetime of the average research project or these types  of technology, this section 
merely aims to serve as an indicator of the types  of systems available to you. More up-to-date 



 

resources should be kept in the public domain where they can be added to by active researchers, 
such as yourself (e.g., see http://ubisys.org). 

 
2.6.1 Prototyping Your Ideas 

There are many hardware and software platforms available to assist with deploying test ubicomp 
infrastructures to test your ideas and novel forms of interaction. Tools such as ActivityStudio (Li and 
Landay, 2008), exemplar (Hartmann et al., 2007), and iStuff Mobile (Ballagas et al., 2007) support the 
creation of low-fidelity functional prototypes that can be used to experiment with different ubicomp 
application designs. Each has a different focus: ActivityStudio provides an environment for moving 

from field notes, through a storyboarding and visual programming step through to simulation and in 
situ deployment of a Web-based prototype; exemplar encourages demonstration of sensor-based 

interactions (e.g., gestures) that are then filtered and transformed using a visual development 
environment to trigger other applications; and iStuff Mobile provides a visual  programming interface 

for novel mobile phone–based interfaces (an otherwise notoriously difficult platform to develop for).  
Systems such as the EQUATOR Component Toolkit (ECT) (Greenhalgh and Egglestone, 2005) 

and Wiring (Barragán, 2006) provide programmatic glue for constructing ubicomp systems that 
integrate sensing (input from sensors such as phidgets, motes, and d.tools boards), actuation (of 

physical actuators including X10 modules, output to Internet applications, etc.).  ECT uses a visual 
graph-based editor to allow runtime interconnection of modules. The underlying EQUIP instances can 

support multimachine and distributed configurations. Wiring offers a high-level language based on 
the popular open-source visualization language Processing (Fry and Reas, 2001). Similar dataflow-like 

graphing metaphors are also exploited in Max/MSP (Zicarelli, 1997), a commercial system used by 
artists and designers to create interactive installations. Max uses a powerful graphical wiring 

metaphor (an interesting and flexible design in its own right) for connecting  input and output 
components with channels that communicate messages. PureData (Puckette, 1996) and jMax (Cecco 

et al., 2008) are open-source derivatives of Max. Extensions to these (e.g., Digital Image Processing 

with Sound for jMax) allow real-time processing and transformation of video suitable for use in video-
based installations and art pieces. 

The Context Toolkit (Salber et al., 1999), Java Context-Awareness Framework (Bardram, 2005), 
and Context Aware Toolkit (CAT) (Prideau, 2002) allow sensors of context to be decoupled from 

higher level context reasoning in applications. Whereas the Context Toolkit and JCAF support 
ubicomp applications based on the integration of distributed context sensors,  CAT does a similar job 

for embedded wearable devices. 
Topiary (Li et al., 2007) and MyExperience (Froehlich, 2009) use context in  a mobile 

environment to trigger interactions with the user. However, the aim of the two systems is quite 
different: Topiary’s focus is low-fidelity contextual presentation of interactive design sketches to the 

user, whereas MyExperience is designed to ask the user a contextually relevant set of questions to 
survey them in situ (a methodology known as the experience sampling method).  

 
2.6.2 Smart Room in a Box 

If your aim is to create a smart environment populated with multiple displays and interaction devices, 
then Stanford’s interactive workspaces  spin off iROS (Borchers et al., 2006) is available as open 
source. A meta-operating system for creating interactive rooms, iROS includes  a set of core 
middleware (Event Heap, DataHeap, iCrafter) for unifying machines and displays together to form 
larger interactive surfaces. The MeetingMachine (Barton et al., 2003; Barton, 2003) repackages iROS 
to create a shared networked appliance supporting the exchange, discussion, and collation of 
electronic documents in a meeting setting. Radically different approaches are taken by Plan B 
(Ballesteros et al., 2008), where smart environments are built on the Bell Labs Plan 9 operating 



 

system (Pike et al., 2003) and PCOM (Rothermel et al., 2006), a peer-to-peer component middleware 
for constructing pervasive applications. 

 
2.6.3 Public Domain Toolkits 

There are many useful libraries that can provide solutions to well-known algorithmic or integration 
problems, for example, integrating computer vision or detecting human activities. 
 
2.6.3.1 Vision and Augmented Reality 
A very common requirement is to integrate computer vision systems. OpenCV (OpenCV, 2009) 

provides over 500 algorithms for real-time vision processing. CANTag (DTG Research Group, 2005) 
supports the tracking of fiducial tags including their orientation and rotation, enabling a range of 

possible interaction gestures. Using a similar technique, the popular augmented and mixed-reality 
ARToolkit (Lamb et al., 2007) has been used to great effect for overlaying 3-D graphics onto similar 

fiducials. Building on this, the Designers Augmented Reality Toolkit (Macintyre et al., 2005) integrates 
this into an experience design environment based on Macromedia Director, simplifying augmented 

reality experience design. 
 

2.6.3.2 Sensing 
Ubicomp systems are often required to interpret sensor data to identify user interactions or human 

activities. Weka (Frank et al., 2008) is a collection of machine learning algorithms for preprocessing, 
classification, processing, and visualizing of data. Sensor networks increasingly underlie many 

ubicomp installations, particularly in the healthcare and emergency services domains. For example, 
DexterNet (Kuryloski et al., 2008) is an open framework for integrating wearable sensors for medical 

applications. It provides support for communicating with medical sensors (e.g., ECG), network 
support for communicating readings from the device, and a higher layer toolkit called SPINE 

(Giannantonio et al., 2008; Gravina et al., 2008), which helps simplify code development for 

embedded wearable sensors and deployment on arrays of sensor nodes. 
 

2.6.3.3 Hardware 
Many of the toolkits described above have been adapted to allow the integration of commodity 

hardware and tangible prototyping tools. Common ones include 
 Wireless sensor nodes such as Motes (Crossbow, 2008), SunSpots (Sun Microsystems 

Laboratories, 2004), jStamps (Systronix, 2009), and μParts (Beigl et al., 2005) 
 Interface prototyping boards such as the popular Phidgets (Phidgets, 2009), Arduino (Arduino, 

2009), and d.tools (Hartmann et al., 2006) kits 

 Wearable sensor boards for medical applications, for example, Harvard’s CodeBlue (Welsh et 
al., 2008) and University of Alabama in Huntsville’s Wearable Health Monitoring Systems 
(WHMS) (Otto et al., 2008) 

 
Most of these have active communities developing tutorial materials  and examples. 

 
2.6.4 Datasets 

A positive side effect of the standardization of some of these components  (particularly sensor 
platforms) is that it becomes possible to repeat experiments  and validate other people’s findings. 

Datasets from such platforms are being increasingly collected online and are often open to 
contributions from other researchers. Examples of useful datasets already in the public  domain 

include: 
1. MIT’s House_n PlaceLab (Intille et al., 2006) includes traces of human activity that have been used 

by the community to develop activity detection algorithms. 



 

2. Intel’s Place Lab (Hightower et al., 2006; Lamarca et al., 2005) provides  a freely available system 
for mobile localization, together with contributed location traces, which have been used to look 

at destination prediction, context-aware assistive technologies, and privacy. 3. Dartmouth’s 
CRAWDAD (Kotz and Henderson, 2009) is a community archive of wireless network traces that 

have been used for a wide range of uses including developing improved MAC layer protocols  and 
location prediction. 

3. Berkeley’s Wearable Action Recognition Database (Yang et al., 2008)  and WHMS (Otto et al., 
2008) activity traces for developing human action recognition systems based on wearable motion 
sensors. 

 
The appearance and growth of initiatives such as these can help us  collectively identify and solve 

common systems problems in ubicomp, enabling the field to move forward more rapidly.  
 

2.6.5 Summary 
Prototyping your ideas using available prototyping and smart room tools  is a laudable approach for 

exploring the ubicomp design space and soliciting feedback. These types of tools help us commodify 
ubicomp systems, simplifying rapid creation of prototypes and broadening ubicomp experience.  

Ubicomp systems researchers are to be encouraged to use, refine, contribute to these initiatives, and 
start new ones as needed, to continue the technological dialogue that helps support our community. 

Exploiting and contributing new tools and datasets in the public domain can only serve to stimulate 
further research activity and promote increased adoption of scientific practices such as repeatability 

and comparison. 
 

2.7 CONCLUSION 
Systems research is central to ubicomp research and provides the fundamental building blocks for 

moving the field forward in terms of new applications and user experiences. As a research field, 

ubicomp must continue to build and evaluate systems components that ease the design, 
implementation, deployment, and maintenance of real-world ubicomp applications. 

This chapter has outlined the special challenges pertaining to ubicomp  systems and applications, 
including issues of designing systems that have to run in resource-constrained, volatile, and 

heterogeneous execution environments. But, in addition to these technical challenges to ubicomp  
systems design, the chapter has also tried to highlight that the special characteristics  of ubicomp 

applications force systems researchers to address  a whole new set of systems challenges, including 
the need to design for fluctuating environments and circumstances, and invisible computing. To a 

large degree, the assumptions that contemporary personal and clientserver computing relies on, 
breaks down in a ubicomp environment. 

The chapter then moved on to discuss how to create ubicomp systems, putting emphasis on the 
experimental nature of systems design and implementation. Advice on how to implement and deploy 

ubicomp systems was given with reference to concrete ubicomp technologies and projects. Special 
emphasis was placed on evaluating and documenting ubicomp systems research; it is essential for 

the research community that ubicomp systems research is properly evaluated and documented in 
order to move the field forward. Evaluation of ubicomp systems is far from easy, and the chapter 
offers advice on how to conduct evaluation under specific conditions, including the use of simulation, 
proof-of-concepts, end user application building and evaluation, and technology releases to the 
research community. Similar advice is offered on how to document ubicomp systems  research, both 
technically and scientifically.  
With this chapter, we hope that researchers are motivated to engage in creating systems support for 
the ubicomp application area and, with the chapter in hand, have some specific pointers and tools for 



 

engaging in this research. After all, the ubicomp systems research field is still in its infancy,  and there 
is ample space for new exciting systems innovations. 
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