
PART F 



CURVE F 

Data is often given for discrete values along a continuum. However, you may require 
estimates at points between the discrete values. The present part of this book describes 
techniques to fit curves to such data to obtain intermediate estimates. In addition, you may 
require a simplified version of a complicated function. One way to do this is to compute 
values of the function at a number of discrete values along the range of interest. Then, a 
simpler function may be derived to fit these values. Both of these applications are known 
as curve fitting. 

There are two general approaches for curve fitting that are distinguished from each 
other on the basis of the amount of error associated with the data. First, where the data ex- 
hibits a significant degree of error or "noise," the strategy is to derive a single curve that 
represents the general trend of the data. Because any individual data point may be incor- 
rect, we make no effort to intersect every point. Rather, the curve is designed to follow the 
pattern of the points taken as a group. One approach of this nature is called least-squares 
regression (Fig. PT5. la). 

Second, where the data is known to be very precise, the basic approach is to fit a curve 
or a series of curves that pass directly through each of the points. Such data usually origi- 
nates from tables. Examples are values for the density of water or for the heat capacity of 
gases as a function of temperature. The estimation of values between well-known discrete 
points is called interpolation (Fig. PT5.1 b and c). 

BT5.1 . I  Noncornputer Methods for Curve Fining 

The simplest method for fitting a curve to data is to plot the points and then sketch a line 
that visually conforms to the data. Although this is a valid option when quick estimates are 
required, the results are dependent on the subjective viewpoint of the person sketching the 
curve. 

For example, Fig. PT5.1 shows sketches developed from the same set of data by three 
engineers. The first did not attempt to connect the points, but rather, characterized the gen- 
eral upward trend of the data with a straight line (Fig. PT5.la). The second engineer used 
straight-line segments or linear interpolation to connect the points (Fig. PT5.lb). This is a 
very common practice in engineering. If the values are truly close to being linear or are 
spaced closely, such an approximation provides estimates that are adequate for many engi- 
neering calculations. However, where the underlying relationship is highly curvilinear or 
the data is widely spaced, significant errors can be introduced by such linear interpolation. 
The third engineer used curves to try to capture the meanderings suggested by the data 
(Fig. PT5.lc). A fourth or fifth engineer would likely develop alternative fits. Obviously, 
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FIGURE BT5.1 
Three attempts to fit a "best" curve through five data points. [a) Least-squares regression, 
(b] linear interpolation, and (c)  curvilinear interpolation. 

our goal here is to develop systematic and objective methods for the purpose of deriving 
such curves. 

PT5.1.2 Curve Fining and Engineering Practice 

Your first exposure to curve fitting may have been to determine intermediate values from 
tabulated data-for instance, from interest tables for engineering economics or from steam 
tables for thermodynamics. Throughout the remainder of your career, you will have fre- 
quent occasion to estimate intermediate values from such tables. 

Although many of the widely used engineering properties have been tabulated, there 
are a great many more that are not available in this convenient form. Special cases and new 
problem contexts often require that you measure your own data and develop your own pre- 
dictive relationships. Two types of applications are generally encountered when fitting 
experimental data: trend analysis and hypothesis testing. 
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Trend analysis represents the process of using the pattern of the data to make predic- 
tions. For cases where the data is measured with high precision, you might utilize interpo- 
lating polynomials. Imprecise data is often analyzed with least-squares regression. 

Trend analysis may be used to predict or forecast values of the dependent variable. 
This can involve extrapolation beyond the limits of the observed data or interpolation 
within the range of the data. All fields of engineering commonly involve problems of this 

type. 
A second engineering application of experimental curve fitting is hypothesis testing. 

Here, an existing mathematical model is compared with measured data. If the model coef- 
ficients are unknown, it may be necessary to determine values that best fit the observed 
data. On the other hand, if estimates of the model coefficients are already available, it may 
be appropriate to compare predicted values of the model with observed values to test the 
adequacy of the model. Often, alternative models are compared and the "best" selected on 
the basis of empirical observations. 

In addition to the above engineering applications, curve fitting is important in other 
numerical methods such as integration and the approximate solution of differential equa- 
tions. Finally, curve-fitting techniques can be used to derive simple functions to approxi- 
mate complicated functions. 

PT5.2 MATHEMATICAL BACKGROUND 

The prerequisite mathematical background for interpolation is found in the material on 
Taylor series expansions and finite divided differences introduced in Chap. 4. Least- 
squares regression requires additional information from the field of statistics. If you are fa- 
miliar with the concepts of the mean, standard deviation, residual sum of the squares, nor- 
mal distribution, and confidence intervals, feel free to skip the following pages and proceed 
directly to PT5.3. If you are unfamiliar with these concepts or are in need of a review, the 
following material is designed as a brief introduction to these topics. 

PT5.2.1 Simple Statistics 

Suppose that in the course of an engineering study, several measurements were made of a 
particular quantity. For example, Table PT5.1 contains 24 readings of the coefficient of 
thermal expansion of a structural steel. Taken at face value, the data provides a limited 
amount of information-that is, that the values range from a minimum of 6.395 to a maxi- 
mum of 6.775. Additional insight can be gained by summarizing the data in one or more 
well-chosen statistics that convey as much information as possible about specific charac- 
teristics of the data set. These descriptive statistics are most often selected to represent 

TABLE PT5.1 Measurements of the coefficient of thermal expansion of structural steel 
[ x  1 0-6 in/(in . O F ) ]  

6.495 6.595 6.615 6.635 6.485 6.555 
6.665 6.505 6.435 6.625 6.71 5 6 655 
6.755 6 625 6.71 5 6.575 6.655 6.605 
6 565 6.5 15 6 555 6.395 6.775 6.685 
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(1) the location of the center of the distribution of the data and (2) the degree of spread of 
the data set. 

The most common location statistic is the arithmetic mean. The arithmetic mean (7) 
of a sample is defined as the sum of the individual data points (y,) divided by the number 
of points (n), or 

where the summation (and all the succeeding summations in this introduction) is from 
i = 1 through n. 

The most common measure of spread for a sample is the standard deviation (s,) about 
the mean, 

where St is the total sum of the squares of the residuals between the data points and the 
mean, or 

Thus, if the individual measurements are spread out widely around the mean, St (and, con- 
sequently, s,) will be large. If they are grouped tightly, the standard deviation will be small. 
The spread can also be represented by the square of the standard deviation, which is called 
the variance: 

Note that the denominator in both Eqs. (PT5.2) and (PT5.4) is n - 1. The quantity n - 1 
is referred to as the degrees of freedom. Hence St and s, are said to be based on n - 1 de- 
grees of freedom. This nomenclature derives from the fact that the sum of the quantities 
upon which S, is based (that is, j - yl ,  j - y2, . . . , j - yn)  is zero. Consequently, if j is 
known and n - 1 of the values are specified, the remaining value is fixed. Thus, only 
n - 1 of the values are said to be freely determined. Another justification for dividing by 
n - 1 is the fact that there is no such thing as the spread of a single data point. For the case 
where n = 1, Eqs. (PT5.2) and (PT5.4) yield a meaningless result of infinity. 

It should be noted that an alternative, more convenient formula is available to compute 
the standard deviation, 

This version does not require precomputation of j and yields an identical result as 
Eq. (PT5.4). 
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A final statistic that has utility in quantifying the spread of data is the coefficient of 
variation (c.v.). This statistic is the ratio of the standard deviation to the mean. As such, it 
provides a normalized measure of the spread. It is often multiplied by 100 so that it can be 
expressed in the form of a percent: 

Notice that the coefficient of variation is similar in spirit to the percent relative error (E,) 

discussed in Sec. 3.3. That is, it is the ratio of a measure of error (s,) to an estimate of the 
true value ( j ) .  

EXAMPLE PT5.1 Simple Statistics of a Sample 

Problem Statement. Compute the mean, variance, standard deviation, and coefficient 
of variation for the data in Table PT5.1. 

TABLE PT5.2 Computations for statistics for the readings of the coefficient of thermal 
expansion. The frequencies and bounds are developed to construct the 
histogram in Fig. PT5.2. 

Lower Upper 
i Yi (X - Hz Frequency Bound Bound 

1 6.395 0.042025 1 6.36 6.40 
2 6.435 0.027225 1 6.40 6 44 
3 6.485 0.01 3225 ) 
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Solution. The data is added (Table PT5.2) and the results are used to compute [Eq. 
(PT5.1)] 

As in Table PT5.2, the sum of the squares of the residuals is 0.217000, which can be used 
to compute the standard deviation [Eq. (PT5.2)]: 

the variance [Eq. (PT5 .4)] : 

and the coefficient of variation [Eq. (PT5.5)]: 

0.097133 
C.V. = 100% = 1.47% 

6.6 

PT5.2,2 The Normal Distribution 

Another characteristic that bears on the present discussion is the data distribution-that is, 
the shape with which the data is spread around the mean. A histogram provides a simple vi- 
sual representation of the distribution. As in Table PT5.2, the histogram is constructed by 
sorting the measurements into intervals. The units of measurement are plotted on the ab- 
scissa and the frequency of occurrence of each interval is plotted on the ordinate. Thus, five 
of the measurements fall between 6.60 and 6.64. As in Fig. PT5.2, the histogram suggests 
that most of the data is grouped close to the mean value of 6.6. 

If we have a very large set of data, the histogram often can be approximated by a 
smooth curve. The symmetric, bell-shaped curve superimposed on Fig. PT5.2 is one such 
characteristic shape-the normal distribution. Given enough additional measurements, the 
histogram for this particular case could eventually approach the normal distribution. 

The concepts of the mean, standard deviation, residual sum of the squares, and normal 
distribution all have great relevance to engineering practice. A very simple example is their 
use to quantify the confidence that can be ascribed to a particular measurement. If a quan- 
tity is normally distributed, the range defined by j - s, to j + s, will encompass approx- 
imately 68 percent of the total measurements. Similarly, the range defined by j - 2s, to 
j + 2s, will encompass approximately 95 percent. 

For example, for the data in Table PT5.1 ( j = 6.6 and s, = 0.097 133), we can make the 
statement that approximately 95 percent of the readings should fall between 6.405734 and 
6.794266. If someone told us that they had measured a value of 7.35, we would suspect that 
the measurement might be erroneous. The following section elaborates on such evaluations. 

PT5.2.3 Estimation of Confidence Intervals 

As should be clear from the previous sections, one of the primary aims of statistics is to es- 
timate the properties of apopulation based on a limited sample drawn from that population. 
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FIGURE PT5.2 
A histogram used to depict the distribution of data. As the number of data points increases, the 
histogram could approach the smooth, bell-shaped curve called the normal distribution. 

Clearly, it is impossible to measure the coefficient of thermal expansion for every piece of 
structural steel that has ever been produced. Consequently, as in Tables PT5.1 and PT5.2, 
we can randomly make a number of measurements and, on the basis of the sample, attempt 
to characterize the properties of the entire population. 

Because we "infer" properties of the unknown population from a limited sample, the 
endeavor is called statistical inference. Because the results are often reported as estimates 
of the population parameters, the process is also referred to as estimation. 

We have already shown how we estimate the central tendency (sample mean, Q) and 
spread (sample standard deviation and variance) of a limited sample. Now, we will briefly 
describe how we can attach probabilistic statements to the quality of these estimates. In 
particular, we will discuss how we can define a confidence interval around our estimate of 
the mean. We have chosen this particular topic because of its direct relevance to the re- 
gression models we will be describing in Chap. 17. 

Note that in the following discussion, the nomenclature Q and s, refer to the sample 
mean and standard deviation. The nomenclature p and o refer to the population mean and 
standard deviation. The former are sometimes referred to as the "estimated" mean and stan- 
dard deviation, whereas the latter are sometimes called the "true" mean and standard de- 
viation. 

An interval estimator gives the range of values within which the parameter is expected 
to lie with a given probability. Such intervals are described as being one-sided or two- 
sided. As the name implies, a one-sided interval expresses our confidence that the parame- 
ter estimate is less than or greater than the true value. In contrast, the two-sided interval 
deals with the more general proposition that the estimate agrees with the truth with no con- 
sideration to the sign of the discrepancy. Because it is more general, we will focus on the 
two-sided interval. 
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FIGURE PT5.3 
A two-sided confidence 
dom variable y. (b) is a 
of the mean and scales 

interval. The abscissa scale in (a) is written in the natural units of the ran- 
normalized version of the abscissa that places the origin at the location 
the axis so that the standard deviation corresponds to a unit value. 

A two-sided interval can be described by the statement 

which reads, "the probability that the true mean of y, p, falls within the bound from L to U 
is 1 - a." The quantity a! is called the significance level. So the problem of defining a con- 
fidence interval reduces to estimating L and U .  Although it is not absolutely necessary, it is 
customary to view the two-sided interval with the a probability distributed evenly as a/2 
in each tail of the distribution, as in Fig. PT5.3. 

If the true variance of the distribution of y,  a2, is known (which is not usually the case), 
statistical theory states that the sample mean j comes from a normal distribution with 
mean p and variance a2/n (Box PT5.1). In the case illustrated in Fig. PT5.3, we really do 
not know p. Therefore, we do not know where the normal curve is exactly located with re- 
spect to j .  To circumvent this dilemma, we compute a new quantity, the standard normal 
estimate 

which represents the normalized distance between j and p. According to statistical theory, 
this quantity should be normally distributed with a mean of 0 and a variance of a2/n. 
Furthermore, the probability that Z would fall within the unshaded region of Fig. PT5.3 
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Box PT5.1 A Little Statistics 

Most engineers take several courses to become proficient at statis- There is an extremely important theorem known as the Central 
tics. Because you may not have taken such a course yet, we'd like Limit Theorem that speaks directly to this question. It can be stated 
to mention a few ideas that might make this present section more as 
coherent. 

As we have stated, the "game" of inferential statistics assumes 
that the random variable you are sampling, y, has a true mean (p)  
and variance (a2). Further, in the present discussion, we also as- 
sume that it has a particular distribution: the normal distribution. 
The variance of this normal distribution has a finite value that spec- 
ifies the "spread" of the normal distribution. If the variance is large, 
the distribution is broad. Conversely, if the variance is small, the 
distribution is narrow. Thus, the true variance quantifies the intrin- 
sic uncertainty of the random variable. 

In the game of statistics, we take a limited number of measure- 
ments of this quantity called a sample. From this sample, we can 
compute an estimated mean ( j )  and variance (s:). The more mea- 
surements we take, the better the estimates approximate the true 
values. That is, as n -+ oo, j + p and s; + a2. 

Suppose that we take n samples and compute an estimated mean 
I;,. Then, we take another n samples and compute another, jn .  We 
can keep repeating this process until we have generated a sample of 
means: jl, j2, j3, . . . , jmr where m is large. We can then develop 
a histogram of these means and determine a "distribution of the 
means," as well as a "mean of the means" and a "standard deviation 
of the means." Now the question arises: does this new distribution 
of means and its statistics behave in a predictable fashion? 

Let y,, y,, . . . , y, be a random sample of size n from a distribu- 
tion with mean p and variance a2. Then, for large n, I; is approxi- 
mately normal with mean p and variance a2/n. Furthermore, for 
large n, the random 1,ariable ( j  - ,u)/(a/,h) is approximately 
standard normal. 

Thus, the theorem states the remarkable result that the distribu- 
tion of means will always be normally distributed regardless of the 
underlying distribution of the random variables! It also yields the 
expected result that given a sufficiently large sample, the mean of 
the means should converge on the true population mean ,u. 

Further, the theorem says that as the sample size gets larger, the 
variance of the means should approach zero. This makes sense, be- 
cause if n is small, our individual estimates of the mean should be 
poor and the variance of the means should be large. As n increases, 
our estimates of the mean will improve and hence their spread 
should shrink. The Central Limit Theorem neatly defines exactly 
how this shrinkage relates to both the true variance and the sample 
size, i.e., as a2/n. 

Finally, the theorem states the important result that we have 
given as Eq. (PT5.6). As is shown in this section, this result is the 
basis for constructing confidence intervals for the mean. 

should be 1 - a. Therefore, the statement can be made that 

with a probability of a. 
The quantity z,,, is a standard normal random variable. This is the distance measured 

along the normalized axis above and below the mean that encompasses 1 - a probability 
(Fig. PT5.3b). Values of z,,, are tabulated in statistics books (e.g., Milton and Arnold 
1995). They can also be calculated using functions on software packages and libraries like 
Excel and IMSL. As an example, for a = 0.05 (in other words, defining an interval en- 
compassing 95%), z ~ , ~  is equal to about 1.96. This means that an interval around the mean 
of width f 1.96 times the standard deviation will encompass approximately 95% of the 
distribution. 

These results can be rearranged to yield 
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FSGURE BT5.4 
Comparison of the normal distribution with the t distribution for n = 3 and n = 6. Notice how 
the t distribution is generally flatter. 

with a probability of 1 - a,  where 

Now, although the foregoing provides an estimate of L and U ,  it is based on knowledge 
of the true variance o. For our case, we know only the estimated variance s,. A straightfor- 
ward alternative would be to develop a version of Eq. (PT5.6) based on s,, 

Even when we sample from a normal distribution, this fraction will not be normally 
distributed, particularly when i z  is small. It was found by W.S. Gossett that the random vari- 
able defined by Eq. (PT5.8) follows the so-called Student-t, or simply, t distribution. For 
this case, 

where tcl,2,n-l is the standard random variable for the t distribution for a probability of a /2 .  
As was the case for z,,,, values are tabulated in statistics books, and can also be calculated 
using software packages and libraries. For example, if a = 0.05 and n = 20, 
ta12,n-l = 2.086. 

The t distribution can be thought of as a modification of the normal distribution that 
accounts for the fact that we have an imperfect estimate of the standard deviation. When 
n is small, it tends to be flatter than the normal (see Fig. PT5.4). Therefore, for small 
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numbers of measurements, it yields wider and hence more conservative confidence inter- 
vals. As n grows larger, the t distribution converges on the normal. 

EXAMPLE PT5.2 Confidence Interval on the Mean 

i Problem Statement. Determine the mean and the corresponding 95% confidence inter- 

1 val for the data from Table PT5.1. Perform three estimates based on (a )  the first 8, (h) the 
1 first 16, and ( c )  all 24 measurements. ! 
! Solution. (a)  The mean and standard deviation for the first 8 points is 
I 

1 The appropriate t statistic can be calculated as 
i 

which can be used to compute the interval i 

1 Thus, based on the first eight measurements, we conclude that there is a 95% probability 
I that the true mean falls within the range 6.5148 to 6.6652. i 
i 

FIGURE PT5.5 
1 Estimates of the mean and 95% confidence intervals for different numbers of sample size 
I 
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i The two other cases for (b) 16 points and (c) 24 points can be calculated in a similar 
fashion and the results tabulated along with case (a)  as 

These results, which are also summarized in Fig. PT5.5, indicate the expected outcome that 
the confidence interval becomes more narrow as n increases. Thus, the more measurements 
we take, our estimate of the true value becomes more refined. 

The above is just one simple example of how statistics can be used to make judgments 
regarding uncertain data. These concepts will also have direct relevance to our discussion 
of regression models. You can consult any basic statistics book (for example, Milton and 
Arnold, 1995) to obtain additional information on the subject. 

Before we proceed to numerical methods for curve fitting, some orientation might be help- 
ful. The following is intended as an overview of the material discussed in Part Five. In ad- 
dition, we have formulated some objectives to help focus your efforts when studying the 
material. 

PT5.3.1 Scope and Preview 

Figure PT5.5 provides a visual overview of the material to be covered in Part Five. Chap- 
ter 17 is devoted to least-squares regression. We will first learn how to fit the "best" 
straight line through a set of uncertain data points. This technique is called linear regres- 
sion. Besides discussing how to calculate the slope and intercept of this straight line, we 
also present quantitative and visual methods for evaluating the validity of the results. 

In addition to fitting a straight line, we also present a general technique for fitting a 
"best" polynomial. Thus, you will learn to derive a parabolic, cubic, or higher-order poly- 
nomial that optimally fits uncertain data. Linear regression is a subset of this more general 
approach, which is called polynomial regression. 

The next topic covered in Chap. 17 is multiple linear regression. It is designed for the 
case where the dependent variable y is a linear function of two or more independent vari- 
ables x,, x,, . . . , x,. This approach has special utility for evaluating experimental data 
where the variable of interest is dependent on a number of different factors. 

After multiple regression, we illustrate how polynomial and multiple regression are 
both subsets of a general linear least-squares model. Among other things, this will allow 
us to introduce a concise matrix representation of regression and discuss its general statis- 
tical properties. 

Finally, the last sections of Chap. 17 are devoted to nonlinear regression. This ap- 
proach is designed to compute a least-squares fit of a nonlinear equation to data. 
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FIGURE PT5.6 
Schematic of the organization of the material in Part Five: Curve Fitting 

In Chap. 18, the alternative curve-fitting technique called interpolatiorl is described. 
As discussed previously, interpolation is used for estimating intermediate values between 
precise data points. In Chap. 18, polynomials are derived for this purpose. We introduce the 
basic concept of polynomial interpolation by using straight lines and parabolas to connect 
points. Then, we develop a generalized procedure for fitting an nth-order polynomial. Two 
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formats are presented for expressing these polynomials in equation form. The first, called 
Newton's interpolating polynomial, is preferable when the appropriate order of the polyno- 
mial is unknown. The second, called the Lagrange interpolating polynomial, has advan- 
tages when the proper order is known beforehand. 

The last section of Chap. 18 presents an alternative technique for fitting precise data 
points. This technique, called spline interpolation, fits polynomials to data but in a 
piecewise fashion. As such, it is particularly well-suited for fitting data that is generally 
smooth but exhibits abrupt local changes. 

Chapter 19 deals with the Fourier transform approach to curve fitting where periodic 
functions are fit to data. Our emphasis in this section will be on thefast Fourier transform. 
At the end of this chapter, we also include an overview of several software packages and li- 
braries that can be used for curve fitting. These are Mathcad, Excel, MATLAB, and IMSL. 

Chapter 20 is devoted to engineering applications that illustrate the utility of the nu- 
merical methods in engineering problem contexts. Examples are drawn from the four 
major specialty areas of chemical, civil, electrical, and mechanical engineering. In addi- 
tion, some of the applications illustrate how software packages can be applied for engi- 
neering problem solving. 

Finally, an epilogue is included at the end of Part Five. It contains a summary of the 
important formulas and concepts related to curve fitting as well as a discussion of trade- 
offs among the techniques and suggestions for future study. 

PT5,3.2 Goals and Objectives 

Study Objectives. After completing Part Five, you should have greatly enhanced your 
capability to fit curves to data. In general, you should have mastered the techniques, have 
learned to assess the reliability of the answers, and be capable of choosing the preferred 
method (or methods) for any particular problem. In addition to these general goals, the spe- 
cific concepts in Table PT5.3 should be assimilated and mastered. 

Computer Objectives. You have been provided with software and simple computer al- 
gorithms to implement the techniques discussed in Part Five. You may also have access to 
software packages and libraries. All have utility as learning tools. 

The Numerical Methods TOOLKIT software includes polynomial regression. The 
graphics associated with this software will enable you to easily visualize your problem and 
the associated mathematical operations. The graphics are a critical part of your assessment 
of the validity of a regression fit. They also provide guidance regarding the proper order of 
polynomial regression and the potential dangers of extrapolation. The software is very easy 
to apply to solve practical problems and can be used to check the results of any computer 
programs you may develop yourself. 

In addition, pseudocode algorithms are provided for most of the other methods in Part 
Five. This information will allow you to expand your software library to include techniques 
beyond polynomial regression. For example, you may find it useful from a professional 
viewpoint to have software to implement multiple linear regression, Newton's interpolat- 
ing polynomial, cubic spline interpolation, and the fast Fourier transform. 

Finally, one of your most important goals should be to master several of the general- 
purpose software packages that are widely available. In particular, you should become 
adept at using these tools to impiement numerical methods for engineering problem 
solving. 
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1 . Understand the fundamental difference between regression and interpolation and realize why confus~ng 
the two could lead to serious problems 

2. Understand the derivation of linear least-squares regression and be able to assess the reliabilih/ of the f i t  

using graphical and quantitative assessments 
3.  Know how to linearize data by transformation 
4 Understand situat~ons where polynomial, multiple, and nonlinear regression are appropriate 
5 .  Be able to recognize general linear models, understand the general matrix formulation of linear east 

squares, and know how to compute confidence intervals for parameters 
6. Understand that there is one and only one polynomial of degree n or less that passes exactly through 

n + 1 points 
7. Know how to derive the first-order Newton's interpolating polynomial 
8 .  Understand the analogy between Newton's polynomial and the Taylor series expansion and how it  re- 

lates to the truncation error 
9 Recognize that the Newton and lagrange equations are merely d~fferent formulations of the same nter- 

polating polynomial and understand their respective advantages and disadvantages 
10. Realize that more accurate results are generally obtained if data used for interpolation is centered 

around and close to the unknown paint 
1 1 .  Realize that data points do not have to be equally spaced nor in any particular order for either the 

Newton or lagrange polynomials 
12. Know why equispoced interpolation formulas have utility 
13. Recognize the liabilities and risks associated with extrapolation 
14. Understand why spline functions have utility for data with local areas of abrupt change 
15 Recognize how the Fourier series is used to fit data w~th periodic functions 
16. Understand the difference between the frequency and time domains 



CHAPTER 
Least-Squares Regression 

Where substantial error is associated with data, polynomial interpolation is inappropriate 
and may yield unsatisfactory results when used to predict intermediate values. Experimen- 
tal data is often of this type. For example, Fig. 1 7 . 1 ~  shows seven experimentally derived 
data points exhibiting significant variability. Visual inspection of the data suggests a posi- 
tive relationship between y and x. That is, the overall trend indicates that higher values of y 
are associated with higher values of x. Now, if a sixth-order interpolating polynomial is fit- 
ted to this data (Fig. 17.lb), it will pass exactly through all of the points. However, because 
of the variability in the data, the curve oscillates widely in the interval between the points. 
In particular, the interpolated values at x = 1.5 and x = 6.5 appear to be well beyond the 
range suggested by the data. 

A more appropriate strategy for such cases is to derive an approximating function that 
fits the shape or general trend of the data without necessarily matching the individual 
points. Figure 1 7 . 1 ~  illustrates how a straight line can be used to generally characterize the 
trend of the data without passing through any particular point. 

One way to determine the line in Fig. 1 7 . 1 ~  is to visually inspect the plotted data and 
then sketch a "best" line through the points. Although such "eyeball" approaches have 
commonsense appeal and are valid for "back-of-the-envelope" calculations, they are defi- 
cient because they are arbitrary. That is, unless the points define a perfect straight line (in 
which case, interpolation would be appropriate), different analysts would draw different 
lines. 

To remove this subjectivity, some criterion must be devised to establish a basis for the 
fit. One way to do this is to derive a curve that minimizes the discrepancy between the data 
points and the curve. A technique for accomplishing this objective, called least-squares re- 
gression, will be discussed in the present chapter. 

1 7.1 LINEAR REGRESSION 

The simplest example of a least-squares approximation is fitting a straight line to a set of 
paired observations: (xl, yl), (xz, y2), . . . , (x,, y,). The mathematical expression for the 
straight line is 
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FIGURE 1 7.1 
[a) Data exhibiting si nificant 
error. [b) Polynomial i t  oscillat- 
ing beyond the ran e of the 7 data. (c) More satis actory result 
using the least-squares fit. 

where a0 and a1 are coefficients representing the intercept and the slope, respectively, and 
e is the error, or residual, between the model and the observations, which can be repre- 
sented by rearranging Eq. (17.1) as 

e = y - a0 - alx 

Thus, the error, or residual, is the discrepancy between the true value of y and the approx- 
imate value, a0 + alx, predicted by the linear equation. 
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1 7.1.1 Criteria for a "Best" Fit 

One strategy for fitting a "best?" line through the data would be to minimize the sum of the 
residual errors for all the available data, as in 

where n = total number of points. However, this is an inadequate criterion, as illustrated 
by Fig. 1 7 . 2 ~  which depicts the fit of a straight line to two points. Obviously, the best fit is 

FIGURE 17.2 
Examples of some criteria for "best fit" that are inadequate for regression: (a] minimizes the sum 
of the residuals, (b) minimizes the sum of the absolute values of the residuals, and [c)  minimizes 
the maximum error of any individual point. 



1 7.1 LINEAR REGRESSION 44 1 

the line connecting the points. However, any straight line passing through the midpoint 
of the connecting line (except a perfectly vertical line) results in a minimum value of 
Eq. (17.2) equal to zero because the errors cancel. 

Therefore, another logical criterion might be to minimize the sum of the absolute val- 
ues of the discrepancies, as in 

Figure 17.2h demonstrates why this criterion is also inadequate. For the four points shown, 
any straight line falling within the dashed lines will minimize the absolute value of the 
sum. Thus, this criterion also does not yield a unique best fit. 

A third strategy for fitting a best line is the minimax criterion. In this technique, the line 
is chosen that minimizes the maximum distance that an individual point falls from the line. 
As depicted in Fig. 17.2c, this strategy is ill-suited for regression because it gives undue in- 
fluence to an outlier, that is, a single point with a large error. It should be noted that the min- 
imax principle is sometimes well-suited for fitting a simple function to a complicated func- 
tion (Carnahan, Luther, and Wilkes, 1969). 

A strategy that overcomes the shortcomings of the aforementioned approaches is to 
minimize the sum of the squares of the residuals between the measured y and the y calcu- 
lated with the linear model 

This criterion has a number of advantages, including the fact that it yields a unique line for 
a given set of data. Before discussing these properties, we will present a technique for de- 
termining the values of ao and al that minimize Eq. (17.3). 

1 7.1.2 Least-Squares Fit of a Straight Line 

To determine values for a0 and a,, Eq. (17.3) is differentiated with respect to each coeffi- 
cient: 

as,. 
-- = -2  (y i  - ao - 
aao 

Note that we have simplified the summation symbols; unless otherwise indicated, all sum- 
mations are from i = 1 to n. Setting these derivatives equal to zero will result in a mini- 
mum S,. If this is done, the equations can be expressed as 
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Now, realizing that Xuo = nao, we can express the equations as a set of two simultaneous 
linear equations with two unknowns (ao and al):  

no0 + (C X i )  a1 = C yi 

These are called the normal equations. They can be solved simultaneously 

This result can then be used in conjunction with Eq. (17.4) to solve for 

where and X  are the means of y and x, respectively. 

EXAMPLE 17.1 Linear Regression 

Problem Statement. Fit a straight line to the x and y values in the first two columns of 
Table 17.1. 

Solution. The following quantities can be computed: 

n = 7  xin = 119.5 E x :  = 140 

28 
C x ; = 2 8  X = - = 4  

7 
24 

Y i  = 24 X = - = 3.428571 
7 

Using Eqs. (17.6) and (17.7), 

7(119.5) - 28(24) 
a1 = = 0.8392857 

7(140) - (28)2 

= 3.428571 - 0.8392857(4) = 0.07142857 

TABLE 17.1 Computations for an error analysis of the linear fit. 

xi ~i (n - rI2 (yi - cro - a ~ x i ) ~  

1 0.5 8.5765 0.1687 
2 2.5 0.8622 0.5625 
3 2.0 2.0408 0.3473 
4 4.0 0.3265 0.3265 
5 3.5 0.005 1 0.5896 
6 6.0 6 61 22 0.7972 
7 5.5 4.2908 0.1993 - 
C 24.0 22.71 43 2.991 1 
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1 Therefore, the least-squares fit is 

/ The line, along with the data, is shown in Fig 1 7 . 1 ~  

17.1.3 Quantification of Error of Linear Regression 

Any line other than the one computed in Example 17.1 results in a larger sum of the squares 
of the residuals. Thus, the line is unique and in terms of our chosen criterion is a "best" line 
through the points. A number of additional properties of this fit can be elucidated by ex- 
amining more closely the way in which residuals were computed. Recall that the sum of the 
squares is defined as [Eq. (17.3)] 

i=l i=l 

Notice the similarity between Eqs. (PT5.3) and (17.8). In the former case, the square 
of the residual represented the square of the discrepancy between the data and a single es- 
timate of the measure of central tendency-the mean. In Eq. (17.8), the square of the resid- 
ual represents the square of the vertical distance between the data and another measure of 
central tendency-the straight line (Fig. 17.3). 

The analogy can be extended further for cases where (1) the spread of the points 
around the line is of similar magnitude along the entire range of the data and (2) the dis- 
tribution of these points about the line is normal. It can be demonstrated that if these crite- 
ria are met, least-squares regression will provide the best (that is, the most likely) estimates 
of a0 and a1 (Draper and Smith, 1981). This is called the maximum likelihood principle in 

FlGURE 17.3 
The residual in linear regression represents the vertical distance between a data point and the 
straight line. 
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statistics. In addition, if these criteria are met, a "standard deviation" for the regression line 
can be determined as [compare with Eq. (PT5.2)] 

where s,!, is called the standard error of the estimate. The subscript notation "ylx" desig- 
nates that the error is for a predicted value of y corresponding to a particular value of x. 
Also, notice that we now divide by n - 2 because two data-derived estimates-ao and al- 
were used to compute S,; thus, we have lost two degrees of freedom. As with our discus- 
sion of the standard deviation in PT5.2.1, another justification for dividing by n - 2 is that 
there is no such thing as the "spread of data" around a straight line connecting two points. 
Thus, for the case where n = 2, Eq. (17.9) yields a meaningless result of infinity. 

Just as was the case with the standard deviation, the standard error of the estimate 
quantifies the spread of the data. However, s,!, quantifies the spread around the regression 
line as shown in Fig. 17.4b in contrast to the original standard deviation s, that quantified 
the spread around the mean (Fig. 17 .4~) .  

The above concepts can be used to quantify the "goodness" of our fit. This is particu- 
larly useful for comparison of several regressions (Fig. 17.5). To do this, we return to the 
original data and determine the total sum of the squares around the mean for the dependent 
variable (in our case, y). As was the case for Eq. (PT5.3), this quantity is designated St. This 
is the magnitude of the residual error associated with the dependent variable prior to re- 
gression. After performing the regression, we can compute S,., the sum of the squares of the 
residuals around the regression line. This characterizes the residual error that remains after 
the regression. It is, therefore, sometimes called the unexplained sum of the squares. The 

FIGURE 17.4 
Regression data showing [a) the spread of the data around the mean of the dependent variable 
and (b) the spread of the data around the best-f~t line. The reduction in the spread in going from 
[a) to [b], as ~ndicated by the bell-shaped curves at the right, represents the improvement due to 
linear regression. 
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FIGURE B 7.5 
Examples of lineor regression with [a] small and [b) large residual errors. 

difference between the two quantities, S, - S,, quantifies the improvement or error reduc- 
tion due to describing the data in terms of a straight line rather than as an average value. 
Because the magnitude of this quantity is scale-dependent, the difference is normalized to 
St to yield 

where r2 is called the coefficient of determination and r is the correlation coefficient 
(= fi). For a perfect fit, S, = 0 and r = r2 = 1 ,  signifying that the line explains 100 

percent of the variability of the data. For r = r2 = 0, S ,  = S,  and the fit represents no im- 
provement. An alternative formulation for r that is more convenient for computer imple- 
mentation is 
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EXAMPLE 17.2 Estimation of Errors for the Linear Least-Squares Fif 

Problem Statement. Compute the total standard deviation, the standard error of the 
estimate, and the correlation coefficient for the data in Example 17.1. 

Solution. The summations are performed and presented in Table 17.1. The standard 
1 deviation is [Eq. (PT5.2)I 

I and the standard error of the estimate is [Eq. (17.9)] i 

I Thus, because sY/, < s,, the linear regression model has merit. The extent of the improve- / ment is quantified by [Eq. (17. lo)] 

These results indicate that 86.8 percent of the original uncertainty has been explained by 
j the linear model. 
i 

Before proceeding to the computer program for linear regression, a word of caution is 
in order. Although the correlation coefficient provides a handy measure of goodness-of-fit, 
you should be careful not to ascribe more meaning to it than is warranted. Just because r is 
"close" to 1 does not mean that the fit is necessarily "good." For example, it is possible to 
obtain a relatively high value of r when the underlying relationship between y and x is not 
even linear. Draper and Smith (1981) provide guidance and additional material regarding 
assessment of results for linear regression. In addition, at the minimum, you should always 
inspect a plot of the data along with your regression curve. As described in the next section, 
the Numerical Methods TOOLKIT software includes such a capability. 

1 7.1.4 Computer Pmgram for Linear Regression 

It is a relatively trivial matter to develop a pseudocode for linear regression (Fig. 17.6). As 
mentioned above, a plotting option is critical to the effective use and interpretation of re- 
gression and is included in the supplementary Numerical Methods TOOLKIT software. In 
addition, popular software packages like Excel and Mathcad can implement regression and 
have plotting capabilities. If your computer language has plotting capabilities, we recom- 
mend that you expand your program to include a plot of y versus x showing both the data 
and the regression line. The inclusion of the capability will greatly enhance the utility of the 
program in problem-solving contexts. 
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SUB Regreslx, y, n, a/,  aO, syx, r 2 )  

sumx = 0: sumxy = 0 :  s t  = 0 
sumy = 0: sumx2 = 0 :  s r  = 0 
D O i =  I, n 

sumx = sumx + xi 
sumy = sumy + yi 
sumxy = sumxy + xi++yi 
sumx2 = sumx2 + xi++xi 

END DO 
xm = sumxln 
y m  = sumyln 
a l  = (nxsumxy - sumx++sumy)/(n*sumx2 - sumx*sumx) 
a 0  = y m  - al*xm 
D O i =  l , n  

s t  = s t  + (yi - ym)2 
s r  = s r  + (yi - aI*xi - a0)' 

END DO 
syx = ( s r / ( n  - 2))0.5 
r 2  = ( s t  - s r ) / s t  

END Regres 

FIGURE 17.6 
Algorithm for linear regression 

EXAMPLE 17.3 Linear Regression Using the Computer 

Problem Statement. A user-friendly computer program to implement linear regression 
is contained in the Numerical Methods TOOLKIT software package associated with this 
text. We can use this software to solve a hypothesis-testing problem associated with the 
falling parachutist discussed in Chap. 1. A theoretical mathematical model for the 
velocity of the parachutist was given as the following [Eq. (1.10)]: 

where v = velocity (m/s), g = gravitational constant (9.8 m/s2), m = mass of the para- 
chutist equal to 68.1 kg, and c = drag coefficient of 12.5 kg/s. The model predicts the ve- 
locity of the parachutist as a function of time, as described in Example 1.1. A plot of the 
velocity variation was developed in Example 2.1. 

An alternative empirical model for the velocity of the parachutist is given by 
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TABLE 17.2 Measured and calculated velocities for the falling parachutist. 

Measured v, Model-calculated v, Model-calculated v, 
m/s m/s [Eq. (1. lo)] m/s [Eq. (E 17.3.1 )] 

Time, s (4 (b) (4 

Suppose that you would like to test and compare the adequacy of these two mathe- 
matical models. This might be accomplished by measuring the actual velocity of the para- 
chutist at known values of time and comparing these results with the predicted velocities 
according to each model. 

Such an experimental-data-collection program was implemented, and the results are 
listed in column (a)  of Table 17.2. Computed velocities for each model are listed in 
columns (6)  and (c). 

Solution. The adequacy of the models can be tested by plotting the model-calculated 
velocity versus the measured velocity. Linear regression can be used to calculate the 
slope and the intercept of the plot. This line will have a slope of 1, an intercept of 0 ,  and 
an r2 = 1 if the rnodel matches the data perfectly. A significant deviation from these 
values can be used as an indication of the inadequacy of the model. 

Figure 17.7~ and b are plots of the line and data for the regressions of columns (b) and 
(c), respectively, versus column (a). For the first model [Eq. (1.10) as depicted in Fig. 
17.7~1, 

and for the second model [Eq. (E17.3.1) as depicted in Fig. 17.7b1, 

These plots indicate that the linear regression between the data and each of the models 
is highly significant. Both models match the data with a correlation coefficient of greater 
than 0.99. 

However, the model described by Eq. (1.10) conforms to our hypothesis test criteria 
much better than that described by Eq. (E17.3.1) because the slope and intercept are more 
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FIGURE 17.7 
[a) Results using linear regression to compare pred~ctions computed with the theoretical model 
[Eq. ( 1  . lo)] versus measured values. (b) Results using linear regression to compare predictions 
computed with the empirical model [Eq. (E  17.3.1 ] ]  versus measured values. 

nearly equal to 1 and 0. Thus, although each plot is well described by a straight line, 
Eq. (1.10) appears to be a better model than Eq. (E17.3.1). 

Model testing and selection are common and extremely important activities performed 
in all fields of engineering. The background material provided in this chapter, together with 
your software, should allow you to address many practical problems of this type. 

There is one shortcoming with the analysis in Example 17.3. The example was unam- 
biguous because the empirical model [Eq. (E17.3.1)] was clearly inferior to Eq. (1.10). 
Thus, the slope and intercept for the former were so much closer to the desired result of 1 
and 0, that it was obvious which model was superior. 
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However, suppose that the slope were 0.85 and the intercept were 2. Obviously this 
would make the conclusion that the slope and intercept were 1 and 0 open to debate. 
Clearly, rather than relying on a subjective judgment, it would be preferable to base such a 
conclusion on a quantitative criterion. 

This can be done by computing confidence intervals for the model parameters in the 
same way that we developed confidence intervals for the mean in Sec. PT5.2.3. We will re- 
turn to this topic at the end of this chapter. 

1 7.1.5 Linearization of Nonlinear Relationships 

Linear regression provides a powerful technique for fitting a "best" line to data. However, 
it is predicated on the fact that the relationship between the dependent and independent 
variables is linear. This is not always the case, and the first step in any regression analysis 
should be to plot and visually inspect the data to ascertain whether a linear model applies. 
For example, Fig. 17.8 shows some data that is obviously curvilinear. In some cases, tech- 
niques such as polynomial regression, which is described in Sec. 17.2, are appropriate. For 
others, transformations can be used to express the data in a form that is compatible with lin- 
ear regression. 

FIGURE 17.8 
[a) Data that is ill-suited for linear least-squares regression. lb) Indication that a parabola is 
preferable. 
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One example i s  the exponential model 

y = ul&''x 

where u1 and bl are constants. This model is used in many fields of engineering to charac- 
terize quantities that increase (positive hl) or decrease (negative b! )  at a rate that is directly 
proportional to their own magnitude. For example, populalio~l growth or radioactive decay 
can exhibit such behavior. As depicted in Fig. 17.9a, the equation represents a nonlinear re- 
lationship (for bl it 0) between y and x. 

Another example of a nonlinear model is the simple power equation 

y = u2xD2 (17.13) 

FlGURE 17.9 
[a) The exponential quui ion, [b) the power equation, and Ic) the saturntion-growth-rate 
equaticn. Parts Id), [e), and If) are Iineorixd versicns of these equations that result from simple 
transformations. 



452 LEAST-SQUARES REGRESSION 

where a2 and b2 are constant coefficients. This model has wide applicability in all fields of 
engineering. As depicted in Fig. 17.9b, the equation (for b2 # 0 or 1) is nonlinear. 

A third example of a nonlinear model is the saturation-growth-rate equation [recall 
Eq. (E17.3.1)] 

where a3 and b3 are constant coefficients. This model, which is particularly well-suited for 
characterizing population growth rate under limiting conditions, also represents a nonlin- 
ear relationship between y and x (Fig. 17.9~)  that levels off, or "saturates," as x increases. 

Nonlinear regression techniques are available to fit these equations to experimental 
data directly. (Note that we will discuss nonlinear regression in Sec. 17.5.) However, a sim- 
pler alternative is to use mathematical manipulations to transform the equations into a lin- 
ear form. Then, simple linear regression can be employed to fit the equations to data. 

For example, Eq. (17.12) can be linearized by taking its natural logarithm to yield 

But because In e = 1, 

In y = In a1 + blx 

Thus a plot of In y versus x will yield a straight line with a slope of bl and an intercept of 
In a1 (Fig. 17.9d). 

Equation (17.14) is linearized by taking its base-10 logarithm to give 

log y = b2 log x + log a2 (17.16) 

Thus, a plot of log y versus log x will yield a straight line with a slope of b2 and an inter- 
cept of log a2 (Fig. 17.9e). 

Equation (17.14) is linearized by inverting it to give 

Thus, a plot of l/y versus l/x will be linear, with a slope of b3/a3 and an intercept of l/a3 
(Fig. 17.9f ). 

In their transformed forms, these models are fit using linear regression in order to eval- 
uate the constant coefficients. They could then be transformed back to their original state 
and used for predictive purposes. Example 17.4 illustrates this procedure for Eq. (1 7.13). 
In addition, Sec. 20.1 provides an engineering example of the same sort of computation. 

EXAMPLE 17.4 Linearization of a Power Equation 

[ Problem Statement. Fit Eq. (17.13) to the data in Table 17.3 using a logarithmic trans- 
formation of the data. 

Solution. Figure 17.10a is a plot of the original data in its untransformed state. Fig- 
ure 17.10b shows the plot of the transformed data. A linear regression of the log- 
transformed data yields the result 

1 log y = 1.75 log x - 0.300 
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TABLE 17.3 Data to be fit to the power equation. 

X Y log x 

FlGURE 1 7.10 
[a) Plot of untransformec data with the power equation thclt fits the data, (b)  Plot of traisforrned 
data used io determine the coefficients of t5e power equation. 
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Thus, the intercept, log a2, equals -0.300, and therefore, by taking the antilogarithm, 
a2 = 10-0.3 = 0.5. The slope is b2 = 1.75. Consequently, the power equation is 

This curve, as plotted in Fig. 17.10a, indicates a good fit. 
- -.--- 

1 7.1.6 General Comments on Linear Regression 

Before proceeding to curvilinear and multiple linear regression, we must emphasize the in- 
troductory nature of the foregoing material on linear regression. We have focused on the 
simple derivation and practical use of equations to fit data. You should be cognizant of the 
fact that there are theoretical aspects of regression that are of practical importance but are 
beyond the scope of this book. For example, some statistical assumptions that are inherent 
in the linear least-squares procedures are 

1. Each x has a fixed value; it is not random and is known without error. 
2. The y values are independent random variables and all have the same variance. 
3. The y values for a given x must be normally distributed. 

Such assumptions are relevant to the proper derivation and use of regression. For ex- 
ample, the first assumption means that (1) the x values must be error-free and (2) the 
regression of y versus x is not the same as x versus y (try Prob. 17.4 at the end of the chap- 
ter). You are urged to consult other references such as Draper and Smith (1981) to appreci- 
ate aspects and nuances of regression that are beyond the scope of this book. 

17.2 POLYNOMIAL REGRESSION 
In Sec. 17.1, a procedure was developed to derive the equation of a straight line using the 
least-squares criterion. Some engineering data, although exhibiting a marked pattern such 
as seen in Fig. 17.8, is poorly represented by a straight line. For these cases, a curve would 
be better suited to fit the data. As discussed in the previous section, one method to accom- 
plish this objective is to use transformations. Another alternative is to fit polynomials to the 
data using polynomial regression. 

The least-squares procedure can be readily extended to fit the data to a higher-order 
polynomial. For example, suppose that we fit a second-order polynomial or quadratic: 

For this case the sum of the squares of the residuals is [compare with Eq. (17.3)] 

Following the procedure of the previous section, we take the derivative of Eq. (17.18) with 
respect to each of the unknown coefficients of the polynomial, as in 
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These equations can be set equal to zero and rearranged to develop the following set of nor- 
mal equations: 

(c x ; )  a~ + (c X') .I + (c x:) 02 = c xi y; (17.19) 

where all summations are from i = 1 through n. Note that the above three equations are lin- 
ear and have three unknowns: ao, al ,  and a2. The coefficients of the unknowns can be cal- 
culated directly from the observed data. 

For this case, we see that the problem of determining a least-squares second-order 
polynomial is equivalent to solving a system of three simultaneous linear equations. Tech- 
niques to solve such equations were discussed in Part Three. 

The two-dimensional case can be easily extended to an mth-order polynomial as 

The foregoing analysis can be easily extended to this more general case. Thus, we can rec- 
ognize that determining the coefficients of an mth-order polynomial is equivalent to solv- 
ing a system of m + 1 simultaneous linear equations. For this case, the standard error is 
formulated as 

This quantity is divided by n - (m + 1) because (m + 1) data-derived coefficients-ao, 
al, . . . , a,-were used to compute S,; thus, we have lost m + 1 degrees of freedom. In ad- 
dition to the standard error, a coefficient of determination can also be computed for poly- 
nomial regression with Eq. (17.10). 

EXAMPLE 17.5 Polynomial Regression 

j Problem Statement. Fit a second-order polynomial to the data in the first two columns I ofTable 17.4. 

1 Solution. From the given data, 

m = 2  E x i  = 15 E x f  = 979 

n = 6  xyj = 152.6 c x ; y i  = 585.6 

- 
x = 2.5 E x :  = 55 ~ x ~ i i  = 2488.8 

- 
y = 25.433 x: = 225 
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TABLE 17.4 Computations for an error analysis of the quadratic least-squares fit. 

FIGURE 17.1 1 
Fit of a second-order polynomial 

Therefore, the simultaneous linear equations are 

Solving these equations through a technique such as Gauss elimination gives a0 = 2.47857, 
a, = 2.35929, and a2 = 1.86071. Therefore, the least-squares quadratic equation for this 
case is 

The standard error of the estimate based on the regression polynomial is [Eq. (17.20)1 
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f 
The coefficient of determination is 

I 

[ and the correlation coefficient is r = 0.99925. 
These results indicate that 99.851 percent of the original uncertainty has been ex- / plained by the model. This result supports the conclusion that the quadratic equation rep- I resents an excellent fit, as is also evident from Fig. 17.11. 

I 

17.2.1 Algorithm for Polynomial Regression 

An algorithm for polynomial regression is delineated in Fig. 17.12. Note that the primary 
task is the generation of the coefficients of the normal equations [Eq. (17.19)]. 
(Pseudocode for accomplishing this is presented in Fig. 17.13.) Then, techniques from Part 
Three can be applied to solve these simultaneous equations for the coefficients. 

A potential problem associated with implementing polynomial regression on the 
computer is that the normal equations are sometimes ill-conditioned. This is particularly 
true for higher-order versions. For these cases, the computed coefficients may be highly 
susceptible to round-off error, and consequently, the results can be inaccurate. Among 
other things, this problem is related to the structure of the normal equations and to the fact 
that for higher-order polynomials the normal equations can have very large and very 
small coefficients. This is because the coefficients are summations of the data raised to 
powers. 

Although the strategies for mitigating round-off error discussed in Part Three, such as 
pivoting, can help to partially remedy this problem, a simpler alternative is to use a com- 
puter with higher precision. Fortunately, most practical problems are limited to lower-order 
polynomials for which round-off is usually negligible. In situations where higher-order 
versions are required, other alternatives are available for certain types of data. However, 
these techniques (such as orthogonal polynomials) are beyond the scope of this book. The 
reader should consult texts on regression, such as Draper and Smith (1981), for additional 
information regarding the problem and possible alternatives. 

FlGURE 1 7.1 2 
Algorithm for implementation of polynomial and multiple linear regression. 

Step 1: input order of polynom~al to be fit, m.  
Step 2: Input number of data points, n 
Step 3: If n i m + 1 ,  print out an error message that regression IS irnposslble and terminate the 

process If n 3 m + 1 ,  cont~nue 
Step 4: Compute fhe elements of the normal equation in the form of an augmented matrix. 
Step 5: Solve the augmented matrix for the coefficients ao, a,, a?, . . . ,a,, using an elimination 

method 
Step 6: Prnt out the coefficients. 
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DO i = 1, order + 7 
D O j  = 1, i 

k = i + j - 2  
sum = 0 
D o e  = 1, n 

sum = sum + x: 
END DO 
ai, = sum 
aj, = sum 

END DO 
sum = 0 
D o e =  1, n 

sum = sum + ye . x&-' 
END DO 
ai, order+ 2 = 5Um 

END DO 

FIGURE 1 7.1 3 
Pseudocode to assemble the elements of the normal equations for polynomial regression. 

EXAMPLE 17.6 Polynomial Regression Using the Computer 

Problem Statement. A user-friendly computer program to implement polynomial 
regression is contained in the Numerical Methods TOOLKIT software associated with the 
text. We can use this software to fit polynomials to the following data: 

, 
/ Solution. Press the Fit Data with Curve button on the TOOLKIT main menu to obtain a 

blank screen similar to Fig. 17.14. This screen contains spaces for the input and output 
information needed to fit data with an mth-order least-squares regression polynomial. 

The first step is to click the Input X vs Y Values table and enter up to 100 pairs of 
values for X and Y. Next you might decide to plot the data alone before making a deci- 
sion concerning the order of the polynomial. This is done using a procedure similar to 
that described in Example 2.1. Inspection of the data shows two peaks and suggests that 
a polynomial of at least order 4 would be appropriate. For our example, we will first try 
a fifth-order polynomial. Simply enter a value of 5 for the order of the polynomial and the 
plot parameters in the Input Parameters table and click the red Calc and Plot buttons (in 
the process changing the buttons to black) to produce Fig. 17.14. The issue of determin- 
ing the best order can be explored by examining how the standard error varies as a func- 
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FIGURE 17.14 
Screen from Numerical Methods TOOLKIT for fifth-order polynomial regression. 

FIGURE 17.1 5 
Plot for eighth-order polynomial regression 

tion of the order of the regression. The results for various order regression fits is tabulated 
below: 

Order 

~ t - ~ r l ~ ~ i  crmr 

1 2 3 4 5 6 7 8  

371 3 ~ 0  3 7 ~  I ~ Q  ~ n n  1 1 7  117 
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Note that the standard error drops dramatically from order 3 to 4 and reaches a mini- 
mum for the order-5 polynomial. This suggests that not much is gained by expending the 
computational effort to perform higher than fifth-order regression. 

Figure 17.15 shows the plots for the eighth-order case. For this case, overshoot begins 
to become a problem in a manner similar to higher-order interpolation (we'll discuss this 
phenomenon in detail in the next chapter). Figure 17.15 shows that the eighth-order poly- 
nomial produces negative Y values for X values between 8 and 9. Also observe from both 
Figs. 17.14 and 17.15 that while the regression curves follow the trend of the data, it is 
highly inappropriate to extrapolate for values Y beyond the range of the data for X. 

Interpolation can be performed by entering a value for X in the Calc Y for Input X 
table. For example at X = 3, Y = 2.304472 as calculated from the fifth-order polynomial 
(Fig. 17.14). 

Finally, take a look at the Results table on the lower right. The first three results are sta- 
tistical summaries of the regression: Standard Error, Coefficient of Determination, and 
Correlation Coefficient. Note how these values change for different orders of regression. 
The scroll bar on the Results table is used to observe the actual coefficients of the regres- 
sion polynomial. Again, these values change with different orders. 

1 7.3 MULTIPLE LINEAR REGRESSION 

A useful extension of linear regression is the case where y is a linear function of two or 
more independent variables. For example, y might be a linear function of xl and xz, as in 

Such an equation is particularly useful when fitting experimental data where the variable 
being studied is often a function of two other variables. For this two-dimensional case, the 
regression "line" becomes a "plane" (Fig. 17.16). 

FIGURE 1 7.16 
Graphical depiction of multiple 
linear regression where y is a 
linear function of xl and x;l. 
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As with the previous cases, the "best" values of the coefficients are determined by set- 
ting up the sum of the squares of the residuals, 

and differentiating with respect to each of the unknown coefficients, 

a s,. - - - -2 (yi - - alxli - azx2i) 
dao 
a s,. 
- = - 2 x  xli (yi  - ao - U l X l i  - a2x2i) 
aa1 

The coefficients yielding the minimum sum of the squares of the residuals are obtained by 
setting the partial derivatives equal to zero and expressing the result in matrix form as 

EXAMPLE 17.7 Multiple Linear Regression 

Problem Statement. The following data was calculated from the equation y = 5 + 1 d x  - 3x2: 

Use multiple linear regression to fit this data. 

Solution. The summations required to develop Eq. (17.22) are computed in Table 17.5. 
The result is 

which can be solved using a method such as Gauss elimination for 

I which is consistent with the original equation from which the data was derived. 
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TABLE 17.5 Computations required to develop the normal equations for Example 17.7. 

Y XI x2 x: 4 XlX2 Xl Y x2Y 

5 0 0 0 0 0 0 0 
10 2 1 4 1 2 20 10 
9 2.5 2 6 25 4 5 22.5 18 
0 1 3 1 9 3 0 0 
3 4 6 16 36 24 12 18 

The foregoing two-dimensional case can be easily extended to m dimensions, as in 

where the standard error is formulated as 

n - (m + 1) 

and the coefficient of determination is computed as in Eq. (17.10). An algorithm to set up 
the normal equations is listed in Fig. 17.17. 

Although there may be certain cases where a variable is linearly related to two or more 
other variables, multiple linear regression has additional utility in the derivation of power 
equations of the general form 

FIGURE 1 7.1 7 
Pseudocode to assemble the elements of the normal equations for multi le regression. Note that 
aside from storing the independent variables in XI,,, x2,,, etc., 1's must e stored in XQ, for this 
algorithm to work. 

E 
DOi = 1, order + ? 

D O j  = 1, i  
sum = 0 
DO[  = 1, n  

sum = sum + xi-,,! . xj-1.e 
END DO 
ai, = sum 
aj, = sum 

END DO 
sum = 0 
D O [  = ? , n  

sum = sum + ye . xi-,,! 
END DO 
ai, order+2 = 5Um 

END DO 
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Such equations are extremely useful when fitting experimental data. To use multiple linear 
regression, the equation is transformed by taking its logarithm to yield 

1% Y = log ao + a1 log X I  + a2 log x2 + . . . + a, log x, 

This transformation is similar in spirit to the one used in Sec. 17.1.5 and Example 17.4 
to fit a power equation when y was a function of a single variable x. Section 20.4 provides 
an example of such an application for two independent variables. 

17.4 GENERAL LINEAR LEAST SQUARED 

To this point, we have focused on the mechanics of obtaining least-squares fits of some 
simple functions to data. Before turning to nonlinear regression, there are several issues 
that we would like to discuss to enrich your understanding of the preceding material. 

17.4.1 General Matrix Formulation for Linear Least Squares 

In the preceding pages, we have introduced three types of regression: simple linear, poly- 
nomial, and multiple linear. In fact, all three belong to the following general linear least- 
squares model: 

where zo, z l ,  . . . , z, are rn + 1 different functions. It can easily be seen how simple and 
multiple linear regression fall within this model-that is, zo = 1, zl = X I ,  z;? = x2, . . . , z, = 
x,. Further, polynomial regression is also included if the z's are simple monomials as in 
zo=xO= 1,Zl =x , z ;?=x2  , . . . ,  z,=Xm. 

Note that the terminology "linear" refers only to the model's dependence on its para- 
meters-that is, the a's. As in the case of polynomial regression, the functions themselves 
can be highly nonlinear. For example, the 2's can be sinusoids, as in 

)I = ao f a1 cos (wt)  + a;? sin (wt)  

Such a format is the basis of Fourier analysis described in Chap. 19. 
On the other hand, a simple looking model like 

f(x) = ao (1 - e-alx)  

is truly nonlinear because it cannot be manipulated into the format of Eq. (17.23). We will 
turn to such models at the end of this chapter. 

For the time being, Eq. (17.23) can be expressed in matrix notation as 

where [Z] is a matrix of the calculated values of the z functions at the measured values of 
the independent variables, 
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where rn is the number of variables in the model and n is the number of data points. Be- 
cause n > rn + 1, you should recognize that most of the time [Z] is not a square matrix. 

The column vector { Y }  contains the observed values of the dependent variable 

The column vector {A } contains the unknown coefficients 

and the column vector { E } contains the residuals 

 e el ez . . .  e n ]  

As was done throughout this chapter, the sum of the squares of the residuals for this 
model can be defined as 

This quantity can be minimized by taking its partial derivative with respect to each of the 
coefficients and setting the resulting equation equal to zero. The outcome of this process is 
the normal equations that can be expressed concisely in matrix form as 

It can be shown that Eq. (17.25) is, in fact, equivalent to the normal equations developed 
previously for simple linear, polynomial, and multiple linear regression. 

Our primary motivation for the foregoing has been to illustrate the unity among the 
three approaches and to show how they can all be expressed simply in the same matrix no- 
tation. It also sets the stage for the next section where we will gain some insights into the 
preferred strategies for solving Eq. (17.25). The matrix notation will also have relevance 
when we turn to nonlinear regression in the last section of this chapter. 

17.4.2 Solution Techniques 

In previous discussions in this chapter, we have glossed over the issue of the specific nu- 
merical techniques to solve the normal equations. Now that we have established the unity 
among the various models, we can explore this question in more detail. 

First, it should be clear that Gauss-Seidel cannot be employed because the normal 
equations are not diagonally dominant. We are thus left with the elimination methods. For 
the present purposes, we can divide these techniques into three categories: (1) LU decom- 
position methods including Gauss elimination, (2) Cholesky's method, and (3) matrix in- 
version approaches. There are obviously overlaps involved in this breakdown. For exam- 
ple, Cholesky's method is, in fact, an LU decomposition, and all the approaches can be 
formulated so that they can generate the matrix inverse. However, this breakdown has 
merit in that each category offers benefits regarding the solution of the normal equations. 

LU Decomposition. If you are merely interested in applying a least-squares fit for the 
case where the appropriate model is known a priori, any of the LU decomposition ap- 
proaches described in Chap. 9 is perfectly acceptable. In fact, the non-LU-decomposition 
formulation of Gauss elimination can also be employed. It is a relatively straightforward 
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programming task to incorporate any of these into an algorithm for linear least squares. In 
fact, if a modular approach has been followed, it is almost trivial. 

Choleskyts Method. Cholesky's decomposition algorithm has several advantages with 
regard to the solution of the general linear regression problem. First, it is expressly de- 
signed for solving symmetric matrices like the normal equations. Thus, it is fast and re- 
quires less storage space to solve such systems. Second, it is ideally suited for cases where 
the order of the model [that is, the value of m in Eq. (17.23)] is not known beforehand (see 
Ralston and Rabinowitz, 1978). A case in point would be polynomial regression. For this 
case, we might not know a priori whether a linear, quadratic, cubic, or higher-order poly- 
nomial is the "best" model to describe our data. Because of the way in which both the nor- 
mal equations are constructed and the Cholesky algorithm proceeds (Fig. 11.3), we can de- 
velop successively higher-order models in an extremely efficient manner. At each step we 
could examine the residual sum of the squares error (and a plot!) to examine whether the 
inclusion of higher-order terms significantly improves the fit. 

The analogous situation for multiple linear regression occurs when independent vari- 
ables are added to the model one at a time. Suppose that the dependent variable of interest 
is a function of a number of independent variables: say, temperature, moisture content, 
pressure, etc. We could first perform a linear regression with temperature and compute a 
residual error. Next, we could include moisture content by performing a two-variable mul- 
tiple regression and see whether the additional variable results in an improved fit. 
Cholesky's method makes this process efficient because the decomposition of the linear 
model would merely be supplemented to incorporate a new variable. 

Matrix Inverse Approaches. From Eq. (PT3.6), recall that the matrix inverse can be 
employed to solve Eq. (17.25), as in 

Each of the elimination methods can be used to determine the inverse and, thus, can be 
used to implement Eq. (17.26). However, as we have learned in Part Three, this is an inef- 
ficient approach for solving a set of simultaneous equations. Thus, if we were merely in- 
terested in solving for the regression coefficients, it is preferable to employ an LU decom- 
position approach without inversion. However, from a statistical perspective, there are a 
number of reasons why we might be interested in obtaining the inverse and examining its 
coefficients. These reasons will be discussed next. 

1 7.4.3 Statistical Aspects of Least-Squares Theory 

In Sec. PT5.2.1, we reviewed a number of descriptive statistics that can be used to describe 
a sample. These included the arithmetic mean, the standard deviation, and the variance. 

Aside from yielding a solution for the regression coefficients, the matrix formulation 
of Eq. (17.26) provides estimates of their statistics. It can be shown (Draper and Smith, 
1981) that the diagonal and off-diagonal terms of the matrix [[z]T[z]]-I give, re- 
spectively, the variances and the covariancesl of the a's. If the diagonal elements of 

'The covariance is a statistic that measures the dependency of one variable on another. Thus, cov (x, y) indicates 
the dependency of x and y. For example, cov(x, y) = 0 would indicate that x and p are totally independent. 
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[ [ Z I T  [z]]-' are designated as z z l ,  then 
1 2  var ( u ~ - ~ )  = z; sy jx  

and 
2 

cov (a i - I ,  a,) = z ~ ~ , ~ s ~ ~ ~  (17.28) 

These statistics have a number of important applications. For our present purposes, we 
will illustrate how they can be used to develop confidence intervals for the intercept and 
slope. 

Using an approach similar to that in Sec. PT5.2.3, it can be shown that lower and upper 
bounds on the intercept can be formulated as (see Milton and Arnold 1995 for details) 

where s(aJ) = the standard error of coefficient aj = d m .  In a similar manner, lower 
and upper bounds on the slope can be folmulated as 

The following example illustrates how these intervals can be used to make quantitative in- 
ferences related to linear regression. 

EXAMPLE 17.8 Confidence Intervals for Linear Regression 

1 Problem Statement. In Example 17.3, we used regression to develop the following 
relationship between measurements and model predictions: 

where y = the model predictions and x = the measurements. We concluded that there was 
a good agreement between the two because the intercept was approximately equal to 0 and 
the slope approximately equal to 1. Recompute the regression but use the matrix approach to 
estimate standard errors for the parameters. Then employ these errors to develop confidence 
intervals and use these to make a probabilistic statement regarding the goodness of fit. 

Solution. The data can be written in matrix format for simple linear regression as: 

/ Matrix transposition and multiplication can then be used to generate the normal equations 
i as 

8.953 
16.405 
22.607 

{ Y )  = 

49.988 

[ Z ]  = 

-1 10 - 
1 16.3 
1 23 
. 

1 50 - - 
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Matrix inversion can be used to obtain the slope and intercept as 

Thus, the intercept and the slope are determined as a0 = -0.85872 and a1 = 1.03 1592, re- 
spectively. These values in turn can be used to compute the standard error of the estimate 
as s,,, = 0.863403. This value can be used along with the diagonal elements of the matrix 
inverse to calculate the standard errors of the coefficients, 

The statistic, t,,z,,,-l needed for a 95% confidence interval with n - 2 = 15 - 2 = 13 
degrees of freedom can be determined from a statistics table or using software. We used an 
Excel function, TINV, to come up with the proper value, as in 

which yielded a value of 2.160368. Equations (17.29) and (17.30) can then be used to com- 
pute the confidence intervals as 

Notice that the desired values (0 for intercept and slope and 1 for the intercept) fall 
within the intervals. On the basis of this analysis we could make the following statement 
regarding the slope: We have strong grounds for believing that the slope of the true regres- 
sion line lies within the interval from 0.991355 to 1.071828. Because 1 falls within this in- 
terval, we also have strong grounds for believing that the result supports the agreement be- 
tween the measurements and the model. Because zero falls within the intercept interval, a 
similar statement can be made regarding the intercept. 

The foregoing is a limited introduction to the rich topic of statistical inference and its 
relationship to regression. There are many subleties that are beyond the scope of this book. 
Our primary motivation has been to illustrate the power of the matrix approach to general 
linear least squares. You should consult some of the excellent books on the subject (e.g., 
Draper and Smith 198 1) for additional information. In addition, it should be noted that soft- 
ware packages and libraries can generate least-squares regression fits along with informa- 
tion relevant to inferential statistics. We will explore some of these capabilities when we 
describe these packages at the end of Chap. 19. 



468 LEAST-SQUARES REGRESSION 

17.5 NONLlNEAR REGRESSlON 
There are many cases in engineering where nonlinear models must be fit to data. In the pre- 
sent context, these models are defined as those that have a nonlinear dependence on their 
parameters. For example, 

f ( x )  = a0 ( 1  - e-alx)  + e (17.31) 

This equation cannot be manipulated so that it conforms to the general form of Eq. (17.23). 
As with linear least squares, nonlinear regression is based on determining the values 

of the parameters that minimize the sum of the squares of the residuals. However, for the 
nonlinear case, the solution must proceed in an iterative fashion. 

The Gauss-Newton method is one algorithm for minimizing the sum of the squares of 
the residuals between data and nonlinear equations. The key concept underlying the tech- 
nique is that a Taylor series expansion is used to express the original nonlinear equation in 
an approximate, linear form. Then, least-squares theory can be used to obtain new esti- 
mates of the parameters that move in the direction of minimizing the residual. 

To illustrate how this is done, first the relationship between the nonlinear equation and 
the data can be expressed generally as 

Y ;  = f ( x ; ;ao ,a l ,  . . . , a  ,) +e;  

where yi = a measured value of the dependent variable, f(x;; a", al, . . . , a,) = the equa- 
tion that is a function of the independent variable x, and a nonlinear function of the para- 
meters ao, a ] ,  . . . , a,, and ei = a random error. For convenience, this model can be ex- 
pressed in abbreviated form by omitting the parameters, 

The nonlinear model can be expanded in a Taylor series around the parameter values 
and curtailed after the first derivatives. For example, for a two-parameter case, 

where j = the initial guess, j + 1 = the prediction, Aao = ao,;+l - ao,;, and Aal = 
al,j+l - a , , )  Thus, we have linearized the original model with respect to the parameters. 
Equation (17.33) can be substituted into Eq. (17.32) to yield 

or in matrix form [compare with Eq. (17.24)], 

{Dl = [z;] {AA) + { E l  (17.34) 
where [Z;] is the matrix of partial derivatives of the function evaluated at the initial guess j, 
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where n = the number of data points and ah/aak = the partial derivative of the function 
with respect to the kth parameter evaluated at the ith data point. The vector ( D  J contains 
the differences between the measurements and the function values, 

and the vector { AA ] contains the changes in the parameter values, 

Aao 
Aa I 

{ A A )  = 

Aam 

Applying linear least-squares theory to Eq. (17.34) results in the following normal equa- 
tions [recall Eq. (1 7.25)]: 

[[zjlT [ z ~ I ]  {AAI = {[zjlT { D I }  (17.35) 

Thus, the approach consists of solving Eq. (17.35) for { A A }  which can be employed to 
compute improved values for the parameters, as in 

ao, j + ~  = ao,j + Aao 

and 

Ql.j+l = al,,  + Aa1 

This procedure is repeated until the solution converges-that is, until 

falls below an acceptable stopping criterion. 

EXAMPLE 17.9 Gauss-Newton Method 

1 Problem Statement. Fit the function f (x; ao, a , )  = ao(l  - e-"Ix) to the data: 

! Use initial guesses of aa = 1.0 and a1 = 1.0 for the parameters. Note that for these guesses 

/ the initial sum of the squares of the residuals is 0.0248. 

! Solution. The partial derivatives of the function with respect to the parameters are 
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I and 

Equations (E17.9.1) and (E17.9.2) can be used to evaluate the matrix 

This matrix multiplied by its transpose results in 

which in turn can be inverted to yield 

The vector ( D )  consists of the differences between the measurements and the model 
predictions, 

It is multiplied by [ZolT to give 

The vector { AA] is then calculated by solving Eq. (17.35) for 

which can be added to the initial parameter guesses to yield 

Thus, the improved estimates of the parameters are a0 = 0.7286 and a ,  = 1.5019. The new 
parameters result in a sum of the squares of the residuals equal to 0.0242. Equation (17.36) 
can be used to compute FO and equal to 37 and 33 percent, respectively. The computa- 
tion would then be repeated until these values fell below the prescribed stopping criterion. 
The final result is ao = 0.791 86 and a1 = 1.675 1. These coefficients give a sum of the 
squares of the residuals of 0.000662. 
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A potential problem with the Gauss-Newton method as developed to this point is that 
the partial derivatives of the function may be difficult to evaluate. Consequently, many 
computer programs use difference equations to approximate the partial derivatives. One 
method is 

where S = a small fractional perturbation. 
The Gauss-Newton method has a number of other possible shortcomings: 

1. It may converge slowly. 
2. It may oscillate widely, i.e., continually change directions. 
3. It may not converge at all. 

Modifications of the method (Booth and Peterson, 1958; Hartley, 1961) have been devel- 
oped to remedy the shortcomings. 

In addition, although there are several approaches expressly designed for regression, a 
more general approach is to use nonlinear optimization routines as described in Part Four. 
To do this, a guess for the parameters is made, and the sum of the squares of the residuals 
is computed. For example, for Eq. (17.31) it would be computed as 

Then, the parameters would be adjusted systematically to minimize S, using search tech- 
niques of the type described previously in Chap. 14. We will illustrate how this is done 
when we describe software applications at the end of Chap. 19. 

PROBLEMS 

17.1 Given the data 

determine (a) the mean, (b) the standard deviation, (c) the variance, 
(d) the coefficient of variation, and (e) the 95% confidence interval 
for the mean. 
17.2 Construct a histogram for the data in Prob. 17.1. Use a range 
of 0.6 to 2.4 with intervals of 0.2. 
17.3 Given the data 

determine (a) the mean, (b) the standard deviation, (c) the variance, 
(d) the coefficient of variation, and (e) the 90% confidence interval 
for the mean. ( f )  Construct a histogram. Use a range from 0 to 55 
with increments of 5. (g) Assuming that the distribution is normal 
and that your estimate of the standard deviation is valid, compute 
the range (that is, the lower and the upper values) that encompasses 
68% of the readings. Determine whether this is a valid estimate for 
the data in this problem. 
17.4 Use least-squares regression to fit a straight line to 

Along with the slope and intercept, compute the standard error of 
the estimate and the correlation coefficient. Plot the data and the re- 
gression line. Then repeat the problem, but regress x versus y-that 
is, switch the variables. Interpret your results. 
17.5 Use least-squares regression to fit a straight line to 
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x 1 5 6 10 14 16 20  22 28 28 36  38 17.13 Given thedata 

Along with the slope and the intercept, compute the standard error 
of the estimate and the correlation coefficient. Plot the data and the 
regression line. If someone made an additional measurement of 
x = 5, y = 5, would you suspect, based on a visual assessment and 
the standard error, that the measurement was valid or faulty? Justify 
your conclusion. 
17.6 Use least-squares regression to fit a straight line to 

~ 1 2 3 4 7 8 9 5 5  

y I 9  6 5 10 9 1 1  2 3 

(a) Along with the slope and intercept, compute the standard error 
of the estimate and the correlation coefficient. Plot the data and 
the straight line. Assess the fit. 

(b) Recompute (a), but use polynomial regression.to fit a parabola 
to the data. Compare the results with those of (a). 

17.7 Fit a saturation-growth-rate model to 

x i 0 7 5  2 2 .5  4 6 8 8.5 

Plot the data and the equation. Find the standard error. 
17.8 Fit a power equation to the data from Prob. 17.7. Plot the data 
and the equation, and find the standard error. 
17.9 Fit a parabola to the data from Prob. 17.7. Plot the data and 
the equation, and find the standard error. 
17.10 Fit a power equation to 

Plot y versus x along with the power equation. 
17.11 Fit an exponential model to 

y 1 7 50  1000 1400 2000 2700 3750 

Plot the data and the equation on both standard and semi- 
logarithmic graph paper. Discuss your results. 
17.12 Fit a parabola to the data in Prob. 17.1 1. Plot the data and the 
equation. 

y 116  25 32 33 38 3 6  3 9  4 0  42 4 2  

use least-squares regression to fit (a) a straight line, (b) a power 
equation, (c) a saturation-growth-rate equation, and (d) a parabola. 
Plot the data along with all the curves. Is any one of the curves su- 
perior? If so, justify. 
17.14 Use multiple linear regression to fit 

x l I 0  1 1 2 2 3 3 4 4  

Compute the coefficients, the standard error of the estimate, and the 
correlation coefficient. 
17.15 Use multiple linear regression to fit 

y 1 1 5  19 12 1 1  24  22 15 5 19 

Compute the coefficients, the standard error of the estimate, and the 
correlation coefficient. 
17.16 Use nonlinear regression to fit a parabola to the following 
data, 

x 1 0 0 7 5  0.5 1 1.2 1.7 2.0 2 3 

17.17 Use nonlinear regression to fit a saturation-growth-rate 
equation to the data in Prob. 17.13. 
17.18 Recompute the regression fits from Probs. (a) 17.4, and (b) 
17.13, using the matrix approach. Estimate the standard errors and 
develop 90% confidence intervals for the slope and the intercept. 
17.19 Develop, debug, and test a subprogram in either a high-level 
language or macro language of your choice to implement linear re- 
gression. Among other things: (a) Add statements to document the 
code, and (b) determine the standard error and the coefficient of de- 
termination. 
17.20 Use the Numerical Methods TOOLKIT software to solve 
Probs. (a) 17.4, (b) 17.5, (c) 17.6, (d) 17.9, and (e) 17.12. 



CHAPTER 

You will frequently have occasion to estimate intermediate values between precise data 
points. The most common method used for this purpose is polynomial interpolation. Recall 
that the general formula for an nth-order polynomial is 

For n + 1 data points, there is one and only one polynomial of order n that passes through 
all the points. For example, there is only one straight line (that is, a first-order polynomial) 
that connects two points (Fig. 18 .1~) .  Similarly, only one parabola connects a set of three 
points (Fig. 18.lb). Polynomial interpolation consists of determining the unique nth-order 
polynomial that fits n + 1 data points. This polynomial then provides a formula to compute 
intermediate values. 

Although there is one and only one nth-order polynomial that fits n + 1 points, there 
are a variety of mathematical formats in which this polynomial can be expressed. In this 
chapter, we will describe two alternatives that are well-suited for computer implementa- 
tion: the Newton and the Lagrange polynomials. 

FlGURE 18.1 
Examples of interpolatin polynomials: (a) first-order (linear) connecting two points, (b) second- 
order (quadratic or para olic) connecting three points, and (c) third-order [cubic) connecting four 
points. 

73 
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1 8.11 NEWTON'S DIVIDED-DIFFERENCE BNTERPOLATlNG 
POLYNOMIALS 

As stated above, there are a variety of alternative forms for expressing an interpolating 
polynomial. Newton's divided-difference interpolating polynomial is among the most pop- 
ular and useful forms. Before presenting the general equation, we will introduce the first- 
and second-order versions because of their simple visual interpretation. 

1 8.1.1 Linear interpolation 

The simplest form of interpolation is to connect two data points with a straight line. This 
technique, called linear interpolation, is depicted graphically in Fig. 18.2. Using similar 
triangles, 

which can be rearranged to yield 

which is a linear-interpolation formula. The notation fi(x) designates that this is a first- 
order interpolating polynomial. Notice that besides representing the slope of the line 
connecting the points, the term [ f ( x l )  - f(xo)]/(xl  - xo) is a finite-divided-difference 

FIGURE 18.2 
Graphical depiction of linear interpolation. The shaded areas indicate the similar triangles used 
to derive the linear-interpolation formula [Eq. ( 1  8.231. 
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approximation of the first derivative [recall Eq. (4.17)]. In general, the smaller the interval 
between the data points, the better the approximation. This is due to the fact that, as the in- 
terval decreases, a continuous function will be better approximated by a straight line. This 
characteristic is demonstrated in the following example. 

EXAMPLE 1 8.1 Linear Interpolation 

Problem Statement. Estimate the natural logarithm of 2 using linear interpolation. 
First, perform the computation by interpolating between In 1 = 0 and In 6 = 1.791759. 
Then, repeat the procedure, but use a smaller interval from In 1 to In 4 (1.386294). Note 

1 that the true value of ln 2 is 0.693 1472. 

/ Solution. We use Eq. (18.2) and a linear interpolation for in(2) from xo = 1 to x1 = 6 to 
( give 

1 1.791759 - 0 
f1(2) = 0 + (2 - 1) = 0.3583519 

6 - 1  

which represents an error of s, = 48.3%. Using the smaller interval from xo = 1 to xl = 4 
yields 

Thus, using the shorter interval reduces the percent relative error to st = 33.3%. Both in- 
terpolations are shown in Fig. 18.3, along with the true function. 

FIGURE 18.3 
Two linear interpolations to estimate In 2. Note how the smaller interval provides a better 
estimate. 
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1 8.1.2 Quadratic interpolation 

The error in Example 18.1 resulted from our approximating a curve with a straight line. 
Consequently, a strategy for improving the estimate is to introduce some curvature into the 
line connecting the points. If three data points are available, this can be accomplished with 
a second-order polynomial (also called a quadratic polynomial or a parabola). A particu- 
larly convenient form for this purpose is 

Note that although Eq. (18.3) might seem to differ from the general polynomial [Eq. 
(18.1)], the two equations are equivalent. This can be shown by multiplying the terms in 
Eq. (18.3) to yield 

or, collecting terms, 

where 

Thus, Eqs. (18.1) and (18.3) are alternative, equivalent formulations of the unique second- 
order polynomial joining the three points. 

A simple procedure can be used to determine the values of the coefficients. For bo, 
Eq. (18.3) with x = xo can be used to compute 

Equation (18.4) can be substituted into Eq. (18.3), which can be evaluated at x = xi for 

Finally, Eqs. (1 8.4) and (1 8.5) can be substituted into Eq. (1 8.3), which can be evaluated at 
x = x2 and solved (after some algebraic manipulations) for 

Notice that, as was the case with linear interpolation, bl  still represents the slope of the 
line connecting points xo and XI.  Thus, the first two terms of Eq. (18.3) are equivalent to lin- 
ear interpolation from xo to xl, as specified previously in Eq. (18.2). The last term, 
h2(x - xO)(x - XI), introduces the second-order curvature into the formula. 

Before illustrating how to use Eq. (1 8.3), we should examine the form of the coeffi- 
cient h2. It is very similar to the finite-divided-difference approximation of the second de- 
rivative introduced previously in Eq. (4.24). Thus, Eq. (18.3) is beginning to manifest a 
structure that is very similar to the Taylor series expansion. This observation will be 
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explored further when we relate Newton's interpolating polynomials to the Taylor series in 
Sec. 18.1.4. But first, we will do an example that shows how Eq. (18.3) is used to interpo- 
late among three points. 

EXAMPLE 18.2 Quadratic Interpolation 

Problem Statement. Fit a second-order polynomial to the three points used in Exam- 
ple 18.1: 

x o = 1  f (x0)=O 
X I  = 4 f ( x l )  = 1.386294 

x2 = 6 f (x2) = 1.791759 

Use the polynomial to evaluate In 2. 

/ Solution. Applying Eq. (18.4) yields 

1 bo = 0 

/ Equation ( 1  8.5) yields 

i and Eq. (18.6) gives 

1 FIGURE 18.4 
The use of quadratic interpolotion to estimate In 2. The linear interpolation from x = 1 to 4 is 1 also included for comparison. 

i 
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Substituting these values into Eq. (18.3) yields the quadratic formula 

f2(x) = 0 + 0.462098 1(x - 1 )  - 0.05 1873 1 ( x  - l ) ( x  - 4)  

which can be evaluated at x = 2 for 

f2(2) = 0.5658444 

which represents a relative error of E ,  = 18.4%. Thus, the curvature introduced by the qua- 
dratic formula (Fig. 18.4) improves the interpolation compared with the result obtained 
using straight lines in Example 18.1 and Fig. 18.3. 

1 8.1.3 General Form of Newon's Interpolating Polynomials 

The preceding analysis can be generalized to fit an nth-order polynomial to n + 1 data 
points. The nth-order polynomial is 

As was done previously with the linear and quadratic interpolations, data points can be 
used to evaluate the coefficients bo, b l ,  . . . , b,. For an nth-order polynomial, n + 1 data 
points are required: [xo, f(xo)], [ X I ,  f ( x l ) ] ,  . . . , [x, , f(xn)]. We use these data points and the 
following equations to evaluate the coefficients: 

bo = f (xo) (18.8) 

bl = f [ x l ,  xol (18.9) 

b2 = f [x2, X I ,  X O I  (18.10) 

bn = f [xn, xn-1, ... $ X I ,  x01 (18.11) 

where the bracketed function evaluations are finite divided differences. For example, the 
first finite divided difference is represented generally as 

The secondfinite divided difference, which represents the difference of two first divided 
differences, is expressed generally as 

Similarly, the nthfinite divided difference is 
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i Xi fIxi) First Second Third 

FIGURE 18.5 
Graphical depiction of the recursive nature of finite divided differences. 

These differences can be used to evaluate the coefficients in Eqs. (18.8) through 
(18.1 I), which can then be substituted into Eq. (18.7) to yield the interpolating polynomial 

which is called Newton's divided-difference interpolating polynomial. It should be noted 
that it is not necessary that the data points used in Eq. (18.15) be equally spaced or that the 
abscissa values necessarily be in ascending order, as illustrated in the following example. 
Also, notice how Eqs. (18.12) through (18.14) are recursive-that is, higher-order differ- 
ences are computed by taking differences of lower-order differences (Fig. 18.5). This prop- 
erty will be exploited when we develop an efficient computer program in Sec. 18.1.5 to im- 
plement the method. 

EXAMPLE 18.3 Newton's Divided-Difference Interpolating Polynomials 

Problem Statement. In Example 18.2, data points at xo = 1, xl = 4, and x:! = 6 were 
used to estimate In 2 with a parabola. Now, adding a fourth point [x3 = 5 ;  f(x3) = 

/ 1.6094381, estimate in 2 with a third-order Newton's interpolating polynomial. 
i 

Solution. The third-order polynomial, Eq. (18.7) with n = 3, is 

1 The first divided differences for the problem are [Eq. (18.12)] 
i 
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FIGURE 18.6 
The use of cubic interpolation to estimate In 2 

The second divided differences are [Eq. (1 8.13)] 

The third divided difference is [Eq. (18.14) with n = 31 

The results for f [xl, xo] , f [x2, xl, xoJ, and f [x3, x2, XI, xo] represent the coefficients bl, b2, 
and b3 of Eq. (18.7). Along with bo = f(xo) = 0.0, Eq. (18.7) is 

which can be used to evaluate f3(2) = 0.6287686, which represents a relative error of 
et = 9.3%. The complete cubic polynomial is shown in Fig. 18.6. 

1 8.1.4 Errors of Newon's interpolating Polynomials 

Notice that the structure of Eq. (18.15) is similar to the Taylor series expansion in the sense 
that terms are added sequentially to capture the higher-order behavior of the underlying 
function. These terms are finite divided differences and, thus, represent approximations of 
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the higher-order derivatives. Consequently, as with the Taylor series, if the true underlying 
function is an nth-order polynomial, the nth-order interpolating polynomial based on n + 1 
data points will yield exact results. 

Also, as was the case with the Taylor series, a formulation for the truncation error can 
be obtained. Recall from Eq. (4.6) that the truncation error for the Taylor series could be 
expressed generally as 

where is somewhere in the interval xi to xi+*. For an nth-order interpolating polynomial, 
an analogous relationship for the error is 

where <is somewhere in the interval containing the unknown and the data. For this formula 
to be of use, the function in question must be known and differentiable. This is not usually 
the case. Fortunately, an alternative formulation is available that does not require prior 
knowledge of the function. Rather, it uses a finite divided difference to approximate the 
(n  + 1)th derivative, 

R, = f [ x , x n , x n - l ,  . . . ,  X O ] ( X  - X O ) ( X  - x l ) . . . ( x  - x,) (18.17) 

where f [x, x,, x,+,, . . . , xo)] is the (n + 1)th finite divided difference. Because Eq. (18.17) 
contains the unknown fcx), it cannot be solved for the error. However, if an additional data 
point f ( ~ , + ~ )  is available, Eq. (18.17) can be used to estimate the error, as in 

EXAMPLE 18.4 Error Estimation for Newton's Polynomial 

I Problem Statement. Use Eq. (18.18) to estimate the error for the second-order polyno- 
I mial interpolation of Example 18.2. Use the additional data point f(x3) = f(5) = 1.609438 
I to obtain your results. 
I 

Solution. Recall that in Example 18.2, the second-order interpolating polynomial 
provided an estimate of f2(2)=0.5658444, which represents an error of 
0.693 1472 - 0.5658444 = 0.1273028. If we had not known the true value, as is most usu- 
ally the case, Eq. (18.18), along with the additional value at x3, could have been used to 
estimate the error, as in 

where the value for the third-order finite divided difference is as computed previously in 
Example 18.3. This relationship can be evaluated at x = 2 for 

R2 = 0.007865529(2 - 1)(2 - 4)(2  - 6 )  = 0.0629242 

which is of the same order of magnitude as the true error. 
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From the previous example and from Eq. (1 8.18), it should be clear that the error esti- 
mate for the nth-order polynomial is equivalent to the difference between the (n + 1)th 
order and the nth-order prediction. That is, 

In other words, the increment that is added to the nth-order case to create the (n + 1)th- 
order case [that is, Eq. (18.18)] is interpreted as an estimate of the nth-order error. This can 
be clearly seen by rearranging Eq. (18.19) to give 

fn+,(x) = fn(x) + Rn 
The validity of this approach is predicated on the fact that the series is strongly convergent. 
For such a situation, the (n + 1)th-order prediction should be much closer to the true value 
than the nth-order prediction. Consequently, Eq. (18.19) conforms to our standard defini- 
tion of error as representing the difference between the truth and an approximation. How- 
ever, note that whereas all other error estimates for iterative approaches introduced up to 
this point have been determined as a present prediction minus a previous one, Eq. (18.19) 
represents a future prediction minus a present one. This means that for a series that is con- 
verging rapidly, the error estimate of Eq. (18.19) could be less than the true error. This 
would represent a highly unattractive quality if the error estimate were being employed as 
a stopping criterion. However, as will be described in the following section, higher-order 
interpolating polynomials are highly sensitive to data errors-that is, they are very ill- 
conditioned. When employed for interpolation, they often yield predictions that diverge 
significantly from the true value. By "looking ahead" to sense errors, Eq. (18.19) is more 
sensitive to such divergence. As such, it is more valuable for the sort of exploratory data 
analysis for which Newton's polynomial is best-suited. 

18.1.5 Computer Algorithm For Newon's interpolating Polynomial 

Three properties make Newton's interpolating polynomials extremely attractive for com- 
puter applications: 

1. As in Eq. (18.7), higher-order versions can be developed sequentially by adding a sin- 
gle term to the next lower-order equation. This facilitates the evaluation of several dif- 
ferent-order versions in the same program. Such a capability is especially valuable 
when the order of the polynomial is not known a priori. By adding new terms sequen- 
tially, we can determine when a point of diminishing returns is reached-that is, when 
addition of higher-order terms no longer significantly improves the estimate or in cer- 
tain situations actually detracts from it. The error equations discussed below in (3) are 
useful in devising an objective criterion for identifying this point of diminishing terms. 

2. The finite divided differences that constitute the coefficients of the polynomial [Eqs. 
(18.8) through (18.11)] can be computed efficiently. That is, as in Eq. (18.14) and Fig. 
18.5, lower-order differences are used to compute higher-order differences. By utilizing 
this previously determined information, the coefficients can be computed efficiently. 
The algorithm in Fig. 18.7 contains such a scheme. 

3. The error estimate [Eq. (18.18)] can be very simply incorporated into a computer algo- 
rithm because of the sequential way in which the prediction is built. 
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SUBROUTINE Newtint (x, y, n, xi, yint, ea) 
LOCAL fdd, ,  
DO;= 0 , n  

fddlo = yi 
END DO 
DOj= I, n 

D O i = O , n - j  
fddi,j = (fdd, + 7,j-1 - fddi,J-7)l(~i +j - xi) 

END DO 
END DO 
xterm = 7 
yinto = f d d o , ~  
DO order = 1, n 

xterm = xterm * (xi - x ~ ~ ~ ~ ~ - ~ )  
yint2 = yintorder-l + fdda * xterm 
Eaorder-l = yint2 - yintorder-l 
yintord,, = yint2 

END order 
END Newtint 

FIGURE 18.7 
An algorithm for Newton's interpolating polynomial written in pseudocode 

All the above characteristics can be exploited and incorporated into a general algo- 
rithm for implementing Newton's polynomial (Fig. 18.7). Note that the algorithm consists 
of two parts: the first determines the coefficients from Eq. (18.7); the second determines 
the predictions and their associated error. The utility of this algorithm is demonstrated in 
the following example. 

EXAMPLE 18.5 Error Estimates to Determine the Appropriate Order of Interpolation 

Problem Statement. After incorporating the error [Eq. (18.18)], utilize the computer al- 
gorithm given in Fig. 18.7 and the following information to evaluate f (x) = In x at x = 2: 
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Solution. The results of employing the algorithm in Fig. 18.7 to obtain a solution are 
shown in Fig. 18.8. The error estimates, along with the true error (based on the fact that In 
2 = 0.693 1472), are depicted in Fig. 18.9. Note that the estimated error and the true error 
are similar and that their agreement improves as the order increases. From these results, it 
can be concluded that the fifth-order version yields a good estimate and that higher-order 
terms do not significantly enhance the prediction. 

This exercise also illustrates the importance of the positioning and ordering of the 
points. For example, up through the third-order estimate, the rate of improvement is slow 
because the points that are added (at x = 4,6, and 5) are distant and on one side of the point 
in question at x = 2. The fourth-order estimate shows a somewhat greater improvement be- 
cause the new point at x = 3 is closer to the unknown. However, the most dramatic de- 
crease in the error is associated with the inclusion of the fifth-order term using the data 
point at x = 1.5. Not only is this point close to the unknown but it is also positioned on the 
opposite side from most of the other points. As a consequence, the error is reduced almost 
an order of magnitude. 

The significance of the position and sequence of the data can also be illustrated by 
using the same data to obtain an estimate for In 2, but considering the points in a different 
sequence. Figure 18.9 shows results for the case of reversing the order of the original data, 
that is, xo = 3.5, xl = 2.5, x3 = 1.5, and so forth. Because the initial points for this case are 
closer to and spaced on either side of In 2, the error decreases much more rapidly than for 
the original situation. By the second-order term, the error has been reduced to less than 
s,  = 2%. Other combinations could be employed to obtain different rates of convergence. 

FlGURE 18.8 
The output of a program, based on  the algorithm from Fig 18 7, to evaluate In 2 

NUMBER OF P O I N T S ?  8  
X( 0  1, y (  0  ) = ? l , o  
X( 1  ), y (  1 1  = ? 4 , 1 . 3 8 6 2 9 4 4  
X (  2  ), y (  2 ) = ? 6 , 1 . 7 9 1 7 5 9 5  
X (  3  1, y (  3  1  = ? 5 , 1 . 6 0 9 4 3 7 9  
X (  4  1 ,  y (  4  ) = ? 3 , 1 . 0 9 8 6 1 2 3  
X( 5  ), y (  5  1  = ? 1 . 5 , 0 . 4 0 5 4 6 4 1 1  
X( 6  1 ,  y (  6  ) = ? 2 . 5 , 0 . 9 1 6 2 9 0 7 3  
X (  7  1 ,  y (  7  ) = ? 3 . 5 , 1 . 2 5 2 7 6 3 0  

I N T E R P O L A T I O N  AT  X 
ORDER F ( X )  
0  0 . 0 0 0 0 0 0  
1  0 . 4 6 2 0 9 8  
2  0 . 5 6 5 8 4 4  
3  0 . 6 2 8 7 6 9  
4  0 . 6 7 5 7 2 2  
5  0 . 6 9 7 5 1  4  
6  0 . 6 9 3 8 9 8  
7  0 . 6 9 3 4 3 9  

= 2  
ERROR 
0 . 4 6 2 0 9 8  
0 . 1 0 3 7 4 6  
0 . 0 6 2 9 2 4  
0 . 0 4 6 9 5 3  
0 . 0 2 1 7 9 2  
- 0 . 0 0 3 6 1  6  
- 0 . 0 0 0 4 5 9  
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1 FIGURE 18.9 
! Percent relative errors for the prediction of In 2 as a function of the order of the ~nterpolating 1 polynomial. 

The foregoing example illustrates the importance of the choice of base points. As 
should be intuitively obvious, the points should be centered around and as close as possible 
to the unknown. This observation is also supported by direct examination of the error equa- 
tion [Eq. (18.17)]. If we assume that the finite divided difference does not vary markedly 
along the range of the data, the error is proportional to the product: (x - xo) (x - xi) . . . 
(x - x,). Obviously, the closer the base points are to x ,  the smaller the magnitude of this 
product. 

1 8,2 LAGRANGE lNTERPObATlNG POLYNOMIALS 
The Lagrange interpolating polynomial is simply a reformulation of the Newton polyno- 
mial that avoids the computation of divided differences. It can be represented concisely as 
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1 FIGURE 18.9 
I Percent relative errors for the pred~ction of In 2 as o function of the order of the interpolating 
j polynomial. 

The foregoing example illustrates the importance of the choice of base points. As 
should be intuitively obvious, the points should be centered around and as close as possible 
to the unknown. This observation is also supported by direct examination of the error equa- 
tion [Eq. (1 8.17)]. If we assume that the finite divided difference does not vary markedly 
along the range of the data, the error is proportional to the product: (x - xo) (x - xl) . . . 
(x - x,). Obviously, the closer the base points are to x, the smaller the magnitude of this 
product. 

18.2 LAGRANGE lNTERPOLATlNG POLYNOMIALS 

The Lagrange interpolating polynomial is simply a reformulation of the Newton polyno- 
mial that avoids the computation of divided differences. It can be represented concisely as 
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where 

where l7 designates the "product of." For example, the linear version (n = 1) is 

and the second-order version is 

Equation (18.20) can be derived directly from Newton's polynomial (Box 18.1). How- 
ever, the rationale underlying the Lagrange formulation can be grasped directly by realiz- 
ing that each term L;(x) will be 1 at x = x; and 0 at all other sample points (Fig. 18.10). 
Thus, each product Li(x)f(xi) takes on the value of f(x,) at the sample point xi. Conse- 
quently, the summation of all the products designated by Eq. (18.20) is the unique nth- 
order polynomial that passes exactly through all n + 1 data points. 

EXAMPLE 18.6 Lagrange Interpolating Polynomials 

Problem Statement. Use a Lagrange interpolating polynomial of the first and second 
order to evaluate In 2 on the basis of the data given in Example 18.2: 

Solution. The first-order polynomial [Eq. (18.22)] can be used to obtain the estimate at 
X = 2, 

In a similar fashion, the second-order polynomial is developed as [Eq. (18.23)] 

As expected, both these results agree with those previously obtained using Newton's inter- 
polating polynomial. 
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The Lagrange interpolating polynomial can be derived directly which is referred to as the symmetric form. Substituting Eq. 
from Newton's formulation. We will do this for the first-order case (B18.1.2) into Eq. (18.2) yields 
only [Eq. (18.2)]. To derive the Lagrange form, we reformulate the 
divided differences. For example, the first divided difference, X - xo X - xo 

f1(x) = f(x0) + - f(x1) + --- f(x0) 
X I  - X 0  xo - X 1  

f(x1) - f(x0) 
f [x l ,  xol = 

x1 - Xo 

can be reformulated as 

(B 1 8 . 1 . 1 )  Finally, grouping similar terms and simplifying yields the La- 
grange form, 

FIGURE 1 8.10 
A visual depiction of the rationale behind the Lagrange This figure shows a second- 
order case. Each of the three terms in Eq. ( 1  8.23) passes through one of the data points and is 
zero at the other two. The summation of the three terms must, therefore, be the unique second- 
order polynomial f2(x) that passes exactly through the three points. 
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FUNCTION Lagrng(x, y, n, x) 
sum = 0 
D O i =  0 , n  

product = yi 
D O j =  0 , n  

IF i # j THEN 
product = productu(x - xj)/(xi - xj) 

ENDIF 
END DO 
sum = sum + product 

END DO 
Lagrng = sum 

END Lagrng 

FIGURE 1 8.1 1 
Pseudocode to implement Lagrange interpolation. This algorithm is set up to compute a single 
nth-order prediction, where n + 1 is the number of data points. 

Note that, as with Newton's method, the Lagrange version has an estimated error of 
[Eq. (18.17)] 

Thus, if an additional point is available at x = x,+l, an error estimate can be obtained. 
However, because the finite divided differences are not employed as part of the Lagrange 
algorithm, this is rarely done. 

Equations (18.20) and (18.21) can be very simply programmed for implementation on 
a computer. Figure 18.11 shows pseudocode that can be employed for this purpose. 

In summary, for cases where the order of the polynomial is unknown, the Newton 
method has advantages because of the insight it provides into the behavior of the different- 
order formulas. In addition, the error estimate represented by Eq. (1 8.18) can usually be in- 
tegrated easily into the Newton computation because the estimate employs a finite differ- 
ence (Example' 18.5). Thus, for exploratory computations, Newton's method is often 
preferable. 

When only one interpolation is to be performed, the Lagrange and Newton formula- 
tions require comparable computational effort. However, the Lagrange version is some- 
what easier to program. Because it does not require computation and storage of divided dif- 
ferences, the Lagrange form is often used when the order of the polynomial is known a 
priori. 

EXAMPLE 1 8.7 Lagrange Interpolation Using the Computer 

i Problem Statement. We can use the algorithm from Fig. 18.11 to study a trend analysis 
r problem associated with our now-familiar falling parachutist. Assume that we have 
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FIGURE 18.12 
Plots showing (a) fourth-order, 
(b) third-order, (c) second-order, 
and (d) first-order interpolations. 

developed instrumentation to measure the velocity of the parachutist. The measured data 
obtained for a particular test case is 

Time, Measured Velociv v, 
S cm/s 

Our problem is to estimate the velocity of the parachutist at t = 10 s to fill in the large gap 
in the measurements between t = 7 and t = 13 s. We are aware that the behavior of inter- 
polating polynomials can be unexpected. Therefore, we will construct polynomials of or- 
ders 4, 3,2 ,  and 1 and compare the results. 

Solution. The Lagrange algorithm can be used to construct fourth-, third-, second-, and 
first-order interpolating polynomials. 

The fourth-order polynomial and the input data can be plotted as shown in Fig. 18.12~. 
It is evident from this plot that the estimated value of y at x = 10 is higher than the overall 
trend of the data. 

Figure 18.12b through d shows plots of the results of the computations for third-, sec- 
ond-, and first-order interpolating polynomials. It is noted that the lower the order, the 
lower the estimated value of the velocity at t = 10 s. The plots of the interpolating polyno- 
mials indicate that the higher-order polynomials tend to overshoot the trend of the data. 
This suggests that the first- or second-order versions are most appropriate for this particu- 
lar trend analysis. It should be remembered, however, that because we are dealing with un- 
certain data, regression would actually be more appropriate. 
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The preceding example illustrates that higher-order polynomials tend to be ill- 
conditioned; that is, they tend to be highly sensitive to round-off error. The same problem 
applies to higher-order polynomial regression. Double-precision arithmetic sometimes 
helps mitigate the problem. However, as the order increases, there will come a point at 
which round-off error will interfere with the ability to interpolate using the simple ap- 
proaches covered to this point. 

18.3 COEFFICIENTS OF A N  INTERPOLBLTING POLYNOMIAL 
Although both the Newton and the Lagrange polynomials are well-suited for determining 
intermediate values between points, they do not provide a convenient polynomial of the 
conventional form 

A straightforward method for computing the coefficients of this polynomial is based 
on the fact that n + 1 data points are required to determine the n + 1 coefficients. Thus, si- 
multaneous linear algebraic equations can be used to calculate the a's. For example, sup- 
pose that you desired to compute the coefficients of the parabola 

Three data points are required: [xo, ~(xo)] ,  [xl,  XI)], and [xz, f ( ~ 3 1 .  Each can be substi- 
tuted into Eq. (18.25) to give 

Thus, for this case, the x's are the knowns and the a's are the unknowns. Because there are 
the same number of equations as unknowns, Eq. (18.26) could be solved by an elimination 
method from Part Three. 

It should be noted that the foregoing approach is not the most efficient method that is 
available to determine the coefficients of an interpolating polynomial. Press et al. (1986) 
provide a discussion and computer codes for more efficient approaches. Whatever tech- 
nique is employed, a word of caution is in order. Systems such as Eq. (18.26) are notori- 
ously ill-conditioned. Whether they are solved with an elimination method or with a more 
efficient algorithm, the resulting coefficients can be highly inaccurate, particularly for 
large n. When used for a subsequent interpolation, they often yield erroneous results. 

In summary, if you are interested in determining an intermediate point, employ 
Newton or Lagrange interpolation. If you must determine an equation of the form of 
Eq. (18.24), limit yourself to lower-order polynomials and check your results carefully. 

1 8.4 lNVERSE INTERPOLATION 

As the nomenclature implies, the f(x) and x values in most interpolation contexts are the 
dependent and independent variables, respectively. As a consequence, the values of the x's 
are typically uniformly spaced. A simple example is a table of values derived for the 
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function f(x) = llx, 

Now suppose that you must use the same data, but you are given a value for f(x) and 
must determine the corresponding value of x. For instance, for the data above, suppose that 
you were asked to determine the value of x that corresponded to f(x) = 0.3. For this case, 
because the function is available and easy to manipulate, the correct answer can be deter- 
mined directly as x = 110.3 = 3.3333. 

Such a problem is called inverse interpolation. For a more complicated case, you 
might be tempted to switch the f(x) and x values [that is, merely plot x versus f(x)] and use 
an approach like Lagrange interpolation to determine the result. Unfortunately, when you 
reverse the variables, there is no guarantee that the values along the new abscissa [the 
f(x)'s] will be evenly spaced. In fact, in many cases, the values will be "telescoped." That 
is, they will have the appearance of a logarithmic scale with some adjacent points bunched 
together and others spread out widely. For example, for f(x) = llx the result is 

Such nonuniform spacing on the abscissa often leads to oscillations in the resulting in- 
terpolating polynomial. This can occur even for lower-order polynomials. 

An alternative strategy is to fit an nth-order interpolating polynomial, f,(x), to the orig- 
inal data [i.e., with f(x) versus x]. In most cases, because the x's are evenly spaced, this 
polynomial will not be ill-conditioned. The answer to your problem then amounts to find- 
ing the value of x that makes this polynomial equal to the given f(x). Thus, the interpola- 
tion problem reduces to a roots problem! 

For example, for the problem outlined above, a simple approach would be to fit a qua- 
dratic polynomial to the three points: (2,0.5), (3,0.3333) and (4,0.25). The result would be 

The answer to the inverse interpolation problem of finding the x corresponding to 
f (x) = 0.3 would therefore involve determining the root of 

For this simple case, the quadratic formula can be used to calculate 

Thus, the second root, 3.296, is a good approximation of the true value of 3.333. If addi- 
tional accuracy were desired, a third- or fourth-order polynomial along with one of the root 
location methods from Part Two could be employed. 

18.5 ADDITIONAL COMMENTS 

Before proceeding to the next section, we must mention two additional topics: interpola- 
tion with equally spaced data and extrapolation. 



492 INTERPOLATION 

If data is equally spaced and in ascending order, then the indepen- where the remainder is the same as Eq. (18.16). This equation is 
dent variable assumes values of known as Newton's formula, or the Newton-Gregory forward for- 

mula. It can be simplified further by defining a new quantity, a:  
xl = x o + h  

X - xo 
~2 = xo + 2h a = -  

h 

This definition can be used to develop the following simplified ex- 
pressions for the terms in Eq. (B18.2.3): 

x,  =xo  + n h  
x - x o  = a h  

where h is the interval, or step size, between the data. On this basis, - xo - h = ah  - h = h(a - 1) 
the finite divided differences can be expressed in concise form. For 

, 

example, the second forward divided difference is 

f ( x 2 ) - f ( x 1 )  - f ( x , ) - f ( x o )  

x2 - X I  
x - xo - ( n  - l ) h  = a h  - ( n  - l ) h  = h ( a  - n + 1 )  

X I  - xo f [ x o , x l , ~ 2 1  = 
x2 - xo which can be substituted into Eq. (B18.2.3) to give 

which can be expressed as 
A2f (xo )a (a  - 1) fn(x)  = f ( x ~ )  + Af (xo )a  + T 

n!  (B18.2.4) 
because xl - xo = x;! - X I  = (x2 - x0)/2 = h. NOW recall that the 
second forward difference is equal to [numerator of Eq. (4.24)] 

where 

A2f (xo )  = f(x2) - 2 f ( x , )  + f(xo) 

Therefore, Eq. ( B  18.2.1) can be represented as 

or, in general, 

This concise notation will have utility in our derivation and error 
analyses of the integration formulas in Chap. 21. 

In addition to the forward formula, backward and central 
Newton-Gregory formulas are also available. Camahan, Luther, 
and Wilkes (1969) can be consulted for further information regard- 

(B18.2.2) ing interpolation for equally spaced data. 

Using Eq. (B18.2.2), we can express Newton's interpolating poly- 
nomial [Eq. (18.15)] for the case of equispaced data as 
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FIGURE 18.13 
Illustration of the possible divergence of an extrapolated prediction. The extrapolation is based 
on fitting a parabola through the first three known points. 

Because both the Newton and Lagrange polynomials are compatible with arbitrarily 
spaced data, you might wonder why we address the special case of equally spaced data 
(Box 18.2). Prior to the advent of digital computers, these techniques had great utility 
for interpolation from tables with equally spaced arguments. In fact, a computational 
framework known as a divided-difference table was developed to facilitate the implemen- 
tation of these techniques. (Figure 18.5 is an example of such a table.) 

However, because the formulas are subsets of the computer-compatible Newton and 
Lagrange schemes and because many tabular functions are available as library subroutines, 
the need for the equispaced versions has waned. In spite of this, we have included them at 
this point because of their relevance to later parts of this book. In particular, they are needed 
to derive numerical integration formulas that typically employ equispaced data (Chap. 21). 
Because the numerical integration formulas have relevance to the solution of ordinary dif- 
ferential equations, the material in Box 18.2 also has significance to Part Seven. 

Extrapolation is the process of estimating a value of f(x) that lies outside the range of 
the known base points, xo, XI, . . . , x, (Fig. 18.13). In a previous section, we mentioned that 
the most accurate interpolation is usually obtained when the unknown lies near the center 
of the base points. Obviously, this is violated when the unknown lies outside the range, and 
consequently, the error in extrapolation can be very large. As depicted in Fig. 18.13, the 
open-ended nature of extrapolation represents a step into the unknown because the process 
extends the curve beyond the known region. As such, the true curve could easily diverge 
from the prediction. Extreme care should, therefore, be exercised whenever a case arises 
where one must extrapolate. 
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18.6 SPLlNE lNTERPOLATllON 

In the previous sections, nth-order polynomials were used to interpolate between n + 1 
data points. For example, for eight points, we can derive a perfect seventh-order polyno- 
mial. This curve would capture all the meanderings (at least up to and including seventh de- 
rivatives) suggested by the points. However, there are cases where these functions can lead 

FlGURE 18.14 
A visual re resentation of a situation where the splines are superior to higher-order interpolating P polynomia s. The function to be fit undergoes an abrupt increase at x = 0. Parts (a) through 
(c) indicate that the abrupt change induces oscillations in interpolating olynomiols. In contrast, 
because it is limited to third-order curves with smooth transitions, the cu ic spline ( d )  provides a 
much more acceptable approximation. 

1 
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to erroneous results because of round-off error and overshoot. An alternative approach is to 
apply lower-order polynomials to subsets of data points. Such connecting polynomials are 
called spline functions. 

For example, third-order curves employed to connect each pair of data points are 
called cubic splines. These functions can be constructed so that the connections between 
adjacent cubic equations are visually smooth. On the surface, it would seem that the third- 
order approximation of the splines would be inferior to the seventh-order expression. You 
might wonder why a spline would ever be preferable. 

Figure 18.14 illustrates a situation where a spline performs better than a higher-order 
polynomial. This is the case where a function is generally smooth but undergoes an abrupt 
change somewhere along the region of interest. The step increase depicted in Fig. 18.14 is 
an extreme example of such a change and serves to illustrate the point. 

Figure 1 8 . 1 4 ~  through c illustrates how higher-order polynomials tend to swing 
through wild oscillations in the vicinity of an abrupt change. In contrast, the spline also 
connects the points, but because it is limited to third-order changes, the oscillations are 
kept to a minimum. As such, the spline usually provides a superior approximation of the 
behavior of functions that have local, abrupt changes. 

The concept of the spline originated from the drafting technique of using a thin, flexi- 
ble strip (called a spline) to draw smooth curves through a set of points. The process is de- 
picted in Fig. 18.15 for a series of five pins (data points). In this technique, the drafter places 
paper over a wooden board and hammers nails or pins into the paper (and board) at the lo- 
cation of the data points. A smooth cubic curve results from interweaving the strip between 
the pins. Hence, the name "cubic spline" has been adopted for polynomials of this type. 

In this section, simple linear functions will first be used to introduce some basic con- 
cepts and problems associated with spline interpolation. Then we derive an algorithm for 
fitting quadratic splines to data. Finally, we present material on the cubic spline, which is 
the most common and useful version in engineering practice. 

FlGURE 18.1 5 
The drafting technique of using 
a spline to draw smooth curves 
through a series of points. No- 
tice how, at the end points, the 
spline straightens out. This is 
called a "natural" spline. 
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1 8.6.1 Linear Splines 

The simplest connection between two points is a straight line. The first-order splines for a 
group of ordered data points can be defined as a set of linear functions, 

where mi is the slope of the straight line connecting the points: 

These equations can be used to evaluate the function at any point between xo and .x, by 
first locating the interval within which the point lies. Then the appropriate equation is used 
to determine the function value within the interval. The method is obviously identical to 
linear interpolation. 

EXAMPLE 18.8 First-Order Splines 

Problem Statement. Fit the data in Table 18.1 with first-order splines. Evaluate the 
function at x = 5.  

Solution. The data can be used to determine the slopes between points. For example, 
for the interval x = 4.5 to x = 7 the slope can be computed using Eq. (18.27): 

The slopes for the other intervals can be computed, and the resulting first-order splines are 
plotted in Fig. 18.16a. The value at x = 5 is 1.3. 

TABLE 1 8.1 
Data to be fit with 
spline functions. 
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Visual inspection of Fig. 18.1 6a indicates that the primary disadvantage of first-order 
splines is that they are not smooth. In essence, at the data points where two splines meet 
(called a knot), the slope changes abruptly. In formal terms, the first derivative of the func- 
tion is discontinuous at these points. This deficiency is overcome by using higher-order 
polynomial splines that ensure smoothness at the knots by equating derivatives at these 
points, as discussed in the next section. 

18.6.2 Quadratic Splines 

To ensure that the mth derivatives are continuous at the knots, a spline of at least m + 1 
order must be used. Third-order polynomials or cubic splines that ensure continuous first 
and second derivatives are most frequently used in practice. Although third and higher 

FIGURE 1 8.16 
Spline fits of a set of four points. (a) Linear spline, (b] quadratic spline, and (c] cubic spline, with 
a cubic interpolating polynomial also plotted. 



498 INTERPOLATION 

derivatives could be discontinuous when using cubic splines, they usually cannot be de- 
tected visually and consequently are ignored. 

Because the derivation of cubic splines is somewhat involved, we have chosen to in- 
clude them in a subsequent section. We have decided to first illustrate the concept of spline 
interpolation using second-order polynomials. These "quadratic splines" have continuous 
first derivatives at the knots. Although quadratic splines do not ensure equal second deriv- 
atives at the knots, they serve nicely to demonstrate the general procedure for developing 
higher-order splines. 

The objective in quadratic splines is to derive a second-order polynomial for each in- 
terval between data points. The polynomial for each interval can be represented generally as 

f , ( x )  = aIx2  + blx  + c, (18.28) 

Figure 18.17 has been included to help clarify the notation. For n + 1 data points ( i  = 0, 1, 
2,  . . . , n),  there are n intervals and, consequently, 3n unknown constants (the a's, b's, and 
c's) to evaluate. Therefore, 3n equations or conditions are required to evaluate the un- 
knowns. These are: 

1. The function values of adjacent polynomials must be equal at the interior knots. This 
condition can be represented as 

for i = 2 to n. Because only interior knots are used, Eqs. (18.29) and (18.30) each pro- 
vide n - 1 for a total of 2n - 2 conditions. 

2. The first and last functions must pass through the end points. This adds two additional 
equations: 

FIGURE 18.1 7 
Notation used to derive qua- 
dratic splines. Notice that there 
are n intervals and n + 1 data 

oints. The example shown is 
L r n = 3 .  



18.6 SPLINE INTERPOLATION 499 

for a total of 2n - 2 + 2 = 2n conditions. 
3. The first derivatives at the interior knots must be equal. The first derivative of Eq. 

(18.28) is 

f ' (x )  = 2ax + b 

Therefore, the condition can be represented generally as 

for i = 2 to n. This provides another n - 1 conditions for a total of 2n + n - 1 = 
3n - 1. Because we have 3n unknowns, we are one condition short. Unless we have 
some additional information regarding the functions or their derivatives, we must make 
an arbitrary choice to successfully compute the constants. Although there are a number 
of different choices that can be made, we select the following: 

4. Assume that the second derivative is zero at thefirst point. Because the second deriva- 
tive of Eq. (18.28) is 2ai, this condition can be expressed mathematically as 

The visual interpretation of this condition is that the first two points will be connected 
by a straight line. 

EXAMPLE 18.9 Quadratic Splines 

V r o b l e m  Statement. Fit quadratic splines to the same data used in Example 18.8 
(Table 18.1). Use the results to estimate the value at x = 5. 

/ Solution. For the present problem, we have four data points and n = 3 intervals. There- 

I fore, 3(3) = 9 unknowns must be determined. Equations (18.29) and (18.30) yield 

1 2(3) - 2 = 4 conditions: 

1 Passing the first and last functions through the initial and final values adds 2 more / [Eq. (18.31)]: 

1 and [Eq. (18.32)] 
i 

1 Continuity of derivatives creates an additional 3 - 1 = 2 [Eq. (18.33)]: 
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Finally, Eq. (18.34) specifies that a1 = 0. Because this equation specifies a1 exactly, the 
problem reduces to solving eight simultaneous equations. These conditions can be ex- 
pressed in matrix form as 

These equations can be solved using techniques from Part Three, with the results: 

which can be substituted into the original quadratic equations to develop the following 
relationships for each interval: 

When we use fi, the prediction for x = 5 is, therefore, 

The total spline fit is depicted in Fig. 18.16b. Notice that there are two shortcomings 
that detract from the fit: (1) the straight line connecting the first two points and (2) the 
spline for the last interval seems to swing too high. The cubic splines in the next section do 
not exhibit these shortcomings and, as a consequence, are better methods for spline inter- 
polation. 

18.6.3 Cubic Splines 

The objective in cubic splines is to derive a third-order polynomial for each interval be- 
tween knots, as in 

Thus, for n + 1 data points (i = 0, 1, 2, . . . , n), there are n intervals and, consequently, 4n 
unknown constants to evaluate. Just as for quadratic splines, 4n conditions are required to 
evaluate the unknowns. These are: 

1. The function values must be equal at the interior knots (2n - 2 conditions). 
2. The first and last functions must pass through the end points (2 conditions). 
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3. The first derivatives at the interior knots must be  equal (n - 1 conditions). 
4. The second derivatives at the interior knots must be equal (n - 1 conditions). 
5. The second derivatives at the end knots are zero (2 conditions). 

The visual interpretation of condition 5 is that the function becomes a straight line at the end 
knots. Specification of such an end condition leads to what is termed a "natural" spline. It  
is given this name because the drafting spline naturally behaves in this fashion (Fig. 18.15). 
If the value of the second derivative at  the end knots is nonzero (that is, there is some cur- 
vature), this information can be used alternatively to supply the two final conditions. 

The above five types of conditions provide the total of 4n equations required to  solve 
for the 4n coefficients. Whereas it is certainly possible to develop cubic splines in this fash- 
ion, we will present an alternative technique that requires the solution of only n - 1 equa- 
tions. Although the derivation of this method (Box 18.3) is somewhat less straightforward 
than that for quadratic splines, the gain in efficiency is well worth the effort. 

The first step in the derivation (Cheney and Kincaid, 1985) is based Eq. (1 8.35). However, notice that it contains only two unknown 
on the observation that because each pair of knots is connected by "coefficients," the second derivatives at the beginning and the end 
a cubic, the second derivative within each interval is a straight line. of the interval-f "(x,-~) and f "(xi). Thus, if we can determine the 
Equation (18.35) can be differentiated twice to verify this observa- proper second derivative at each knot, Eq. (B18.3.2) is a third-order 
tion. On this basis, the second derivatives can be represented by a polynomial that can be used to interpolate within the interval. 
first-order Lagrange interpolating polynomial [Eq. (18.22)]: The second derivatives can be evaluated by invoking the condi- 

x - xi x - x,-I tion that the first derivatives at the knots must be continuous: 
fit'(x) = f,'l(xi - I ) p + f,"(xi 1 ----- xi - 1 - x, x; - .x, - 1 f,-1 (XI) = .~,!(XI) (B18.3.3) (B18.3.1) 

where fll(x) is the value of the second derivative at any point x 
within the ith interval. Thus, this equation is a straight line con- 
necting the second derivative at the first knot f "(x,-~) with the sec- 
ond derivative at the second knot f "(xi). 

Next, Eq. (B18.3.1) can be integrated twice to yield an expres- 
sion forfi(x). However, this expression will contain two unknown 
constants of integration. These constants can be evaluated by in- 
voking the function-equality conditions-f(x) must equal f(xi-)) at 
x,- 1 and f (x) must equal f (x,) at .w,. By performing these evaluations, 
the following cubic equation results: 

fi"(x1-1) 
f i  (x) = (x, - x)' + f,"(x1) 

(X - 
6(x1 - XI-I) 6(x-, - xi- l )  

+[+- S1!(x, (xi - xi - I 1 
6 1 (x -x,-l)  x - Xi -. 

Now, admittedly, this relationship is a much more complicated 
expression for the cubic spline for the ith interval than, say, 

Equation (B 18.3.2) can be differentiated to give an expression for 
the first derivative. If this is done for both the (i - 1)th and the 
ith intervals and the two results are set equal according to 
Eq. (B18.3.3), the following relationship results: 

If Eq. (B 18.3.4) is written for all interior knots, n - 1 simultaneous 
equations result with n + 1 unknown second derivatives. However, 
because this is a natural cubic spline, the second derivatives at the 
end knots are zero and the problem reduces to n - 1 equations with 
n - 1 unknowns. In addition, notice that the system of equations 
will be tridiagonal. Thus, not only have we reduced the number of 
equations but we have also cast them in a form that is extremely 
easy to solve (recall Sec. 11.1.1). 
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The derivation from Box 18.3 results in the following cubic equation for each interval: 

This equation contains only two unknowns-the second derivatives at the end of each in- 
terval. These unknowns can be evaluated using the following equation: 

If this equation is written for all the interior knots, n - 1 simultaneous equations result 
with n - 1 unknowns. (Remember, the second derivatives at the end knots are zero.) The 
application of these equations is illustrated in the following example. 

EXAMPLE 18.10 Cubic Splines 

j Problem Statement. Fit cubic splines to the same data used in Examples 18.8 and 18.9 
I (Table 18.1). Utilize the results to estimate the value at x z 5. i 

Solution. The first step is to employ Eq. (18.37) to generate the set of simultaneous 
equations that will be utilized to determine the second derivatives at the knots. For 
example, for the first interior knot, the following data is used: 

xo = 3 ~ ( x o )  = 2.5 
X l  = 4.5 f(x1) = 1 
x2 = 7 f (x2)  = 2.5 

These values can be substituted into Eq. (18.37) to yield 

I 
Because of the natural spline condition, f "(3) = 0 ,  and the equation reduces to 

i 
i 
I 8 f "(4.5) + 2.5 f "(7) = 9.6 

/ In a similar fashion. Eq. (18.37) can be applied to the second interior point to give 

/ 2.5 f "(4.5) + 9 f "(7) = -9.6 
I 
1 These two equations can be solved simultaneously for i 
1 f "(4.5) = 1.67909 

1 f "(7) = - 1.53308 
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These values can then be substituted into Eq. (18.36), along with values for the x's and 
the f(x)'s, to yield 

or 

f l ( x )  = 0.186566 (x - 313 + 1.666667 (4.5 - x )  + 0.246894 ( x  - 3)  

This equation is the cubic spline for the first interval. Similar substitutions can be made to 
develop the equations for the second and third intervals: 

fi(x) = 0.1 11939(7 - x13 - 0.102205(x - 4 . 5 1 ~  - 0.299621(7 - X )  

+ 1.638783(~ - 4.5) 

and 

f3(x)  = -0.127757(9 - x13 + 1.761027(9 - x )  + 0.25(x - 7 )  

The three equations can then be employed to compute values within each interval. For ex- 
ample, the value at x = 5,  which falls within the second interval, is calculated as 

f2(5) = 0.1 11939(7 - 5)3 - 0.102205(5 - 4.5)3 - 0.299621(7 - 5)  

+ 1.638783(5 - 4.5) = 1.102886 

Other values are computed and the results are plotted in Fig. 18.16~. 

The results of Examples 18.8 through 18.10 are summarized in Fig. 18.16. Notice the 
progressive improvement of the fit as we move from linear to quadratic to cubic splines. 
We have also superimposed a cubic interpolating polynomial on Fig. 18.16~. Although the 
cubic spline consists of a series of third-order curves, the resulting fit differs from that ob- 
tained using the third-order polynomial. This is due to the fact that the natural spline re- 
quires zero second derivatives at the end knots, whereas the cubic polynomial has no such 
constraint. 

18.6.4 Computer Algorithm for Cubic Splines 

The method for calculating cubic splines outlined in the previous section is ideal for com- 
puter implementation. Recall that, by some clever manipulations, the method reduced to 
solving n - 1 simultaneous equations. An added benefit of the derivation is that, as speci- 
fied by Eq. (18.37), the system of equations is tridiagonal. As described in Sec. 11.1, algo- 
rithms are available to solve such systems in an extremely efficient manner. Figure 18.18 
outlines a computational framework that incorporates these features. 

Note that the routine in Fig. 18.18 returns a single interpolated value, yu, for a given 
value of the dependent variable, xu. This is but one way in which spline interpolation can 
be implemented. For example, you might want to determine the coefficients once, and then 
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SUBROUTINE Spline (x,~n,xu,yu,dy,d2y) 
LOCAL en, fn, g,, rn, d2xn 
CALL Tridiag (x,y,n,e,f,g,r) 
CALL Decomp(e,f,g,n-l) 
CALL Subst(e,f,g,r,n-l,d2x) 
CALL Interpol(x,y,n,d2x,xu,yu,dy,d2y) 
END Spline 

SUBROUTINE Tridiag (x, y, n, e, f ,  g, r )  
fl = 2 * (x2-xo) 
91 = (x2-x1) 
f-1 = 6 / ( ~ 2 - ~ 1 )  * (y2-y1) 
rl = r~ +6/(x1-XO) * (yo -y l )  
D O i = Z , n - 2  

ei = (xi -xi-]) 
6 = 2 * (xi+, - xi-I) 
di = (x,+I - xi) 
ri = 6/(xi  +1 -xi) * (yi +I -yi) 
r, = r ,  + 6 / (x i  -xi .I) * (y, -yi) 

END DO 
en - I  = (xn-1 -x,-2) 
fn -1 = 2 * (x, - xn4 ' )  
rn - 1  = 6 / [ x n  -xn-l) * (yn-yn-1) 
rn - I  = rn-I +6/(xn-1 -xnV2) * (yn-2 -Y,-~) 
END Tridiag 

SUBROUTINE lnterpol (x9y,n,d2x,xu,yu,dy,d2y) 
flag = 0 
i =  l 
DO 

IFxu 2 xi-I ANDxu 5 xi THEN 
c l  = d2xi-11 6/ [xi -xi- 1) 
c 2  = d 2 x i / 6 /  (xi -xi- 

c 3  = (yi-l/(xi -d2xi-1 * ( ~ ~ - x i - ~ ) / 6  
c 4  = (yi/(xi -xi-]) -d2xi * ( x ~ - x ~ - ~ ) / ~  
t l  = c l  * (xi -xu,13 
t2 = c 2  * (xu-xi -,,13 
t3  = c 3  * (xi -xu) 
t4 = c 4  * (xu-xi -,) 
yu = t l  + $2 + t 3  + t4 
t l  = -3 * c l  * (xi 
t2 = 3 * c 2  * (xu-xi 
t 3  = - c 3  
t4 = c 4  
d y =  t l +  t2+  t 3 +  t4 
t l  = 6 * c l  * (xi -xu) 
t 2  = 6 * c 2  * (xu-xi 
d2y = t l +  t 2  
f lag = l 

ELSE 
i =  i +  l 

END IF 
IF i = n + 1 OR flag = 1 EXIT 

END DO 
IF flag = 0 THEN 

PRINT "outside range" 
pause 

END IF 
END lnterpol 

FIGURE 18.18 
Algorithm for cubic spline interpolation. 



PROBLEMS 505 

perform many interpolations. In addition, the routine returns both the first (dy) and second 
(dy2) derivative at xu. Although it is not necessary to compute these quantities, they prove 
useful in many applications of spline interpolation. 

18.1 Estimate the logarithm of 5 to the base 10 (log 5) using linear 
interpolation. 
(a) Interpolate between log 4 = 0.60206 and log 6 = 0.7781513. 
(b) Interpolate between log 4.5 = 0.6532125 and log 5.5 = 

0.7403627. 
For each of the interpolations, compute the percent relative error 
based on the true value. 
18.2 Fit a second-order Newton's interpolating polynomial to esti- 
mate log 5 using the data from Prob. 18.1. Compute the true percent 
relative error. 
18.3 Fit a third-order Newton's interpolating polynomial to esti- 
mate log 5 using the data from Prob. 18.1. 
18.4 Given the data 

(a) Calculate f(3.4) using Newton's interpolating polynomials of 
order 1 through 3. Choose the sequence of the points for your 
estimates to attain the best possible accuracy. 

(b) Utilize Eq. (18.18) to estimate the error for each prediction. 
18.5 Given the data 

Calculate f(4) using Newton's interpolating polynomials of order 1 
through 4. Choose your base points to attain good accuracy. What 
do your results indicate regarding the order of the polynomial used 
to generate the data in the table? 
18.6 Repeat Probs. 18.1 through 18.3 using the Lagrange polyno- 
mial. 
18.7 Repeat Prob. 18.5 using the Lagrange polynomial of order 1 
through 3. 
18.8 Employ inverse interpolation using a cubic interpolating 
polynomial and bisection to determine the value of x that corre- 
sponds to f(x) = 0.3 for the following tabulated data, 

18.9 Employ inverse interpolation to determine the value of x that 
corresponds to f(x) = 0.93 for the following tabulated data, 

Note that the values in the table were generated with the function 
f(x) = 2/(1 -I- x2). 
(a) Determine the correct value analytically. 
(b) Use quadratic interpolation and the quadratic formula to deter- 

mine the value numerically. 
(c) Use cubic interpolation and bisection to determine the value 

numerically. 
18.10 Develop quadratic splines for the first 5 data points in Prob. 
18.4 and predict f(3.4) and f(2.2). 
18.11 Develop cubic splines for the data in Prob. 18.5 and (a) pre- 
dict f (4) and f (2.5) and (b) verify that f2(3) and f3(3) = 5.25. 
18.12 Determine the coefficients of the parabola that passes 
through the last three points in Prob. 18.4. 
18.13 Determine the coefficients of the cubic equation that passes 
through the first four points in Prob. 18.5. 
18.14 Develop, debug, and test a subprogram in either a high-level 
language or macro language of your choice to implement Newton's 
interpolating polynomial based on Fig. 18.7. 
18.15 Test the program you developed in Prob. 18.14 by duplicat- 
ing the computation from Example 18.5. 
18.16 Use the program you developed in Prob. 18.14 to solve 
Probs. 18.1 through 18.3. 
18.17 Use the program you developed in Prob. 18.14 to solve 
Probs. 18.4 and 18.5. In Prob. 18.4, utilize all the data to develop 
first- through fifth-order polynomials. For both problems, plot the 
estimated error versus order. 
18.18 Develop, debug, and test a subprogram in either a high-level 
language or macro language of your choice to implement Lagrange 
interpolation. Base it on the pseudocode from Fig. 18.11. Test it by 
duplicating Example 18.7. 
18.19 A useful application of Lagrange interpolation is called a 
table look-up. As the name implies, this involves "looking-up" an in- 
termediate value from a table. To develop such an algorithm, the 
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table of x  and f (x )  values are first stored in a pair of one-dimensional 
arrays. These values are then passed to a function along with the x  
value you wish to evaluate. The function then performs two tasks. 
First, it loops down through the table until it finds the interval within 
which the unknown lies. Then it applies a technique like Lagrange 
interpolation to determine the proper f (x )  value. Develop such a 
function using a cubic Lagrange polynomial to perform the interpo- 
lation. For intermediate intervals, this is a nice choice because the 
unknown will be located in the interval in the middle of the four 
points necessary to generate the cubic. Be careful at the first and last 
intervals where this is not the case. Also have your code detect when 

the user requests a value outside the range of x's. For such cases, the 
function should display an error message. Test your program for 
f (x )  = In x  using data from x  = 0 ,  l , 2 ,  . . . , 10. 
18.20 Develop, debug, and test a subprogram in either a high-level 
language or macro language of your choice to implement cubic 
spline interpolation based on Fig. 18.18. Test the program by dupli- 
cating Example 18.10. 
18.21 Use the software developed in Prob. 18.20 to fit cubic 
splines through the data in Probs. 18.4 and 18.5. For both cases, 
predict f(2.25).  



CHAPTER 
Fourier Approxi mation 

To this point, our presentation of interpolation has emphasized standard polynomials-that 
is, linear combinations of the monomials 1, x, x2, . . . , xm (Fig. 19.1~).  We now turn to an- 
other class of functions that has immense importance in engineering. These are the trigono- 
metric functions 1, cos x, cos 2x, . . . , cos nx, sin x, sin 2x, . . . , sin nx (Fig. 19. lb). 

Engineers often deal with systems that oscillate or vibrate. As might be expected, 
trigonometric functions play a fundamental role in modeling such problem contexts. 

FIGURE 19.1 
The first five (a) monomials and 
(b] trigonometric functions. Note 
that for the intervals shown, 
both types of function range in 
value between - 1 and 1 .  
However, notice that the peak 
values for the monomials all 
occur at the extremes whereas 
for the trigonometric functions 
the peaks are more uniformly 
distributed across the interval. 
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FIGURE 19.2 
Aside from tr~gonometric func- 
tions such as sines and cosines, 
periodic functions include 
waveforms such as (a] the 
square wave and (b) the saw- 
tooth wave. Beyond these ideal- 
ized forms, periodic signals in 
nature can be (c) nonideal and 
(dl contaminated by noise. The 
trigonometric functions can be 
used to represent and to ana- 
lyze all these cases. 

Fourier approximation represents a systematic framework for using trigonometric series 
for this purpose. 

One of the hallmarks of a Fourier analysis is that it deals with both the time and the fre- 
quency domains. Because some engineers are not comfortable with the latter, we have de- 
voted a large fraction of the subsequent material to a general overview of Fourier approxi- 
mation. An important aspect of this overview will be to familiarize you with the frequency 
domain. This orientation is then followed by an introduction to numerical methods for 
computing discrete Fourier transforms. 

CURVE FITTING WITH SINUSOIDAL FUNCTIONS 

A periodic function f ( t )  is one for which 

f ( t> = f ( t  + T )  
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where T is a constant called theperiod that is the smallest value for which Eq. (19.1) holds. 
Common examples include waveforms such as square and sawtooth waves (Fig. 19.2). The 
most fundamental are sinusoidal functions. 

In the present discussion, we will use the term sinusoid to represent any waveform that 
can be described as a sine or cosine. There is no clear-cut convention for choosing either 
function, and in any case, the results will be identical. For this chapter we will use the co- 
sine, which is expressed generally as 

Thus, four parameters serve to characterize the sinusoid (Fig. 19.3). The mean value A, 
sets the average height above the abscissa. The amplitude C, specifies the height of the 

FIGURE 18.3 
(a) A plot of the sinusoidal function y(t) = A, + Cl cos (mot + 8). For this case, A, = 1.7, 
C, = 1, coo = 2n/T= 2n/(1.5 s), and 8 = n/3  radians = 1.0472 (= 0.25 s]. Other 
parameters used to describe the curve are the frequency i =  mo/(2n), which for this case is 
1 cycle/(l .5 s) and the period T= 1.5 s. (b) An alternative expression of the same curve is 
yjt) = A, + A, cos (coot) + 5, sin (coot). The three components of this function are depicted in 
(b), where Al = 0 .5  and 5, = -0.866. The summation of the three curves in (b) y~elds the single 
curve in (a) .  
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FlGURE 19.4 
Graphical depictions of [a) a lagging phase angle and (b) a leading phase angle. Note that the 
lagging curve in (a) can be alternatively described as cos (mot + 3n/2) .  In other words, if a 
curve lags by an angle of a, it can also be represented as leading by 2n - a. 

oscillation. The angular frequency wo characterizes how often the cycles occur. Finally, the 
phase angle, or phase shift, 8 parameterizes the extent to which the sinusoid is shifted hor- 
izontally. It can be measured as the distance in radians from t = 0 to the point at which the 
cosine function begins a new cycle. As depicted in Fig. 19.4a, a negative value is referred 
to as a lagging phase angle because the curve cos (w,t - 8) begins a new cycle 8 radians 
after cos (mot). Thus, cos (mot - 8) is said to lag cos (mot). Conversely, as in Fig. 19.4b, a 
positive value is referred to as a leading phase angle. 

Note that the angular frequency (in radiansltime) is related to frequency f (in cycles1 
time) by 

and frequency in turn is related to period T (in units of time) by 

Although Eq. (19.2) is an adequate mathematical characterization of a sinusoid, it is 
awkward to work with from the standpoint of curve fitting because the phase shift is in- 
cluded in the argument of the cosine function. This deficiency can be overcome by invok- 
ing the trigonometric identity 

CI cos (wet + 8) = Cl [COS (mot) cos (8) - sin (mot) sin (Q)] (19.5) 
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Substituting Eq. (19.5) into Eq. (19.2) and collecting terms gives (Fig. 19.3b) 

f(t) = A. + Al cos (mot) + B1 sin (mot) (19.6) 

where 

A l = C l c o s ( 0 )  B I = - C 1 s i n ( 0 )  (19.7) 

Dividing the two parts of Eq. (19.7) gives 

0 = arctan (-2) 
where, if A,  < 0, add n to 0. Squaring and summing Eq. (19.7) leads to 

Thus, Eq. (19.6) represents an alternative formulation of Eq. (19.2) that still requires 
four parameters but that is cast in the format of a general linear model [recall Eq. (17.23)]. 
As we will discuss in the next section, it can be simply applied as the basis for a least- 
squares fit. 

Before proceeding to the next section, however, we should stress that we could have 
employed a sine rather than a cosine as our fundamental model of Eq. (19.2). For example, 

f(t) = A. + C1 sin (mot + 6) 

could have been used. Simple relationships can be applied to convert between the two 
forms 

sin (mot + 6) = cos 

and 

cos (wet + 0) = sin (19.10) 

In other words, 0 = S - n/2. The only important consideration is that one or the other 
format should be used consistently. Thus, we will use the cosine version throughout our 
discussion. 

19.1.1 Least-Squares Fit of a Sinusoid 

Equation (19.6) can be thought of as a linear least-squares model 

y = Ao + A, cos (wot) + B1 sin (wet) + e (19.11) 

which is just another example of the general model [recall Eq. (17.23)] 

y = aozo +a l z l  +a2z2 + . . .  +a,z, + e  (17.23) 

where z, = 1, z, = cos (mot), z2 = sin (mot), and all other z's = 0. Thus, our goal 
is to determine coefficient values that minimize 

N 

S, = { X  - [AO + A1 cos (cooti) + Bl sin ( ~ ~ t ~ ) ] } ~  
i=l 
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The normal equations to accomplish this minimization can be expressed in matrix form as 
[recall Eq. (17.25)] 

N C  cos (mot) C  sin (mot) 
C cos (coot) C  cos2 (wet) 
C sin (wet) C  cos (wet) sin (wot) C sin2 (mot) 

These equations can be employed to solve for the unknown coefficients. However, 
rather than do this, we can examine the special case where there are N  observations equi- 
spaced at intervals of At and with a total record length of T = (N - 1 )  At.  For this situa- 
tion, the following average values can be determined (see Prob. 19.3): 

C sin (coot) C cos (mot) = o  = 0  
N  N  

C  cos (mot) sin (wot) = o  
N 

Thus, for equispaced points the normal equations become 

The inverse of a diagonal matrix is merely another diagonal matrix whose elements are the 
reciprocals of the original. Thus, the coefficients can be determined as 

1 / N  0 0 CY 
C y  cos (wet) 
C y  sin (mot) 

2 
B1  = - C y  sin (wet) (19.16) 

N 

EXAMPLE 19.1 Least-Squares Fit of a Sinusoid 

Problem Statement. The curve in Fig. 19.3 is described by y = 1.7 + cos (4.189t + 
1.0472). Generate 10 discrete values for this curve at intervals of At = 0.15 for the range 
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t = 0 to 1.35. Use this information to evaluate the coefficients of Eq. (19.11) by a least- 
squares fit. 

Solution. The data required to evaluate the coefficients with m = 4.189 are 

These results can be used to determine [Eqs. (19.14) through (19.16)1 

Thus, the least-squares fir is 

y = 1.7 + 0.500 cos (mot) - 0.866 sin (mot) 

The model can also be expressed in the format of Eq. (19.2) by calculating [Eq. (19.8)] 

-0.866 
B = arctan (--) = 1.0472 

0.500 

and [Eq. (19.9)] 

I to give 

y = 1.7 + cos (mot + 1.0472) 

or alternatively, as a sine by using [Eq. (19.10)] 

y = 1.7 + sin (mot + 2.618) 

The foregoing analysis can be extended to the general model 

f ( t )  = Ao + A1 cos (mot) + BI  sin (mot) + A2 cos (2mot) + B2 sin (2wot) 

+ . . . + A, cos (mwot) + B, sin (moot)  
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where, for equally spaced data, the coefficients can be evaluated by 

Although these relationships can be used to fit data in the regression sense (that is, 
N > 2m + I) ,  an alternative application is to employ them for interpolation or colloca- 
tion-that is, to use them for the case where the number of unknowns, 2m + 1, is equal to 
the number of data points, N. This is the approach used in the continuous Fourier series, as 
described next. 

1 9.2 CONTlNUOUS FOURIER SERIES 

In the course of studying heat-flow problems, Fourier showed that an arbitrary periodic 
function can be represented by an infinite series of sinusoids of harmonically related fre- 
quencies. For a function with period T, a continuous Fourier series can be written1 

f ( t )  = ao + a1 cos (mot) + bl sin (wot) + a2 cos (2wot) + b2 sin (2wot) + . . . 
or more concisely, 

f(r) = a. + [ak cos (kwot) + b k  sin (kwot)] 
k = l  

where o, = 2nlT is called the fundamental frequency and its constant multiples 2w,, 304, 
etc., are called harmonics. Thus, Eq. (19.17) expresses f ( t )  as a linear combination of the 
basis functions: 1, cos (mot), sin (o,t), cos (2w,t), sin (2w,t), . . . . 

As described in Box 19.1, the coefficients of Eq. (19.17) can be computed via 

and 

bk = 1- 
T 

f ( t )  sin (kwot) d t  

fork = 1 ,2 , .  . .and 

'The existence of the Fourier series is predicated on the Dirichlet conditions. These specify that the periodic func- 
tion have a finite number of maxima and minima and that there be a finite number of jump discontinuities. In gen- 
eral, all physically derived periodic functions satisfy these conditions. 



19.2 CONTINUOUS FOURIER SERIES 515 

Box 19.1 Determination of the Coefficients of the Continuous Fourier Series 

As was done for the discrete data of Sec. 19.1.1, the following rela- which can be solved for 
tionships can be established: 

a0 = 
J,T f ( t )  d t  IT  sin (kwot) d t  = cos (kwot) dt = 0 IT  (B19.1.1) T 

Thus, a,, is simply the average value of the function over the period. 
T To evaluate one of the cosine coefficients, for example, a,, Eq. 

cos (kwot) sin ( p o t )  d t  = 0 (B19'1'2) (19.17) can be multiplied by cos (mw,,t) and integrated to give 

lT sin (kwUt) sin ( p o t )  d t  = o (B19.1.3) lT / ( t )  cos (mwot) d t  = a. cos (moo t )  dt IT  

+ bT 2 bi sin (kwot) cos (mwot) d t  

TO evaluate its coefficients, each side of Eq. (19.17) can be inte- From Eqs. (B19.1.1), (B19.1.21, and (~19 .1 .4 ) ,  we see that every 
grated to give term on the right-hand side is zero, with the exception of the case 

where k = m. This latter case can be evaluated by Eq. (B19.1.5) 
and, therefore, Eq. (B 19.1.6) can be solved for a,, or more gener- 
ally [Eq. (19.18)], 

+ bk sin (kwot)] dt 
ak = - : lT f ( t )  cos (km0t) d t  

Because every term in the summation is of the form of 
Eq. (B  19.1. I ) ,  the equation becomes f o r k =  1,2 ,  . . . .  

In a similar fashion Eq. ( 1  9.17) can be multiplied by sin (moot), I T  f ( t )  d t  = aoT integrated, and manipulated to yield Eq. (19.19). 

EXAMPLE 19.2 Continuous Fourier Series Approximation 

I Problem Statement. Use the continuous Fourier series to approximate the square or 

1 rectangular wave function (Fig. 19.5) 

I 
1 Solution. Because the average height of the wave is zero, a value of a, = 0 can be 
1 obtained directly. The remaining coefficients can be evaluated as [Eq. (19.18)J I 



FlGURE 19.5 
A square or rectangular wave- 
form with a height of 2 and a 
period T =  2n/wo.  

FIGURE 19.6 
The Fourier series approxima- 
tion of the square wave from 
Fig. 19.5. The series of plots 
shows the summation up to and 
including the [a) first, (b) sec- 
ond, and [c) th~rd terms. The In- 
dividual terms that were added 
at each stage ore also shown. 

FOURIER APPROXIMATION 
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i The integrals can be evaluated to give 

4/(kn) fork = 1, 5 , 9 , .  . . 
-4/(kn) fork = 3 ,7 ,  11 , .  . . 

0 for k = even integers 

Similarly, it can be determined that all the h's = 0. Therefore, the Fourier series approxi- 
mation is 

4 
- cos (7wot) $ 
7 n  

The results up to the first three terms are shown in Fig. 19.6. 
It should be mentioned that the square wave in Fig. 19.5 is called an even function be- 

cause f(t) = f(-t). Another example of an even function is cos ( t ) .  It can be shown (Van 
Valkenburg, 1974) that the h's in the Fourier series always equal zero for even functions. 
Note also that odd functions are those for which f(t) = -f(-t). The function sin (t) is an 
odd function. For this case, the a's will equal zero. 

Aside from the trigonometric format of Eq. (19.17), the Fourier series can be ex- 
pressed in terms of exponential functions as (see Box 19.2 and App. A) 

where i = 2/=i and 

This alternative formulation will have utility throughout the remainder of the chapter. 

19.3 FREQUENCY AND TIME DOMAINS 

To this point, our discussion of Fourier approximation has been limited to the time domain. 
We have done this because most of us are fairly comfortable conceptualizing a function's 
behavior in this dimension. Although it is not as familiar, the frequency domain provides an 
alternative perspective for characterizing the behavior of oscillating functions. 

Thus, just as amplitude can be plotted versus time, so also can it be plotted versus fre- 
quency. Both types of expression are depicted in Fig. 19.7a, where we have drawn a three- 
dimensional graph of a sinusoidal function, 

In this plot, the magnitude or amplitude of the curve, f ( t ) ,  is the dependent variable and 
time t and frequency f = w,/2n are the independent variables. Thus, the amplitude and the 
time axes form a time plane, and the amplitude and the frequency axes form a frequency 
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The trigonometric form of the continuous Fourier series is or 
30 

f ( t )  = a0 + [ak cos (kwot) + bk sin (kwot)] 
k=l 

From Euler's identity, the sine and cosine can be expressed in To simplify further, instead of summing the second series from 1 to 
exponential form as 

oo, perform the sum from -1 to -00, 
e ix  - e - ~ x  

sinx = - 
2i 

e'X + e - L X  

cosx = - 
2 

03 
which can be substituted into Eq. (B19.2.1) to give f ( t )  = x EkeikWot (B19.2.6) 

00 

f ( [ )  = o0 + 
( e ~ k q l  a* - ib*+ e - i k q t  ak + ibk k=-m 

k = l  2 2 where the summation includes a term fork = 0. 

(B19,2,4) TO evaluate the c k ' s  Eqs. (19.18) and (19.19) can be substituted 
into Eq. (B19.2.5) to yield 

because l / i  = -i. We can define a number of constants 

Eo = a0 f ( t )  cos (kwot) dt  - i 

Employing Eqs. ( B  19.2.2) and ( B  19.2.3) and simplifying gives 

where. because of the odd and even properties of the sine and co- Therefore, Eqs. (B19.2.6) and (B19.2.7) are the complex versions 
sine, a,  = a-, and b, = -b-,. Equation (B19.2.4) can therefore, be of Eqs. (19.17) through (19.20). Note that App. A includes a sum- 

re-expressed as mary of the interrelationships among all the formats of the Fourier 

00 00 series introduced in this chapter. 
f ( t )  = Eo + C & e i k q t  + c-ke-ikwor 

k= 1 k= 1  

plane. The sinusoid can, therefore, be conceived of as existing a distance 1/T out along the 
frequency axis and running parallel to the time axes. Consequently, when we speak about 
the behavior of the sinusoid in the time domain, we mean the projection of the curve onto 
the time plane (Fig. 19.7b). Similarly, the behavior in the frequency domain is merely its 
projection onto the frequency plane. 

As in Fig. 19.7c, this projection is a measure of the sinusoid's maximum positive am- 
plitude C,. The full peak-to-peak swing is unnecessary because of the symmetry. Together 
with the location 1 / T  along the frequency axis, Fig. 19.7~ now defines the amplitude and 
frequency of the sinusoid. This is enough information to reproduce the shape and size of 
the curve in the time domain. However, one more parameter, namely, the phase angle, is re- 
quired to position the curve relative to t = 0. Consequently, a phase diagram, as shown in 
Fig. 19.7d, must also be included. The phase angle is determined as the distance (in radi- 
ans) from zero to the point at which the positive peak occurs. If the peak occurs after zero, 
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FIGURE 19.7 
(a) A depiction of how a sinusoid can be portrayed in the time and the frequency domains 
The time proiection is reproduced in (b), whereas the amplitude-frequency projection is 
reproduced in (c].  The phase-frequency projection is shown in (d). 

it is said to be delayed (recall our discussion of lags and leads in Sec. 19.1), and by con- 
vention, the phase angle is given a negative sign. Conversely, a peak before zero is said to 
be advanced and the phase angle is positive. Thus, for Fig. 19.7, the peak leads zero and the 
phase angle is plotted as +n/2. Figure 19.8 depicts some other possibilities. 

We can now see that Fig. 1 9 . 7 ~  and d provides an alternative way to present or 
summarize the pertinent features of the sinusoid in Fig. 1 9 . 7 ~ .  They are referred to as line 
spectra. Admittedly, for a single sinusoid they are not very interesting. However, when ap- 
plied to a more complicated situation, say, a Fourier series, their true power and value is re- 
vealed. For example, Fig. 19.9 shows the amplitude and phase line spectra for the square- 
wave function from Example 19.2. 

Such spectra provide information that would not be apparent from the time domain. 
This can be seen by contrasting Figs. 19.6 and 19.9. Figure 19.6 presents two alternative 
time-domain perspectives. The first, the original square wave, tells us nothing about 



FIGURE 19.8 
Various phases of 
showing the assoc 
11ne spectra. 

 sin^ 
I ted 

 soi id 
phase 

FIGURE 19.9 
(a) Amplitude and (b) phase 
spectra for the square wave 
from Fig. 19.5. 

line 
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the sinusoids that comprise it. The alternative is to display these sinusoids-that is, 
(4/n) cos (mot), -(4/3n) cos (3w0t), (4/5n) cos (5w0t), etc. This alternative does not pro- 
vide an adequate visualization of the structure of these harmonics. In contrast, Fig. 1 9 . 9 ~  
and b provides a graphic display of this structure. As such, the line spectra represent "fin- 
gerprints" that can help us to characterize and understand a complicated waveform. They 
are particularly valuable for nonidealized cases where they sometimes allow us to discern 
structure in otherwise obscure signals. In the next section, we will describe the Fourier 
transform that will allow us to extend such analyses to nonperiodic waveforms. 

19.4 FOURlER INTEGRAL AND TRANSFORM 

Although the Fourier series is a useful tool for investigating the spectrum of a periodic 
function, there are many waveforms that do not repeat themselves regularly. For example, 
a lightning bolt occurs only once (or at least it will be a long time until it occurs again), but 
it will cause interference with receivers operating on a broad range of frequencies-for ex- 
ample, TVs, radios, shortwave receivers, etc. Such evidence suggests that a nonrecurring 
signal such as that produced by lightning exhibits a continuous frequency spectrum. Be- 
cause such phenomena are of great interest to engineers, an alternative to the Fourier series 
would be valuable for analyzing these aperiodic waveforms. 

The Fourier integral is the primary tool available for this purpose. It can be derived 
from the exponential form of the Fourier series 

where 

where w, = 2n/T and k = 0, 1 ,2 ,  . . . . 
The transition from a periodic to a nonperiodic function can be effected by allowing 

the period to approach infinity. In other words, as T becomes infinite, the function never re- 
peats itself and thus becomes aperiodic. If this is allowed to occur, it can be demonstrated 
(for example, Van Valkenburg, 1974; Hayt and Kemmerly, 1986) that the Fourier series re- 
duces to 

and the coefficients become a continuous function of the frequency variable w, as in 

The function F(iw,), as defined by Eq. (19.26), is called the Fourier integral of f(t). In 
addition, Eqs. (19.25) and (19.26) are collectively referred to as the Fourier transform pair. 
Thus, along with being called the Fourier integral, F(iw,) is also called the Fourier trans- 
form of f ( t ) .  In the same spirit,,f(t), as defined by Eq. (19.251, is referred to as the inverse 
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FIGURE 19.10 
Illustration of how the discrete frequency spectrum of a Fourier serles for a pulse train [a) ap- 
proaches a continuous frequency spectrum of a Fourier integral (c] as the period is allowed to 
approach infiniv. 

Fourier transform of F(iw,). Thus, the pair allows us to transform back and forth between 
the time and the frequency domains for an aperiodic signal. 

The distinction between the Fourier series and transform should now be quite clear. 
The major difference is that each applies to a different class of functions-the series to pe- 
riodic and the transform to nonperiodic waveforms. Beyond this major distinction, the two 
approaches differ in how they move between the time and the frequency domains. The 
Fourier series converts a continuous, periodic time-domain function to frequency-domain 
magnitudes at discrete frequencies. In contrast, the Fourier transform converts a continu- 
ous time-domain function to a continuous frequency-domain function. Thus, the discrete 
frequency spectrum generated by the Fourier series is analogous to a continuous frequency 
spectrum generated by the Fourier transform. 

The shift from a discrete to a continuous spectrum can be illustrated graphically. In 
Fig. 19.10a, we can see a pulse train of rectangular waves with pulse widths equal to one- 
half the period along with its associated discrete spectrum. This is the same function as was 
investigated previously in Example 19.2, with the exception that it is shifted vertically. 
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In Fig. 19. lob, a doubling of the pulse train's period has two effects on the spectrum. 
First, two additional frequency lines are added on either side of the original components. 
Second, the amplitudes of the components are reduced. 

As the period is allowed to approach infinity, these effects continue as more and more 
spectral lines are packed together until the spacing between lines goes to zero. At the limit, 
the series converges on the continuous Fourier integral, depicted in Fig. 19.10~. 

Now that we have introduced a way to analyze an aperiodic signal, we will take the 
final step in our development. In the next section, we will acknowledge the fact that a sig- 
nal is rarely characterized as a continuous function of the sort needed to implement 
Eq. (19.26). Rather, the data is invariably in a discrete form. Thus, we will now show how 
to compute a Fourier transform for such discrete measurements. 

19.5 DISCRETE FOURIER TRANSFORM (DFT) 

In engineering, functions are often represented by finite sets of discrete values. Addi- 
tionally, data is often collected in or converted to such a discrete format. As depicted in 
Fig. 19.11, an interval from 0 to t can be divided into N equispaced subintervals with widths 
of At = TIN.  The subscript n is employed to designate the discrete times at which samples 
are taken. Thus, f, designates a value of the continuous function f ( t )  taken at t,. 

Note that the data points are specified at n = 0, 1, 2, . . . , N - 1. A value is not in- 
cluded at n = N. (See Ramirez, 1985, for the rationale for excluding f,.) 

FlGURE 19.1 1 
The sampling points of the discrete Fourier series 
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For the system in Fig. 19.11, a discrete Fourier transform can be written as 

and the inverse Fourier transform as 

where w, = 21rlN. 
Equations (19.27) and (19.28) represent the discrete analogs of Eqs. (19.26) and 

(19.25), respectively. As such, they can be employed to compute both a direct and an in- 
verse Fourier transform for discrete data. Although such calculations can be performed by 
hand, they are extremely arduous. As expressed by Eq. (19.27), the DFT requires N com- 
plex operations. Thus, we will now develop a computer algorithm to implement the DFT. 

Computer Algorithm for the DFT. Note that the factor 1/N in Eq. (19.28) is merely a 
scale factor that can be included in either Eq. (19.27) or (19.28), but not both. For our com- 
puter algorithm, we will shift it to Eq. (19.27) so that the first coefficient F, (which is the 
analog of the continuous coefficient a,) is equal to the arithmetic mean of the samples. 
Also, to develop an algorithm that can be implemented in languages that do not accommo- 
date complex variables, we can use Euler's identity, 

e=kia = cos a f i sin a 

to re-express Eqs. (19.27) and (19.28) as 

Fk = - C [ fn cos (koon) - i f ,  sin (kwon)] 
n=O 

and 
N-1 

fn = [Fk cos (koon) + iFk sin (kwon)] 
k=O 

Pseudocode to implement Eq. (19.29) is listed in Fig. 19.12. This algorithm can be de- 
veloped into a computer program to compute the DFT. The output from such a program is 
listed in Fig. 19.13 for the analysis of a cosine function. 

FIGURE 19.1 2 
Pseudocode for computing the DFT. 

D O k = O , N - 1  
D O n = O , N - 1  

angle = kw,n 
realk = real, + f, cos(ang/e)lM 
imaginary, = imaginary, - f, sin(ang1e)lN 

END DO 
END DO 
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I N D E X  
0 
1  
2  
3  
4  
5 
6 
7  
8 
9 
10  
1 1  
1 2  
1 3  
1 4  
15  
1 6  
1 7  
18 
1 9  
2 0  
2  1  
2 2 
2  3 
2 4  
2 5  
2 6 
2 7 
2 8 
2 9 
3 0  
3 1  

R E A L  
0.0000 
0.0000 
0.0000 
0.0000 
0.5000 
0.0000 
0.0000 
0.0000 

-0.0000 
0.0000 

-0 .0000 
0.0000 

-0.0000 
0.0000 
0.0000 
0.0000 

-0.0000 
0.0000 

-0.0000 
-0.0000 
-0.0000 

0.0000 
0.0000 

-0.0000 
-0.0000 
-0 .0000 
-0.0000 
-0.0000 

0.5000 
0.0000 
0.0000 
0.0000 

I M A G I N A R Y  
0.0000 
0.0000 

-0.0000 
-0.0000 

0.0000 
-0.0000 

0.0000 
0.0000 
0.0000 
0.0000 

-0.0000 
0.0000 
0.0000 

-0.0000 
0.0000 

-0.0000 
0.0000 
0.0000 
0.0000 

-0.0000 
0.0000 
0.0000 
0.0000 

-0.0000 
0.0000 
0.0000 
0.0000 

-0.0000 
-0.0000 
-0.0000 

0.0000 
0.0000 

FIGURE 19.13 
Output of a program based on the algorithm from Fig. 19.12 for the DFT of data generated by 
a cosine function f(t) = cos [2n(1 2.5)tI at 3 2  points with A t  = 0.01 s. 

19.6 FAST FOURIER TRANSFORM (FFT) 

Although the algorithm described in the previous section adequately calculates the DFT, it 
is computationally burdensome because N~ operations are required. Consequently, for data 
samples of even moderate size, the direct determination of the DFT can be extremely time- 
consuming. 

The fast Fourier transform, or FFT, is an algorithm that has been developed to compute 
the DFT in an extremely economical fashion. Its speed stems from the fact that it utilizes the 
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FIGURE 19.14 
Plot of number of operations vs. sample size for the standard DFT and the FFT. 

results of previous computations to reduce the number of operations. In particular, it ex- 
ploits the periodicity and symmetry of trigonometric functions to compute the transform 
with approximately N log, N operations (Fig. 19.14). Thus, for N = 50 samples, the FFT is 
about 10 times faster than the standard DFT. For N = 1000, it is about 100 times faster. 

The first FFT algorithm was developed by Gauss in the early nineteenth century (Hei- 
deman et al., 1984). Other major contributions were made by Runge, Danielson, Lanczos, 
and others in the early twentieth century. However, because discrete transforms often took 
days to weeks to calculate by hand, they did not attract broad interest prior to the develop- 
ment of the modem digital computer. 

In 1965, J. W. Cooley and J. W. Tukey published a key paper in which they outlined an 
algorithm for calculating the FFT. This scheme, which is similar to those of Gauss and 
other earlier investigators, is called the Cooley-Tukey algorithm. Today, there are a host of 
other approaches that are offshoots of this method. 

The basic idea behind each of these algorithms is that a DFT of length N is decom- 
posed, or "decimated," into successively smaller DFTs. There are a variety of different 
ways to implement this principle. For example, the Cooley-Tukey algorithm is a member 
of what are called decimation-in-time techniques. In the present section, we will describe 
an alternative approach called the Sande-Tukey algorithm. This method is a member of an- 
other class of algorithms called decimation-in-frequency techniques. The distinction be- 
tween the two classes will be discussed after we have elaborated on the method. 
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19.6.1 Sande-Tukey Algorithm 

In the present case, N will be assumed to be an integral power of 2, 

where M is an integer. This constraint is introduced to simplify the resulting algorithm. 
Now, recall that the DFT can be generally represented as 

where 2n /N  = o,,. Equation (19.32) can also be expressed as 

where W is a complex-valued weighting function defined as 

Suppose now that we divide the sample in half and express Eq. (19.32) in terms of the 
first and last N / 2  points: 

(N12)-1  N-1 

where k = 0, 1, 2 ,  . . . , N - 1. A new variable, m = n - N / 2 ,  can be created so that the 
range of the second summation is consistent with the first, 

, , ,  

Fk = C ( f ,  + e-'"kfn+N,2) e-i2nknlN 
n=O 

Next, recognize that the factor e-jZk = (- l )k .  Thus, for even points it is equal to 1 and 
for odd points it is equal to -1. Therefore, the next step in the method is to separate 
Eq. (19.34) according to even values and odd values of k. For the even values, 

and for the odd values, 
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These equations can also be expressed in terms of Eq. (19.33). For the even values, 

(N/2)-1 

F ~ k  = ( f n  + fn+N/2) w~~~ 

and for the odd values, 

Now, a key insight can be made. These even and odd expressions can be interpreted as 
being equal to the transforms of the (N/2)-length sequences 

and 

h,  = ( f n  - fn+N/2)Wn for I2 = 0, 1, 2, . . . , (N/2) - 1 (19.36) 

Thus, it directly follows that 

fork = 0, 1.2. . . . , (N/2) - 1 
F2k+1 = Hk 

In other words, one N-point computation has been replaced by two (N/2)-point com- 
putations. Because each of the latter requires approximately (N/212 complex multiplica- 
tions and additions, the approach produces a factor-of-2 savings-that is, N 2  versus 
2(~/2)" N '12. 

The scheme is depicted in Fig. 19.15 for N = 8. The DFT is computed by first form- 
ing the sequence gn and hn and then computing the N/2 DFTs to obtain the even- and odd- 
numbered transforms. The weights W" are sometimes called twiddle factors. 

Now it is clear that this "divide-and-conquer" approach can be repeated at the second 
stage. Thus, we can compute the (N/4)-point DFTs of the four N/4 sequences composed of 
the first and last N/4 points of Eqs. (19.35) and (19.36). 

The strategy is continued to its inevitable conclusion when N/2 two-point DFTs are 
computed (Fig. 19.16). The total number of calculations for the entire computation is on 
the order of N log, N. The contrast between this level of effort and that of the standard DFT 
(Fig. 19.14) illustrates why the FFT is so important. 

Computer Algorithm. It is a relatively straightforward proposition to express Fig. 19.16 
as an algorithm. As was the case for the DFT algorithm of Fig. 19.12, we will use Euler's 
identity, 

&la = cos a f i sin a 

to allow the algorithm to be implemented in languages that do not explicitly accommodate 
complex variables. 

Close inspection of Fig. 19.16 indicates that its fundamental computational molecule 
is the so-called butterfly network depicted in Fig. 19 .17~.  Pseudocode to implement one of 
these molecules is shown in Fig. 19.176. 
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FIGURE 19.1 5 
Flow groph of the First stage in a decimation-in-frequency decornpos~tion of an N-point DFT into 
two (Nl2)-poirit DFTs for N = 8. 

FIGURE 19.1 6 
Flow graph of the complete decimation-in-frequency decomposition of an eight-point DFT. 



FOURIER APPROXIMATION 

FlGLdRE 19.1 8 
Pseudocode to implement a 
decimation-in-frequency FFT. 
Note that the pseudocode is 
composed of two arts: (a) 
the FFT itself and (p) a bit-re- 
versa1 routine to unscramble 
the order of the resulting 
Fourier coefficients. 

FlGURE 19.1 7 
(a) A butterfly network that represents the fundamental computation of Fig. 19.16. (b) Pseudocode 
to implement (a). 

(a) 
m = LOG(N) / LOG(2) 
N 2 =  N 
D O k =  1, m 

N1= N2  
N2 = N2/2 
angle = 0 
arg = 2 x /  N1 
D O j = O ,  N 2 -  1 

c = cos(ang1e) 
s = -sin(angle) 
D O i = j ,  N -  1, N1 

kk= i +  N2  
x t  = x(i) - x(kk) 
x(i) = x(i) + x(kk) 

Y, = YO) - Y(kk1 
~ ( i )  = ~ ( 9  + Y(kk) 
~ ( k k )  = x t  * c - yt * s 
y(kk) = yt * c + x t  * s 

END DO 
angle = ( j  + I )  

END DO 
END DO 

(b) 
j = O  
DO i = 0, N-2 

IF (i < j )  THEN 
X t  = X 

x. = x. 
i ' 

X,  = X t  

yt=Yj 
Yj = Yi 
Yi = yt 

END IF 
k = N / 2  
DO 

IF (k 2 j + 1) EXIT 
j = j - k  
k =  k / 2  

END DO 
j = j +  k 

END DO 
D O i = O ,  N -  l 

x(i) = xj i )  / N 
y( i )  = y ( i ) /  N 

END DO 

Pseudocode for the FFT is listed in Fig. 19.18. The first part consists essentially of 
three nested loops to implement the computation embodied in Fig. 19.16. Note that the 
real-valued data is originally stored in the array x. Also note that the outer loop steps 
through the M stages [recall Eq. (19.3 I)] of the flow graph. 

After this first part is executed, the DFT will have been computed but in a scrambled 
order (see the right-hand side of Fig. 19.16). These Fourier coefficients can be unscrambled 
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Scrambled 
Order 

(Decimal) 

Scrambled 
Order 

(Binary) 

F[OOO) 
F( 1 00) 
F(0 1 0) 

=+ F ( i  101 
F(00 1 ) 
FIlOl) 
F(0l 1 )  
F ( 1  1 i) 

Bit-Reversed Final 
Order Result 

(Binary) (Decimal) 

FIGURE 19.19 
Depiction of the bit-reversal process. 

FlGURE 19.20 
Flow graph of a decimation-in-time FFT of an eight-point DFT. 

by a procedure called hit reversal. If the subscripts 0 through 7 are expressed in binary, the 
correct ordering can be obtained by reversing these bits (Fig. 19.19). The second part of the 
algorithm implements this procedure. 

19.6.2 CooleyTukey Algorithm 

Figure 19.20 shows a flow network to implement the Cooley-Tukey algorithm. For this 
case, the sample is initially divided into odd- and even-numbered points, and the final 
results are in correct order. 
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This approach is called a decimation in time. It is the reverse of the Sande-Tukey al- 
gorithm described in the previous section. Although the two classes of method differ in or- 
ganization, they both exhibit the N log,N operations that are the strength of the FFT 
approach. 

19.7 THE POWER SPECTRUM 
The FFT has many engineering applications, ranging from vibration analysis of structures 
and mechanisms to signal processing. As described previously, amplitude and phase 
spectra provide a means to discern the underlying structure of seemingly random signals. 
Similarly, a useful analysis called a power spectrum can be developed from the Fourier 
transform. 

As the name implies, the power spectrum derives from the analysis of the power out- 
put of electrical systems. In mathematical terms, the power of a periodic signal in the time 
domain can be defined as 

Now another way to look at this information is to express it in the frequency domain by cal- 
culating the power associated with each frequency component. This information can be 
then displayed as apower spectrum, a plot of the power versus frequency. 

If the Fourier series for f(t) is 

the following relation holds (see Gabel and Roberts 1987) for details): 

Thus, the power in f(t) can be determined by adding together the squares of the Fourier co- 
efficients; that is, the powers associated with the individual frequency components. 

Now, remember that in this representation, the single real harmonic consists of both 
frequency components at f kw,. We also know that the positive and negative coefficients 
are equal. Therefore, the power in f,(t), the kth real harmonic of f(t), is 

The power spectrum is the plot of p, as a function of frequency kw,. We will devote 
Sec. 20.3 to an engineering application involving the FFT and the power spectrum gener- 
ated with software packages. 

Additional Information. The foregoing has been a brief introduction to Fourier approx- 
imation and the FFT. Additional information on the former can be found in Van Valkenburg 
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(I974), Chirlian (1969), and Hayt and Kemmerly (1986). References on the FFT include 
Davis and Rabinowitz (1975); Cooley, Lewis, and Welch (1977); and Brigham (1974). 
Nice introductions to both can be found in Ramirez (1985), Oppenheim and Schafer 
(1975), and Gabel and Roberts (1987). 

119.8 CURVE FlTTlNG WITH LIBRARIES AND PACKAGES 

Software libraries and packages have great capabilities for curve fitting. In this section, we 
will give you a taste of some of the more useful ones. 

19.8.1 Excel 

In the present context, the most useful application of Excel is for regression analysis and, 
to a lesser extent, polynomial interpolation. Aside from a few built-in functions (see 
Table 19.1), there are two primary ways in which this capability can be implemented: the 
Trendline command and the Data Analysis Toolpack. 

The Trendline Command (Insert Menu). This command allows a number of different 
trend models to be added to a chart. These models include linear, polynomial, logarithmic, 
exponential, power, and moving average fits. The following example illustrates how the 
Trendline command is invoked. 

TABLE B 9.1 Excel built-in functions related to regression fits of data. 

Function Description 

FORECAST Returns a value along a linear trend 
GROWTH Returns values along an exponential trend 
INTERCEPT Returns the intercept of the linear regression line 
LINEST Returns the parameters of a l~near trend 
LOGEST Returns the parameters of an exponential trend 
SLOPE Returns the slope of the lhnear regression line 
TREND Returns values along a linear trend 

EXAMPLE 19.3 Using Excel's Trendline Command 

a Problem Statement. You may have noticed that several of the fits available on 
Trendline were discussed previously in Chap. 17 (e.g., linear, polynomial, exponential, 

1 and power). An additional capability is the logarithmic model 
i 

Fit the following data with this model using Excel's Trendline command: 
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FIGURE 19.21 
Fit of a logarithmic model to the data from Example 19.3 

Solution. To invoke the Trendline command, a chart relating a series of dependent and 
independent variables must be created. For the present case, we use the Excel Chart 
Wizard to create an XY-plot of the data. 

Next, we can select the chart (by double clicking on it) and the series (by positioning 
the mouse arrow on one of the values and single clicking). The Insert and Trendline 
commands are then invoked with the mouse or by the key sequence 

/ Insert Trendline 

At this point, a dialogue box opens with two tabs: Options tab and the Type tab. The 
Options tab provides ways to customize the fit. The most important in the present context 
is to display both the equation and the value for the coefficient of determination (v2) 
on the chart. The primary choice on the Type tab is to specify the type of trendline. For 
the present case, select Logarithmic. The resulting fit along with r2 is displayed in 
Fig. 19.21. 

The Trendline command provides a handy way to fit a number of commonly used 
models to data. In addition, its inclusion of the Polynomial option means that it can also be 
used for polynomial interpolation. However, the fact that its statistical content is limited to 
r 2  means that it does not allow statistical inferences to be drawn regarding the model fit. 
The Data Analysis Toolpack described next provides a nice alternative where such infer- 
ences are necessary. 

The Data Analysis Toolpack. This Excel Add-in Package contains a comprehensive ca- 
pability for curve fitting with general linear least squares. As previously described in 
Sec. 17.4, such models are of the general form 

where z,, z , ,  . . . , z,  are m + 1 different functions. The next example illustrates how such 
models can be fit with Excel. 
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EXAMPLE 19.4 Using Excel's Data Analysis Toolpack 

i Problem Statement. The following data was collected for the slope, hydraulic radius, 

1 
' 

and velocity of water flowing in a canal: 

I 

i 
i 
i 
1 

There are theoretical reasons (recall Sec. 8.2) for believing that this data can be fit to a 
power model of the form 

where a ,  a, and p are empirically derived coefficients. There are theoretical reasons (again, 
see Sec. 8.2) for believing that a and p should have values of approximately 0.5 and 0.667, 
respectively. Fit this data with Excel and evaluate whether your regression estimates con- 
tradict the expected values for the model coefficients. 

Solution. The logarithm of the power model is first used to convert it to the linear 
format of Eq. (17.23), 

1 U = loga  + a l o g S  + p l o g R  

1 An Excel spreadsheet can be developed with both the original data along with their corn- 
/ mon logarithms, as in the following: i 
I 

As shown, an efficient way to generate the logarithms is to type the formula to compute the 
first log(S). This formula can then be copied to the right and down to generate the other 
logarithms. 

Because of its status as an "Add-In" on the version of Excel available at the time of 
this book's printing, the Data Analysis Toolpack must sometimes be loaded into Excel. To 
do this, merely use the mouse or the key sequence 

Then select Analysis Toolpack and OK. If the add-in is successful, the selection Data 
Analysis will be added to the Tools menu. 

After selecting Data Analysis from the Tools menu, a Data Analysis menu will appear 
on the screen containing a large number of statistically oriented routines. Select Regression 
and a dialogue box will appear, prompting you for information on the regression. After 
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making sure that the default selection New Worksheet Bly is selected, fill in F2:F7 for the 
y range and D2:E7 for the x range, and select OK. The following worksheet will be created: 

i 

Thus, the resulting fit is 

log U = 1.522 + 0.433 log S + 0.733 log R 

or by taking antilog, 

u = 33.3~0.433~0.733 

Notice that 95% confidence intervals are generated for the coefficients. Thus, there is 
a 95% probability that the true slope exponent falls between 0.363 and 0.504, and the true 
hydraulic radius coefficient falls between 0.63 1 and 0.835. Thus, the fit does not contradict 
the theoretical exponents. 

Finally, it should be noted that the Excel Solver tool can be used to perform nonlinear 
regression by directly minimizing the sum of the squares of the residuals between a nonlin- 
ear model prediction and data. We devote Sec. 20.1 to an example of how this can be done. 

Mathcad can perform a wide variety of statistical, curve fitting, and data-smoothing tasks. 
These include relatively simple jobs like plotting histograms and calculating population 
statistic summaries such as mean, median, variance, standard deviations, and correlation 
coefficients. In addition, Mathcad can predict intermediate values by connecting known 
data points with either straight lines (linear interpolation) using linterp or with sections of 
cubic polynomials (cubic spline interpolation) using cspline, pspline, or Ispline. These 
spline functions allow you to try different ways to deal with interpolation at the end points 
of the data. The lspline function generates a spline curve that is a straight line at the end 
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points. The pspline function generates a spline curve that is a parabola at the end points. 
The cspline function generates a spline curve that is cubic at the end points. The intesp 
function uses the curve fitting results and returns an interpolated y value given an x value. 
In addition, you can perform two-dimensional cubic spline interpolation by passing a sur- 
face through a grid of points. 

Mathcad contains a number of functions for performing regression. The slope and in- 
tercept functions return the slope and intercept of the least-squares regression fit line. The 
regress function is used for nth-order polynomial regression of a complete data set. The 
loess function performs localized nth-order polynomial regression over spans of the data 
that you can specify. The interp function can also be used to return intermediate values of 
y from a regression fit for a given x point. The regress and loess functions can also perform 
multivariate polynomial regression. Mathcad also provides the linfit function that is used 
to model data with a linear combination of arbitrary functions. Finally, the genfit function 
is available for cases where model coefficients appear in arbitrary form. In this case, the 
more difficult nonlinear equations must be solved by iteration. 

Let's do an example that shows how Mathcad is used to perfom two-dimensional 
spline interpolation (Fig. 19.22). The data we will fit is 

FIGURE 19.22 
2D spline with Mathcad 

Eile Edit yiew !nsert Eormat Bath Synbolics Window Help 

2D SPLIN!? M Z :  1 h 

Enter the matrix spclfying a surface: 
Mz := READPRN("matsphn.pm3') 

Mxy := READPRN("mabty.pm"j 0.5 
0 

Comuute svline coeff~cients: 
d.5  

fit(x,y) := inte .I ~,m,~z,l;jl 
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Note that the numbers along the top and left side are the x and y coordinates of the z val- 
ues in the interior of the matrix. 

The first step is to supply the data to Mathcad. To do this, we can create two data files 
called matsplin.prn and matxy.prn. The first two active lines in Fig. 19.22 use the READ- 
BRN command to read data from these files. The matsplin.prn file is a simple text file that 
contains the values of the function (2 )  to be interpolated at various x and y locations on a rec- 
tangular grid. The dimensions of the grid are defined by the data in the matxy.prn text file. 
The elements of this file are pairs of x and y values that characterize the diagonal elements of 
the region. The definition symbol is used to assign the data from the data files to the variables 
Mz and Mxy. Next, the definition symbol and the csplin function are used to define the S ma- 
trix. This is amatrix that contains values of the second derivative and other numerical results 
at the various grid locations. This matrix, along with Mz and Mxy, are used by the interp 
function to return values of z as the variable fit(x,y) based on the cubic spline interpolation 
at input values of x and y. Mathcad designed this sequence of operations in this manner so 
that the interpolating polynomials would not have to be recalculated every time interpolation 
is required at different values of x and y. With these operations in place, you can interpolate 
at any location using fit(x,y), as shown with x = 2.5 and y = 3.9. You can also construct a 
plot of the interpolated surface as shown in Fig. 19.22. 

As another example of demonstrating some of Mathcad's curve fitting capabilities, 
let's use the ffi function for Fourier analysis as in Fig. 19.23. The first line uses the defini- 
tion symbol to create i as a range variable. Next x, is formulated using the rnd Mathcad 
function to impart a random component to a sinusoidal signal. The graph of the signal can 
be placed on the worksheet by clicking to the desired location. This places a red cross hair 
at that location. Then use the Insert/Graph/X-Y Plot pull down menu to place an empty 
plot on the worksheet with placeholders for the expressions to be graphed and for the 
ranges of the x and y axes. Simply type x, in the placeholder on the y axis and 0 and 80 for 

FIGURE 19.23 
FFT with Mathcad. 

FAST FOURIER TRANSFORM 

Defie a real signal in time: Signal 
2- 

i 

Take Fourier transform: Transform 
4 1 , 1  I I I 
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the x-axis range. Mathcad does all the rest to produce the graph shown in Fig. 19.23. Once 
the graph has been created you can use the FormatJGraphJX-Y Plot pull down menu to vary 
the type of graph; change the color, type, and weight of the trace of the function; and add 
titles, labels, and other features. Next, c is defined as fft(x). This function returns the 
Fourier transform of x. The result is a vector, c, of complex coefficients that represent val- 
ues in the frequency domain. A plot of the magnitude of c, is constructed as above. 

19.8.3 MATbAB 

As summarized in Table 19.2, MATLAB has a variety of built-in functions that span the 
total capabilities described in this part of the book. The following example illustrates how 
a few of them can be used. 

TABLE 19.2 Some of the MATLAB functions to implemenl 
interpolation, regression, splines, and the FFT. 

Function Description 

polyfit Fit polynomial to data 
interpl I D  interpolation (1-D table lookup) 
interp2 2-D ~nterpolation (2-D table lookup) 
spline Cubic spl~ne data interpolation 
fi t  Discrete Fourier transform 

EXAMPLE 19.5 Using MATLAB for Curve Fitting 

Problem Statement. Explore how MATLAB can be employed to fit curves to data. 
To do this, use the sine function to generate equally spaced f ( x )  values from 0 to 10. 
Employ a step size of 1 so that the resulting characterization of the sine wave is sparse 
(Fig. 19.24). Then, fit it with (a)  linear interpolation, (b) a fifth-order polynomial, and 
(c)  a cubic spline. 

Solution. 
I 
1 (a) The values for the independent and the dependent variables can be entered into 
/ vectors by 

A new, more finely spaced vector of independent variable values can be generated and 
stored in the vector xi, 

I The MATLAB function interpl  can then be used to generate dependent variable values 1 yi for all the xi values using linear interpolation. Both the original data (x, y) along with 
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FlGURE 19.24 
Eleven points sampled from a sinusoid. 

the linearly interpolated values can be plotted together, as shown in the graph below: 

(b) Next, the MATLAB polyfit function can be used to generate the coefficients of a fifth- 
order polynomial fit of the original sparse data, 

where the vector p holds the polynomial's coefficients. These can, in turn, be used to 
generate a new set of yi values, which can again be plotted along with the original sparse 
sample, 
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Thus, the polynomial captures the general pattern of the data, but misses most of the 
points. 

(c) Finally, the MATLAB spline function can be used to fit a cubic spline to the original 
sparse data in the form of a new set of yi values, which can again be plotted along with 
the original sparse sample, 

I 
i 

It should be noted that MATLAB also has excellent capabilities to perform Fourier 
analysis. We devote Sec. 20.3 to an example of how this can be done. 

-- ----------- 

IMSL has numerous routines for curve fitting that span all the capabilities covered in this 
book, and then some. A sample is presented in Table 19.3. In the present discussion, we will 
focus on the RCURV routine. This routine fits a least-squares polynomial to data. 

RCURV is implemented by the following CALL statement: 

C A L L  R C U R V  ( N O B S ,  X D A T A ,  Y D A T A ,  N D E G ,  B ,  S S P O L Y ,  S T A T )  
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TABLE 19.3 IMSL routines for curve fitting. 

Category Routines Description 

9 Cubic spline interpolation CSIEZ Easy to use cubic spline routine 
CSlNT Not-a-knot 
CSDEC Derivative end conditions 

Cubic spline evaluation 
and integration CSVAL Evaluation 

CSDER Evaluation of the derivative 
CS 1 GD Evoluation on a grld 
CSlTG Integration 

* B-spline interpolation 

Piecewise polynomial 

9 Quadratic polynomial interpolation 
routines for gridded data 

r Scattered data interpolation 

9 Least-squares approximation RLINE Linear polynom~al 
RCURV General polynomial 
FNLSQ General functions 

Rational weighted Chebyshev 
approximation 

Ror~onol weighted 
Chebyshev 
approximation 

Real trigonometric FFT FFTRF Forward transform 
FFTRB Backward or lnverse transform 
FFTRI Initialization routine for FFTR 

Complex exponential FFT FFTCF Forward transform 
FFTCB Backward or inverse transform 
FFTCI lnitializot~on routine for FFTC 

Real sine and cosine FFTs 

Real quarter sine and quarter coslne FFTs 

Two- and three-dimensional complex FFTs 

Convolut~ons and correlations 

9 laplace transform 

where NOBS = Number of observations. (Input) 

XDATA = Vector of length NOBS containing the x values. (Input) 

YDATA = Vector of length NOBS containing the y values. (Input) 

NDEG = Degree of polynomial. (Input) 
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B = Vector of length NDEG + 1 containing the coefficients. 

SSPOLY = Vector of length NDEG + 1 containing the sequential sums of squares. 
(Output) SSPOLY(1) contains the sum of squares due to the mean. For 
i = 1,2,  . . . , NDEG, SSPOLY(i + 1) contains the sum of squares due 
to xi adjusted for the mean, x, x2, . . . , and xi-'. 

STAT = Vector of length 10 containing statistics described in Table 19.4. (Output) 
where 1 = Mean of x 

2 = Meanofy 

3 = Sample variance of x 

4 = Sample variance of y 

5 = R-squared (in percent) 

6 = Degrees of freedom for regression 

7 = Regression sum of squares 
8 = Degrees of freedom for error 

9 = Error sum of squares 

10 = Number of data points (x, y) containing NaN (not a number) as 
an x or y value. 

EXAMPLE 19.6 Using IMSL for Polynomial Regression 

Problem Statement. Use RCURV to determine the cubic polynomial that provides a 
Ieast-squares fit of the following data: 

Solution. An example of a main Fortran 90 program and function using RCURV to 
solve this problem can be written as 

PROGRAM F i  t p o l y  
u s e  m s i m s l  
I M P L I C I T  NONE 
INTEGER::ndeg,nobs, i , j  
PARAMETER (ndeg=3 ,  n o b s = 8 )  
R E A L : : b ( n d e g + l ) , s s p o l y ( n d e g + l ) , s t a t ( l 0 ) , x ~ n o b s ~ ~ y ~ n o b s ~ ,  

y c a l c ( n o b s )  
DATA x / 0 . 0 5 , 0 . 1 2 , 0 . 1 5 , 0 . 3 0 , 0 ~ ~ 5 , 0 . 7 0 , 0 . 8 ~ , 1 ~ 5 /  
DATA y / 0 . 9 5 7 , 0 . 8 5 I , 0 . 8 3 2 , 0 ~ 7 2 O , o . 5 8 3 , o O ~ 7 8 , 0 . ~ ~ 5 ~ ~ . ~ 5 6 /  
CALL R C U R V ( n o b s , x , y , n d e g , B , s s p o l y , s t a t )  
PRINT *, ' F i t t e d  p o l y n o m i a l  i s '  
DO i = l , n d e g + l  

PRINT ' ( ' IX,  " X A "  ,I1," TERM: " , F 8 . 4 I 1 ,  i-I, b ( i )  
END D O  
PRINT * 
PRINT ' (1X , "RA2 :  " , F 5 . 2 , " % " ) ' , s t a t ( 5 )  
PRINT * 
P R I N T * , ' N O .  X Y YCALC' 
DO i = 7,nobs 
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y c a l c = O .  
D O  j = l , n d e g + l  

ycalc(i)=ycalc(i)+b(j)*x(i)**(j-1) 
END D O  
PRINT ' ( IX , I8 ,3 (5X,F8 .4 ) ) ' ,  i, x ( i ) ,  y ( i ) ,  y c a l c ( i )  

END D O  
END 

An example run is 

F i t t e d  p o l y n o m i a l  i s  
X A O  TERM: . 9 9 0 9  
XA1 TERM: -1 .0312  
XA2 TERM: .2785  
XA3 TERM: - . 0 5 1 3  
RA2:  9 9 . 8 1 %  

NO. X 
1  . 0 5 0 0  
2 - 1 2 0 0  
3  . I 5 0 0  
4  . 3 0 0 0  
5 . 4 5 0 0  
6 . 7 0 0 0  
7 . 8 4 0 0  
8  1 . 0 5 0 0  

Y C A L C  
.9401  
. 8 7 1 1  
. 8 4 2 3  
. 7 0 5 3  
. 5 7 8 6  
- 3 8 8 0  
- 2 9 0 8  
. I 5 5 8  

PROBLEMS 

19.1 The pH in a reactor varies sinusoidally over the course of a 
day. Use least-squares regression to fit Eq. (19.11) to the following 
data. Use your fit to determine the mean, amplitude, and time of 
maximum pH. 

19.2 The solar radiation for Georgetown, South Carolina has been 
tabulated as 

Time, rno I J F M A M j j A S O N D  

Assuming each month is 30 days long, fit a sinusoid to this data. 
Use the resulting equation to predict the radiation in mid-August. 

19.3 The average values of a function can be determined by 19.4 Use a continuous Fourier series to approximate the sawtooth 

-- J; .f((., d~ 
wave in Fig. P19.4. Plot the first three terms along with the sum- 

f(1) = mation. 
S 

Use this relationship to verify the results of Eq. (19.13). 
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triangular u,n\,c. from Prob. 19.X. Samplc the wa\c I'rom r = 0 to 
1 7 .  Use. 32, 64, and I ? &  \ample. points. Time e3l.h run mid plot e \ -  
ecution \.crsu\ .V to verify Fig. 19.14. 
19.12 I>evelop a user-friendl), .iubprograln for the 1:FT b;~\c~l o n  
the algorithm from Fig. 19.18. 'kst i t  b), duplic.rtinp Fip. 19.13. 

-1  19-13 Repeat Prob. 19.1 1 using thc \oftu,urc you t le\ ,cl~~pc~l in 
Prob. 19.12. 
19.14 Csc E.~i<l 's  Trendline comni.~nd to tit ;r PO\\ cr e~luatio~) to 

FIGURE P I  9.4 
A sawtooth wave 

Plot y versus x along with the power equation and r2. 
19.15 Use the Excel Data Analysis Toolpack to develop a fourth- 

FIGURE P 19.5 
A triangular wave 

19.5 Use a continuous Fourier series to approximate the wave 
form in Fig. P19.5. Plot the first three terms along with the sum- 
mation. 
19.6 Construct amplitude and phase line spectra for Prob. 19.4. 
19.7 Construct amplitude and phase line spectra for Prob. 19.5. 
19.8 A half-wave rectifier can be characterized by 

where C, is the amplitude of the wave. Plot the first four terms 
along with the summation. 
19.9 Construct amplitude and phase line spectra for Prob. 19.8. 
19.10 Develop a user-friendly subprogram for the DFT based on 
the algorithm from Fig. 19.12. Test it by duplicating Fig. 19.13. 
19.11 Use the program from Prob. 19.10 to compute a DFT for the 

order regression polynomial to the following data for the dissolved 
oxygen concentration of fresh water versus temperature at sea 
level. 

19-16 Use the Excel Data Analysis Toolpack to fit a straight line to 
the following data. Determine the 90% confidence interval for the 
intercept. If it encompasses zero, redo the regression, but with the 
intercept forced to be zero (this is an option on the Regression dia- 
logue box) 

19-17 Use Mathcad to fit a cubic spline (with a straight line at the 
end points) to the following data: 

Determine the value of y at x = 3. 
19-18 Use Mathcad to generate 64 points from the function 

f(t) = cos (3t) + sin (lot)  

from t = 0 to 2n. As in Sec. 19.8.2 add a random component to the 
signal. Take an FFT of these values and plot the results. 
19.19 In a fashion similar to Sec. 19.8.3, use MATLAB to fit the 
data from Prob. 19.17 using (a) linear interpolation, (b) a fifth- 
order polynomial, and (e) a spline. 
19.20 Repeat Prob. 19.18. but use MATLAB to perform the analy- 
sis. 
19.21 Repeat Prob. 19.15, but use the IMSL routine, RCURV. 



CHAPTER 20 
Engineering App ications: 
Curve Fitting 

The purpose of this chapter is to use the numerical methods for curve fitting to solve some 
engineering problems. The first application, which is taken from chemical engineering, 
demonstrates how a nonlinear model can be linearized and fit to data using linear regres- 
sion. The second application employs splines to study a problem that has relevance to the 
environmental area of civil engineering: heat and mass-transport in a stratified lake. 

The third application illustrates how a fast Fourier transform can be employed in elec- 
trical engineering to analyze a signal by determining its major harmonics. The final appli- 
cation demonstrates how multiple linear regression is used to analyze experimental data for 
a fluids problem taken from mechanical and aerospace engineering. 

20.1 LUNEAR REGRESSION AND POPULATlOlU MODELS 
(CHEMICAL/PETROLEUIVI ENGINEERING) 

Background. Population growth models are important in many fields of engineering. 
Fundamental to many of the models is the assumption that the rate of change of the popu- 
lation (dpldt) is proportional to the actual population (p) at any time (t) ,  or in equation 
form, 

where k = a proportionality factor called the specific growth rate and has units of time-'. 
If k is a constant, then the solution of Eq. (20.1) can be obtained from the theory of differ- 
ential equations: 

where po = the population when t = 0. It is observed that p(t) in Eq. (20.2) approaches in- 
finity as t becomes large. This behavior is clearly impossible for real systems. Therefore, 
the model must be modified to make it more realistic. 

Solution. First, it must be recognized that the specific growth rate k cannot be constant 
as the population becomes large. This is the case because. as p approaches infinity, the 
organism being modeled will become limited by factors such as food shortages and toxic 
waste production. One way to express this mathematically is to use a saturation-growth-rate 
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model such that 
f 

where k,,, = the maximum attainable growth rate for large values of food ( f )  and K = the 
half-saturation constant. The plot of Eq. (20.3) in Fig. 20.1 shows that when f = K, 
k = k,,,/2. Therefore, K is  that amount of available food that supports a population 
growth rate equal to one-half the maximum rate. 

The constants K and k,,, are empirical values based on experimental measurements of 
k for various values off. As an example, suppose the population p represents a yeast em- 
ployed in the commercial production of beer and f is the concentration of the carbon source 
to be fermented. Measurements of k versus f for the yeast are shown in Table 20.1. It is 

FlGURE 20.1 
Plot of specific growth rate versus available food for the saturation-growth-rate model used to 
characterize microbial kinetics. The value K is called a half-saturation constant because it con 
forms to the concentration where the specific growth rate is half its maximum value. 

TABLE 20.1 Data used to evaluate the constants for a saturationgrowth-rate model to 
characterize microbial kinetics. 

--*--*av - -, v v 

f, mg/L k, day-' 1 if, L/mg l /kc, day 
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required to calculate k,,, and K from this empirical data. This is accomplished by invert- 
ing Eq. (20.3) in a manner similar to Eq. (17.17) to yield 

By this manipulation, we have transformed Eq. (20.3) into a linear form; that is, Ilk is a 
linear function of l/f, with slope Klk,,, and intercept Ilk,,,. These values are plotted in 
Fig. 20.2. 

Because of this transformation, the linear least-squares procedures described in 
Chap. 17 can be used to determine k,,, = 1.23 day-' and K = 22.18 mg/L. Theve results 
combined with Eq. (20.3) are compared to the untransformed data in Fig. 20.3, and when 
substituted into the model in Eq. (20.1), give 

Note that the fit yields a sum of the squares of the residuals (as computed for the untrans- 
formed data) of 0.001 305. 

Equation (20.5) can be solved using the theory of differential equations or using nu- 
merical methods discussed in Chap. 25 when f ( t )  is known. Iff approaches zero as p be- 
comes large, then dpldt approaches zero and the population stabilizes. 

The linearization of Eq. (20.3) is one way to evaluate the constants k,,, and K. An al- 
ternative approach, which fits the relationship in its original form, is the nonlinear regres- 
sion described in Sec. 17.5. Figure 20.4 shows how the Excel Solver tool can be used to es- 
timate the parameters with nonlinear regression. As can be seen, a column of predicted 
values is developed based on the model and the parameter guesses. These are used to gen- 

Lnearized version of the 
saturation-growth-rate model. 
The line is a least-squares fit that 
I S  used to evaluate the model 
coefficients k,,, = 1 .23 day-' 
and K =  22.18 mg/1 for 
a yeast that is used to produce 
beer 
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FIGURE 20.3 
Fit of the saturation-growth-rate model to a yenst employed in the comrnerc~al production of beer 

FIGURE 20.4 
Nonlinear regression to fit the saturation-growth-rate model to a yeast employed in the cornmer- 
cia1 production of beer. 

erate a column of squared residuals that are summed, and the result is placed in cell D14. 
The Excel Solver is then invoked to minimize cell D l4  by adjusting cells B I :B2. The re- 
sult, as shown in Fig. 20.4, yields estimates of k,,, = 1.23 and K = 22.14, with an 
S, = 0.001302. Thus, although, as expected, the nonlinear regression yields a slightly bet- 
ter fit, the results are almost identical. In other applications, this may not be true (or the 
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function may not be compatible with linearization) and nonlinear regression could repre- 
sent the only feasible option for obtaining a least-squares fit. 

20.2 USE O F  SPLUNES T O  ESTIMATE HEAT T M N S F E R  
(CIVIL/ENVIRONMENTAL ENGINEERING1 

Background. Lakes in the temperate zone can become thermally stratified during the 
summer. As depicted in Fig. 20.5, warm, buoyant water near the surface overlies colder, 
denser bottom water. Such stratification effectively divides the lake vertically into two lay- 
ers: the epilimnion and the hypolimnion separated by a plane called the thermocline. 

Thermal stratification has great significance for environmental engineers studying the 
pollution of such systems. In particular, the thermocline greatly diminishes mixing be- 
tween the two layers. As a result, decomposition of organic matter can lead to severe de- 
pletion of oxygen in the isolated bottom waters. 

The location of the thermocline can be defined as the inflection point of the temperature- 
depthcurve-that is, the point at which d 2 ~ / d x 2  = 0. It is also the point at which the absolute 
value of the first derivative or gradient is a maximum. Use cubic splines to determine the 
thermocline depth for Platte Lake (Table 20.2). Also use the splines to determine the value of 
the gradient at the thermocline. 

FIGURE 20.5 
Temperature versus depth during summer for Platte Lake, Michigan. 

TABLE 20.2 Temperature versus depth during summer for Platte Lake, Michigan. 
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Solution. The data is analyzed with a program that was developed based on the 
pseudocode from Fig. 18.18. The results as displayed in Table 20.3 list the spline predictions 
along with first and second derivatives at intervals of 1 m down through the water column. 

The results are plotted in Fig. 20.6. Notice how the thermocline is clearly located at the 
depth where the gradient is highest (i.e., the absolute value of the derivative is greatest) and 
the second derivative is zero. The depth is 11.35 m and the gradient at this point is 
-1.6IoC/m. 

TABLE 20.3 Output of spline program based on pseudocode from Fig. 18.18. 

D e p t h  ( m )  T (C)  d T / d z  d 2 T / d z 2  D e p t h  ( m )  T (C)  d T / d z  d 2 T / d z 2  
0.  2 2 . 8 0 0 0  - .0115  . O O O O  15 .  1 2 . 7 6 5 2  - .6518  . 3 0 0 4  
1 .  22 .7907  -. 0 0 5 0  . 0 1 3 0  1 6 .  1 2 . 2 4 8 3  -. 3973  - 2 0 8 6  
2. 2 2 . 7 9 4 4  - 0 1  46 . 0 2 6 1  1 7 .  1 1 . 9 4 0 0  - .  2 3 4 6  . I 1 6 7  
3.  22 .8203  .0305  -.OD85 18 .  1 1 . 7 4 8 4  -. 1 6 3 8  . 0 2 4 8  
4 .  22 - 8 3 7 4  - . 0 0 5 5  - .0635  1 9 .  1 1 . 5 8 7 6  - . I 5 9 9  . 0 0 4 5  
5. 2 2 . 7 9 0 9  -. 0 9 6 6  - .  1 1  9 9  20 .  1 1  . 4 3 1 6  - . I 5 0 2  - 0 1  48 
6 .  2 2 . 6 2 2 9  - . 2 5 0 8  - . I 8 8 4  21 .  1 1 . 2 9 0 5  -. 1 3 0 3  . 0 2 5 1  
7 .  2 2 . 2 6 6 5  - .4735  - . 2 5 6 9  2 2 .  1 1 . 1 7 4 5  -. 1 0 0 1  . 0 3 5 4  
8.  21  - 6 5 3 1  - . 7 6 4 6  - . 3 2 5 4  23 .  1 1  . 0 9 3 8  -. 0 5 9 6  - 0 4 3 6  
9 .  20 .71  44 - 1 . 1 2 4 2  - .  3 9 3 9  24 .  1 1 . 0 5 4 3  - .0212  - 0 3 3 2  

1 0 .  1 9 . 4 1 1 8  -1  - 4 5 2 4  - .2402  25 .  1 1 . 0 4 8 0  . 0 0 6 9  . 0 2 2 9  
1 1 .  1 7 . 8 6 9 1  - 1 . 6 0 3 4  - .  0 6 1  8  2 6 .  1 1  . 0 6 4 6  . 0 2 4 5  - 0 1  25 
1 2 .  1 6 . 2 6 4 6  - 1 . 5 7 5 9  . 1 1 6 6  27 .  1 1  - 0 9 3 6  . 0 3 1 8  . 0 0 2 1  
1 3 .  1 4 . 7 7 6 6  -1 .3702  - 2 9 5 0  2 8 .  1 1 . 1 0 0 0  . O O O O  . O O O O  
1 4 .  1 3 . 5 8 2 5  - . 9 9 8 1  - 3 9 2 3  

FIGURE 20.6 
Plots of (a) temperature, (b) gra- 
dient, and (c) second derivative 
versus depth (m) generated with 
the cubic spline program. The 
thermocline is located at the in- 
flection point of the ternperature- 
depth curve. 
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20.3 FOUWlER ANALVSIS (ELECTRICAL ENGUNEERING) 

Background. Fourier analysis is used in many areas of engineering. However, it is ex- 
tensively employed in electrical engineering applications such as signal processing. 

In 1848, Rudolph Wolf devised a method for quantifying solar activity by counting the 
number of individual spots and groups of spots on the sun's surface. He computed a quantity, 
now called a WoEfsunspot number, by adding 18 times the number of groups plus the total 
count of individual spots. As in Fig. 20.7, the record of this number extends back to 1770. On 
the basis of the early historical records, Wolf determined the cycle's length to be 11.1 years. 

Use a Fourier analysis to confirm this result by applying an FFT to the data from 
Fig. 20.3. Pinpoint the period by developing a power versus period plot. 

Solution. The data for year and sunspot number was downloaded from the web1 and 
stored in a tab-delimited file: sunspot.dat. The file can be loaded into MATLAB and the 
year and number information assigned to vectors of the same name, 

>> load sunspot.dat 
>> year=sunspot(:,l);number=sunspot(:,2); 

Next, an FFT can be applied to the sunspot numbers 

After getting rid of the first harmonic, the length of the FFT is determined (n) and then the 
power and frequency calculated, 

FIGURE 20.7 
Plot of Wolf sunspot number versus year. 

' ~ t  the time of this book's printing, the html was http://www.ngdc.noaa.gov//stp/SOLAR/SSN/ssn.html. 
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FlGURE 20.8 
Power spectrum for Wolf sunspot numbers. 

At this point, the power spectrum is a plot of power versus frequency. However, because 
period is more meaningful in the present context, we can determine the period and a power- 
period plot, 

The result, as shown in Fig. 20.8, indicates a peak at about 11 years. The exact value can 
be computed with 

28.4 ANALYSIS OF EXPERIMENTAL DATA (MECHANICAL/ 
AEROSPACE ENGINEERING) 

Background. Engineering design variables are often dependent on several independent 
variables. Often this functional dependence is best characterized by multivariate power 
equations. As discussed in Sec. 17.3, a multiple linear regression of log-transformed data 
provides a means to evaluate such relationships. 

For example, a mechanical engineering study indicates that fluid flow through a pipe 
is related to pipe diameter and slope (Table 20.4). Use multiple linear regression to analyze 
this data. Then use the resulting model to predict the flow for a pipe with a diameter of 
2.5 ft and a dope of 0.025 ft/ft. 

Solution. The power equation to be evaluated is 



554 ENGINEERING APPLICATIONS: CURVE FITTING 

TABLE 20.4 Experimental data for diameter, slope, and flow of concrete circular pipes. 

Experiment Diamewr, h Slope, f/f Flow, f 3/s 

where Q = flow (ft3/s), S = slope (ftlft), D = pipe diameter (ft), and ao, al, and a2 = co- 
efficients. Taking the logarithm of this equation yields 

log Q = log ao + a1 log D + a2 log S 

In this form, the equation is suited for multiple linear regression because log Q is a lin- 
ear function of log S and log D. Using the logarithm (base 10) of the data in Table 20.4, we 
can generate the following normal equations expressed in matrix form [recall Eq. (17.22)]: 

This system can be solved using Gauss elimination for 

log ao = 1.7475 

a1 = 2.62 

a2 = 0.54 

If log ao = 1.7475, ao = = 55.9, and Eq. (20.6) is 

Q = 55.9,2.62s~.54 

Eq. (20.7) can be used to predict flow for the case of D = 2.5 ft and S = 0.025 ftlft, as in 

It should be noted that Eq. (20.7) can be used for other purposes besides computing 
flow. For example, the slope is related to head loss hL and pipe length L by S = hL/L. If this 
relationship is substituted into Eq. (20.7) and the resulting formula solved for hL, the fol- 
lowing equation can be developed: 

This relationship is called the Hazen-Williams equation. 
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PROBLEMS 

Cbemical/Petroleum Engineering to estimate the concentration of dissolved oxygen for a chloride 
20.1 Perform the same computation as in Sec. 20.1, but use linear concentration of 15,000 mg/L at T = 12°C. 
regression and transformations to fit the data with a power equa- 20.6 As compared to the models from Probs. 20.4 and 20.5, a 
tion. Ignore the first point when fitting the equation. somewhat more sophisticated model that accounts for the effect of 
20.2 You perform experiments and determine the following values both temperature and chloride on dissolved oxygen saturation can 
of heat capacity c at various temperatures T for a gas: be hypothesized as being of the form, 

c 1 1 250 1 280 1 350 1480 1580 1700 That is, a third-order polynomial in temperature and a linear rela- 

Use regression to determine a model to predict c as a function of T. 
20.3 The saturation concentration of dissolved oxygen in water as 
a function of temperature and chloride concentration is listed in 
Table P20.3. Use interpolation to estimate the dissolved oxygen 
level for T = 18°C with chloride = 10,000 mg/L. 
20.4 For the data in Table P20.3, use polynomial interpolation to 
derive a second-order predictive equation for dissolved oxygen 
concentration as a function of temperature for the case where chlo- 
ride concentration is equal to 20,000 mg/L. Use the equation to es- 
timate the dissolved oxygen concentration for T = 8°C. 
20.5 Use multiple linear regression to derive a predictive equation 
for dissolved oxygen concentration as a function of temperature 
and chloride based on the data from Table P20.3. Use the equation 

tionship in chloride is assumed to yield superior results. Use the 
general linear least-squares approach to fit this model to the data in 
Table P20.3. Use the resulting equation to estimate the dissolved 
oxygen concentration for a chloride concentration of 20,000 mg/L 
at T = 30°C. 
20.7 It is known that the tensile strength of a plastic increases as 
a function of the time it is heat-treated. The following data is 
collected: 

Time 110 15 20 25 40 50 55 60 75 

Tensile strength 1 4 20 18 50 33 48 80 60 78 

Fit a straight line to this data and use the equation to determine the 
tensile strength at a time of 30 min. 

20.8 The following data was gathered to determine the relation- 
ship between pressure and temperature of a fixed volume of 1 kg of 
nitrogen. The volume is 10 m3. 

Employ the ideal gas law pV = nRT to determine R on the basis of 
this data. Note that for the law T must be expressed in kelvins. 

TABLE P20.3 Dependency of dissolved oxygen concentration on temperature and chloride 
concentration. 

Dissolved Oxygen (mg/L) for Stated Concentration 
of Chloride and Temperature 

Tempempure, "C Chloride = 0 mg/L Chloride = 10,000 mg/L Chloride = 20,000 mg/L 
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20.9 The specific volume of a superheated steam is listed in steam 
tables for various temperatures. For example, at a pressure of 
2950 lb/in2, absolute: 

T ' F  1 700 720 740 760 780 

Determine v at T = 750°F. 
20.10 A reactor is thermally stratified as in the following table: 

Deuth, m I 0 0.5 10 1.5 20 2.5 30 

As depicted in Fig. P20.10, the tank can be idealized as two zones 
separated by a strong temperature gradient or thermocline. The 
depth of this gradient can be defined as the inflection point of the 
temperature-depth curve-that is, the point at which d 2 ~ / d z 2  = 0. 
At this depth, the heat flux from the sirface to the bottom layer can 
be computed with Fourier's law, FlGLdRE P20.10 

Use a cubic spline fit of this data to determine the thermocline 
dT  

.I = - k -  depth. If k = 0.01 ca/ (s  . cm . 'C] compute the flux across this 
dz interface. 

CiviliEnvironment Engineering 
20.11 The shear stress, in kips per square foot (ksf), of nine speci- 
mens taken at various depths in a clay stratum are Distance x, f t  1 3 8 5 8 6 6 10 10 4 5 7 

Estimate the shear stress at a depth of 4.5 m. (b) Fit a straight line to the data with linear regression. Add this 
20.12 A transportation engineering study was conducted to deter- line to the plot. 
mine the proper design of bike lanes. Data was gathered on bike- (c) If the minimum safe average distance between bikes and pass- 
lane widths and average distance between bikes and passing cars. ing cars is considered to be 7 ft, determine the corresponding 
The data from 11 streets is minimum lane width. 

20.13 In water-resources engineering the sizing of reservoirs de- 
pends on accurate estimates of water flow in the river that is being 
impounded. For some rivers, long-term historical records of such 
flow data are difficult to obtain. In contrast, meteorological data on 
precipitation is often available for many years past. Therefore it is 
often useful to determine a relationship between flow and precipi- 
tation. This relationship can then be used to estimate flows for 
years when only precipitation measurements were made. The fol- 
lowing data is available for a river that is to be dammed: 

Prec~~~tation, cm 1 88 9 101 6 104 1 139.7 132.1 940 116 8 121 9 99.1 

Flow, m3/s 1 114.7 172.0 152 9 269 0 206 4 161.4 175.8 239.0 130.0 

(a) Plot the data. 
(b) Fit a straight line to the data with linear regression. Superim- 

pose this line on your plot. 
(c) Use the best-fit line to predict the annual water flow if the pre- 

cipitation is 120 cm. 
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20.14 The concentration of total phosphorus (p  in mg/m3) and 
chlorophyll a (c in mg/m3) for each of the Great Lakes is 

iake Superor 
Lake Michigan 
Lake Huron 
iake Erie. 

West basin 
Central basin 
East basin 

lake Ontaro 

Chlorophyll a is a parameter that indicates how much plant life is 
suspended in the water. As such, it indicates how unclear and un- 
sightly the water appears. Use the above data to determine a rela- 
tionship to predict c as a function of p. Use this equation to predict 
the level of chlorophyll that can be expected if waste treatment is 
used to lower the phosphorus concentration of westem Lake Erie to 
15 mg/m3. 
20.15 The vertical stress 4- under the comer of a rectangular area 
subjected to a uniform load of intensity q is given by the solution of 
Boussinesq's equation: 

L 

+ sin- 

(a) If a = 4.8 and b = 16, use a third-order interpolating polyno- 
mial to compute az at a depth 10 m below the comer of a rec- 
tangular footing that is subject to a total load of 200 t (metric 
tons). Express your answer in tonnes per square meter. Note 
that q is equal to the load per area. 

(b) Solve Part (a) but use Mathcad's cspline function as described 
in Sec. 19.8.2. 

20.16 Three disease-carrying organisms decay exponentially in 
lake water according to the following model. 

Estimate the initial population of each organism (A, 6 ,  and C) given 
the following measurements: 

Because this equation is inconvenient to solve manually, it has been 
t h r 1 0 . 5  1 2  3 4 5 6 7 8 9 

reformulated as p(t] 1 7  5.2 3.8 3 2  2.5 2.1 1.8 1.5 1.2 1 . 1  

0. = qfi(m,n) 20.17 The mast of a sailboat has a cross-sectional area of 
10.65 cm2 and is constructed of an experimental aluminum alloy. 

wheref-(m, n)  is called the influence value and m and n are dimen- Tests were performed to define the relationship between stress and 
sionless ratios, with m = alz and n = blz and a and b as defined in strain. The test results are 
Fig. P20.36. The influence value is then listed in a table, a portion 
of which is given here: Strain, crn/cm 10.002 0.0045 0.0060 0.0013 0.0085 0.0005 

Stress, N/crn2 1 4965 5 172 55 17 3586 6896 1241 

The stress caused by wind can be computed as FIA,; where 
F = force in the mast and A,. = mast's cross-sectional area. This 
value can then be substituted into Hooke's law to determine the 
mast's deflection: AL = strain x L; where L = the mast's length. 
If the wind force is 25,069 N, use the data to estimate the deflection 
of a 9.14 m mast. 

0 6 0 14309 0.14749 0.15027 
0 7 0.15703 0.16 199 0,165 15 Electrical Engineering 
0 8 0 16843 0.17389 0,17739 20.18 Perform the same computations as in Sec. 20.3, but analyze 

data generated with f(t) = 5 cos (7t) - 2 sin (4t) + 6. 
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20.19 You measure the voltage drop V across a resistor for a num- 
ber of different values of current i. The results are 

Use polynomial interpolation to estimate the voltage drop for 
i = 1.1. Interpret your results. 
20.20 Duplicate the computation for Prob. 20.19, but use polyno- 
mial regression to derive a cubic equation to fit the data. Plot and 
evaluate your results. 
20.21 The current in a wire is measured with great precision as a 
function of time: 

i I 0 6.2402 7.7880 4.8599 00000 

Determine i at t = 0.22. 
20.22 The following data was taken from an experiment that mea- 
sured the current in a wire for various imposed voltages: 

i ! v  I 2 3 4 5 7 10 

On the basis of a linear regression of this data, determine current 
for a voltage of 6 V. Plot the line and the data and evaluate the fit. 
Determine whether it is a good assumption that the intercept is 
zero. If so, redo the regression and force the intercept to be zero. 
20.23 It is known that the voltage drop across an inductor follows 
Faraday's law: 

where VL is the voltage drop (in volts), L is inductance (in henrys; 
1 H = I V.s/A), and i is current (in amperes). Employ the follow- 
ing data to estimate L: 

What is the meaning, if any, of the intercept of the regression equa- 
tion derived from this data? 
20.24 Ohm's law states that the voltage drop V across an ideal re- 
sistor is linearly proportional to the current i flowing through the 
resistor as in V = iR, where R is the resistance. However, real re- 
sistors may not always obey Ohm's law. Suppose that you per- 
formed some very precise experiments to measure the voltage drop 
and corresponding current for a resistor. The results, as listed in 
Table P20.24, suggest a curvilinear relationship rather than the 
straight line represented by Ohm's law. In order to quantify this re- 
lationship, a curve must be fit to the data. Because of measurement 

TABLE P20.24 Experimental data for voltage drop across 
a resistor subjected to various levels of 
current. 

error, regression would typically be the preferred method of curve 
fitting for analyzing such experimental data. However, the smooth- 
ness of the relationship, as well as the precision of the experimen- 
tal methods, suggests that interpolation might be appropriate. Use a 
fifth-order interpolating polynomial to fit the data and compute V 
for i = 0.10. 
20.25 Repeat Prob. 20.24 but determine the coefficients of the 
fifth-order equation (Sec. 18.4) that fit the data in Table P20.24. 
20.26 An experiment is performed to determine the % elongation 
of electrical conducting material as a function of temperature. The 
resulting data is 

Predict the % elongation for a temperature of 400°F. 
20.27 Bessel functions often arise in advanced engineering analy- 
ses such as the study of electric fields. These functions are usually 
not amenable to straightforward evaluation and, therefore, are often 
compiled in standard mathematical tables. For example, 

Estimate Jo(2.1), (a) using an interpolating polynomial and 
(b) using cubic splines. Note that the true value is 0.1666. 
20.28 The population (p) of a small community on the outskirts of 
a city grows rapidly over a 20-year period: 

As an engineer working for a utility company, you must forecast 
the population 5 years into the future in order to anticipate the de- 
mand for power. Employ an exponential model and linear regres- 
sion to make this prediction. 

Mechanical/Aerospace Engineering 
20.29 Based on Table 20.4, use linear and quadratic interpolation 
to compute Q for D = 1.23 ft and S = 0.01 ft/ft. Compare your re- 
sults with the same value computed with the formula derived in 
Sec. 20.4. 
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20.30 Reproduce Sec. 20.4, but develop an equation to predict di- 
ameter as a function of slope and flow. Compare your results with 
the formula from Sec. 20.4 and discuss your results. 
20.31 Kinematic viscosity of water, v ,  is related to tem- 
perature in the following manner: 

Plot this data. 
(a) Use interpolation to predict v at T = 7.5 "C. 
(b) Use polynomial regression to fit a parabola to the data 

in order to make the same prediction. 
20.32 Hooke's law, which holds when a spring is not stretched too 
far, signifies that the extension of the spring and the applied force FIGURE P20.32 
are linearly related. The proportionality is parameterized by the Plot of force (in 1 o4 newtons] versus displacement (in meters) for 

spring constant k. A value for this parameter can be established the spring from the automobile suspension system. 

experimentally by placing known weights onto the spring and 
measuring the resulting compression. Such data is contained in 
Table P20.32 and plotted in Fig. P20.32. Notice that above a weight 
of 40 x lo4 N, the linear relationship between the force and dis- 
placement breaks down. This sort of behavior is typical of what is 
termed a "hardening spring." Employ linear regression to deter- 
mine a value of k for the linear portion of this system. In addition, 
fit a nonlinear relationship to the nonlinear portion. 
20.33 Repeat Prob. 20.32 but fit a power curve to all the data in 
Table P20.32. Comment on your results. 
20.34 The distance required to stop an automobile is a function of 
its speed. The following experimental data was collected to quan- 
tify this relationship: 

Sneed m ~ / h  1 15 20 25 30 40 5 0  60 

Estimate the stopping distance for a car traveling at 45 mih. 

TABLE P20.32 Experimental values for elongation x and force F for the spring on an 
automobile suspension system. 
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20.35 An experiment is performed to define the relationship be- (c) Use the best-fit equation to predict the fracture time for an ap- 
tween applied stress and the time to fracture for a stainless steel. plied stress of 17 kg/mm2. 
Eight different values of stress are applied, and the resulting data is 20.36 The acceleration due to gravity at an altitude y above the sur- 

face of the earth is given by 
Applied stress, x, kg/rnrn2 1 5 10 15 20 25 30 35 40 

Fracture time, y, h I40 30 25 40 18 20 22 15 Y, rn  0 20,000 40,000 60,000 80,000 
g, m/s2 1 9.8100 9.7487 9.6879 9.6278 9.5682 

(a) Plot the data. 
(b) Fit a straight line to the data with linear regression. Superim- Compute g at y = 55,000 m. 

pose this line on your plot. 



LOGUE: PART F 

PT5.4 TRADE-OFFS 
Table PT5.4 provides a summary of the trade-offs involved in curve fitting. The techniques 
are divided into two broad categories, depending on the uncertainty of the data. For impre- 
cise measurements, regression is used to develop a "best7' curve that fits the overall trend 
of the data without necessarily passing through any of the individual points. For precise 
measurements, interpolation is used to develop a curve that passes directly through each of 
the points. 

All the regression methods are designed to fit functions that minimize the sum of the 
squares of the residuals between the data and the function. Such methods are termed least- 
squares regression. Linear least-squares regression is used for cases where a dependent and 
an independent variable are related to each other in a linear fashion. For situations where a 
dependent and an independent variable exhibit a curvilinear relationship, several options 
are available. In some cases, transformations can be used to linearize the relationship. In 
these instances, linear regression can be applied to the transformed variables to determine 
the best straight line. Alternatively, polynomial regression can be employed to fit a curve 
directly to the data. 

TABLE PT5.4 Comparison of the characteristics of alternative methods for curve fitting. 

Error Match of Number of 
Associated individual Points Makhed Programming 

Method with Data DaPa Points Exactly EfOort Comments 

Regression 
linear regression 
Polynomial regression 

Multiple linear regression 
Nonlinear regression 

Interpolation 
Newton's 
divided-difference 
polynomials 
Lagrange polynomials 

Cubic splines 

Large Approx~mate 0 
Large Approximate 0 

Large Approximate 0 
Large Approximate 0 

Small Exact n +  1 

Small Exact n +  1 

Small Exact Piecewise f i t  of 
data points 

Easy 
Moderate Round-off error becomes pro- 

nounced for higher-order versions 
Moderate 
Difficult 

Easy Usually preferred for exploratory 
analvses 

Easy Usually preferred when order 
is known 

Moderate First and second derivatives equal 
at knots 
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Multiple linear regression is utilized when a dependent variable is a linear function of 
two or more independent variables. Logarithmic transformations can also be applied to this 
type of regression for some cases where the multiple dependency is curvilinear. 

Polynomial and multiple linear regression (note that simple linear regression is a 
member of both) belong to a more general class of linear least-squares models. They are 
classified in this way because they are linear with respect to their coefficients. These mod- 
els are typically implemented using linear algebraic systems that are sometimes ill- 
conditioned. However, in many engineering applications (that is, for lower-order fits), this 
does not come into play. For cases where it is a problem, alternative approaches are avail- 
able. For example, a technique called orthogonal polynomials is available to perform poly- 
nomial regression (see Sec. PT5.6). 

Equations that are not linear with respect to their coefficients are called nonlinear. Spe- 
cial regression techniques are available to fit such equations. These are approximate meth- 
ods that start with initial parameter estimates and then iteratively home in on values that 
minimize the sum of the squares. 

Polynomial interpolation is designed to fit a unique nth-order polynomial that passes 
exactly through n + 1 precise data points. This polynomial is presented in two alternative 
formats. Newton's divided-difference interpolating polynomial is ideally suited for those 
cases where the proper order of the polynomial is unknown. Newton's polynomial is ap- 
propriate for such situations because it is easily programmed in a format to compare results 
with different orders. In addition, an error estimate can be simply incorporated into the 
technique. Thus, you can compare and choose from results using several different-order 
polynomials. 

The Lagrange interpolating polynomial is an alternative formulation that is appropri- 
ate when the order is known a priori. For these situations, the Lagrange version is some- 
what simpler to program and does not require the computation and storage of finite divided 
differences. 

Another approach to curve fitting is spline interpolation. This technique fits a low- 
order polynomial to each interval between data points. The fit is made smooth by setting 
the derivatives of adjacent polynomials to the same value at their connecting points. The 
cubic spline is the most common version. Splines are of great utility when fitting data that 
is generally smooth but exhibits local areas of abrupt change. Such data tends to induce 
wild oscillations in higher-order interpolating polynomials. Cubic splines are less prone to 
these oscillations because they are limited to third-order variations. 

The final method covered in this part of the book is Fourier approximation. This area 
deals with using trigonometric functions to approximate waveforms. In contrast to the 
other techniques, the major emphasis of this approach is not to fit a curve to data points. 
Rather, the curve fit is employed to analyze the frequency characteristics of a signal. In par- 
ticular, a fast Fourier transform is available to very efficiently transform a function from 
the time to the frequency domain to elucidate its underlying harmonic structure. 

PT5.5 IMPORTANT RELATIONSHIPS AND FORMUeAS 

Table PT5.5 summarizes important information that was presented in Part Five. This table 
can be consulted to quickly access important relationships and formulas. 
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Graphical 
Method Formulation Interpretation Errors 

Linear 
regression 

Polynomial 
regression 

nCx,y, - Tx ,Y  y, 
where al = 

n \x f -  [Lx,i2 

oo = - olX 

y = a. + a l x +  . . .  + amxm 
[Evaluation of a's equivalent to solution 
of m + 1 linear aIgebrolc equations) 

Multiple y = a, + a,xl + . . . + a,x,,, 
linear (Evaluation of a's equivalent to solution 
regression of m + 1 linear algebraic equations] 

Newton's f2[x] = b, + bl [x  - xo) + b2[x - xo)(x - 
divided- where b, = f(xo] 
difference 

b l  = fix], xol 
interpolating 

b2 = f[x2, XI, xol 
polynomial* 

Lagrange 
interpolating 

Cubic splines A cubic 
o,x3 + b,x2 + c,x + d, 

is fit to each interval between knots 
First and second derivat~ves are 
equal at each knot 

*Note: For sirnpliciv, second-order versions are shown. 
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PT5,6 ADVANCED METHODS AND ADDITIONAL 
REFERENCES 

Although polynomial regression with normal equations is adequate for many engineering 
applications, there are problem contexts where its sensitivity to round-off error can repre- 
sent a serious limitation. An alternative approach based on orthogonal polynomials can 
mitigate these effects. It should be noted that this approach does not yield a best-fit 
equation, but rather, yields individual predictions for given values of the independent vari- 
able. Information on orthogonal polynomials can be found in Shampine and Allen (1973) 
and Guest (1961). 

Whereas the orthogonal polynomial technique is helpful for developing a polynomial 
regression, it does not represent a solution to the instability problem for the general linear 
regression model [Eq. ( 1  7.23)]. An alternative approach based on single-value decomposi- 
tion, called the SVD method, is available for this purpose. Forsythe et al. (1977), Lawson 
and Hanson (1974), and Press et al. (1992) contain information on this approach. 

In addition to the Gauss-Newton algorithm, there are a number of optimization meth- 
ods that can be used to directly develop a least-squares fit for a nonlinear equation. These 
nonlinear regression techniques include Marquardt's and the steepest-descent methods 
(recall Part Four). General information on regression can be found in Draper and Smith 
(1981). 

All the methods in Part Five have been couched in terms of fitting a curve to data 
points. In addition, you may also desire to fit a curve to another curve. The primary moti- 
vation for such functional approximation is to represent a complicated function by a sim- 
pler version that is easier to manipulate. One way to do this is to use the complicated func- 
tion to generate a table of values. Then the techniques discussed in this part of the book can 
be used to fit polynomials to these discrete values. 

An alternative approach is based on the minimax principle (recall Fig. 17 .2~) .  This 
principle specifies that the coefficients of the approximating polynomial be chosen so that 
the maximum discrepancy is as small as possible. Thus, although the approximation may 
not be as good as that given by the Taylor series at the base point, it is generally better 
across the entire range of the fit. Chebyshev economizatinn is an example of an approach 
for functional approximation based on such a strategy (Ralston and Rabinowitz, 1978; 
Gerald and Wheatley, 1984; and Carnahan, Luther, and Wilkes, 1969). 

An important area in curve fitting is the combining of splines with least-squares re- 
gression. Thus, a cubic spline is generated that does not intercept every point, but rather, 
minimizes the sum of the squares of the residuals between the data points and the spline 
curves. The approach involves using the so-called B splines as basis functions. These are 
so named because of their use as basis function, but also because of their characteristic bell 
shape. Such curves are consistent with a spline approach in that their value and their first 
and second derivatives would have continuity at their extremes. Thus, continuity off (x) 
and its lower derivatives at the knots is ensured. Wold (1974), Prenter (1974), and Cheney 
and Kincaid (1994) present discussions of this approach. 
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In summary, the foregoing is intended to provide you with avenues for deeper explo- 
ration of the subject. Additionally, all the above references provide descriptions of the basic 
techniques covered in Part Five. We urge you to consult these alternative sources to 
broaden your understanding of numerical methods for curve fitting. 
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