
Chapter 01 Introduction to AWT

Advanced Java Programming - 1 -

Chapter 01

Introduction the Abstract Window Toolkit (AWT)

Contents:

1.1 Working with Windows and AWT

AWT classes
Windows Fundamentals

Working with frame windows
Creating a frame window in applet

Creating windowed program
Display information within a window

1.2 Working with graphics
Working with color

Setting the paint mode
Working with Fonts

Managing text output using Font Metrics
Exploring text & graphics

1.3 Using AWT Controls, Layout Managers and Menus
Control Fundamentals

Labels

Using Buttons
Applying Check Boxes

Checkbox Group
Choice Controls

Using Lists
Managing scroll Bars

Using a Text Field
Using a Text Area

Understanding Layout Managers
Menu Bars and Menu

Dialog Boxes
File Dialog

1.4 Handling events by Extending AWT Components
Exploring the Controls, Menus, and Layout Managers

Chapter 01 Introduction to AWT

Advanced Java Programming - 2 -

Abstract Window Toolkit:

The AWT contains numerous classes and methods that allow us to create

and manage windows. Although the main purpose of the AWT is to support
applet windows, it can also be used to create stand-alone windows that run in a

GUI environment, such as Windows.

AWT Classes

The AWT classes are contained in the java.awt package. It is one of
Java‘s largest packages. Fortunately, because it is logically organized in a top-

down, hierarchical fashion, it is easier to understand and use than you might at

first believe.
AWTEvent Encapsulates AWT events.

AWTEventMulticaster Dispatches events to multiple listeners.
BorderLayout The border layout manager. Border layouts use five

components: North, South, East, West, and Center.
Button Creates a push button control.

Canvas A blank, semantics-free window.
CardLayout The card layout manager. Card layouts emulate index

cards. Only the one on top is showing.
Checkbox Creates a check box control.

CheckboxGroup Creates a group of check box controls.
CheckboxMenuItem Creates an on/off menu item.

Choice Creates a pop-up list.
Color Manages colors in a portable, platform-independent

fashion.

Component An abstract super-class for various AWT components.
Container A subclass of Component that can hold other

components.
Cursor Encapsulates a bitmapped cursor.

Dialog Creates a dialog window.
Dimension Specifies the dimensions of an object. The width is

stored in width, and the height is stored in height.
Event Encapsulates events.

EventQueue Queues events.
FileDialog Creates a window from which a file can be selected.

FlowLayout The flow layout manager. Flow layout positions
components left to right, top to bottom.

Font Encapsulates a type font.
FontMetrics Encapsulates various information related to a font. This

information helps you display text in a window.

Frame Creates a standard window that has a title bar, resize
corners, and a menu bar.

Chapter 01 Introduction to AWT

Advanced Java Programming - 3 -

Graphics Encapsulates the graphics context. This context is used

by the various output methods to display output in a
window.

GraphicsDevice Describes a graphics device such as a screen or printer.
GraphicsEnvironment Describes the collection of available Font and

GraphicsDevice objects.
GridBagConstraints Defines various constraints relating to the

GridBagLayout class.

GridBagLayout The grid bag layout manager. Grid bag layout displays
components subject to the constraints specified by

GridBagConstraints.

GridLayout The grid layout manager. Grid layout displays
components in a two-dimensional grid.

Image Encapsulates graphical images.
Insets Encapsulates the borders of a container.

Label Creates a label that displays a string.
List Creates a list from which the user can choose. Similar

to the standard Windows list box.
MediaTracker Manages media objects.

Menu Creates a pull-down menu.
MenuBar Creates a menu bar.

MenuComponent An abstract class implemented by various menu classes.
MenuItem Creates a menu item.

MenuShortcut Encapsulates a keyboard shortcut for a menu item.
Panel The simplest concrete subclass of Container.

Point Encapsulates a Cartesian coordinate pair, stored in x

and y.
Polygon Encapsulates a polygon.

PopupMenu Encapsulates a pop-up menu.
PrintJob An abstract class that represents a print job.

Rectangle Encapsulates a rectangle.
Robot Supports automated testing of AWT- based applications.

Scrollbar Creates a scroll bar control.
ScrollPane A container that provides horizontal and/or vertical

scroll bars for another component.
SystemColor Contains the colors of GUI widgets such as windows,

scroll bars, text, and others.
TextArea Creates a multiline edit control.

TextComponent A superclass for TextArea and TextField.
TextField Creates a single-line edit control.

Toolkit Abstract class implemented by the AWT.

Window Creates a window with no frame, no menu bar,

Chapter 01 Introduction to AWT

Advanced Java Programming - 4 -

Component

Frame

MenuContainer
Interface

Applet

Panel

Container

Window Fundamentals

The AWT defines windows according to a class hierarchy that adds
functionality and specificity with each level. The two most common windows are

those derived from Panel, which is used by applets, and those derived from
Frame, which creates a standard window. Much of the functionality of these

windows is derived from their parent classes. Thus, a description of the class
hierarchies relating to these two classes is fundamental to their understanding.

Figure below shows the class hierarchy for Panel and Frame.

Component

At the top of the AWT hierarchy is the Component class. Component is an

abstract class that encapsulates all of the attributes of a visual component.
All user interface elements that are displayed on the screen and that

interact with the user are subclasses of Component. It defines over a
hundred public methods that are responsible for managing events, such as

mouse and keyboard input, positioning and sizing the window, and repainting.
A Component object is responsible for remembering the current foreground and

background colors and the currently selected text font.

Container

The Container class is a subclass of Component. It has additional
methods that allow other Component objects to be nested within it. Other

Container objects can be stored inside of a Container (since they are
themselves instances of Component). This makes for a multileveled

containment system. A container is responsible for laying out (that is,

Window

Chapter 01 Introduction to AWT

Advanced Java Programming - 5 -

positioning) any components that it contains. It does this through the

use of various layout managers.

Panel
The Panel class is a concrete subclass of Container. It doesn‘t add any

new methods; it simply implements Container. A Panel may be thought of as a
recursively nestable, concrete screen component. Panel is the super-class for

Applet. When screen output is directed to an applet, it is drawn on the surface

of a Panel object. In essence, a Panel is a window that does not contain a
title bar, menu bar, or border. This is why we don‘t see these items when an

applet is run inside a browser. When we run an applet using an applet viewer,
the applet viewer provides the title and border. Other components can be

added to a Panel object by its add() method (inherited from Container). Once
these components have been added, we can position and resize them manually

using the setLocation(), setSize(), or setBounds() methods defined by
Component.

Window

The Window class creates a top-level window. A top-level window is not
contained within any other object; it sits directly on the desktop. Generally, we

won‘t create Window objects directly. Instead, we will use a subclass of Window
called Frame.

Frame
Frame encapsulates what is commonly thought of as a ―window.‖ It is a

subclass of Window and has a title bar, menu bar, borders, and resizing

corners. If we create a Frame object from within an applet, it will contain a
warning message, such as ―Java Applet Window,‖ to the user that an applet

window has been created. This message warns users that the window they see
was started by an applet and not by software running on their computer. When

a Frame window is created by a program rather than an applet, a normal
window is created.

Canvas
Canvas encapsulates a blank window upon which we can draw.

Dimension

This class encapsulates the ‘width’ and ‘height’ of a component
(in integer precision) in a single object. The class is associated with certain

properties of components. Several methods defined by the Component class
and the LayoutManager interface return a Dimension object.

Normally the values of width and height are non-negative integers. The

constructors that allow us to create a dimension do not prevent us from setting

Chapter 01 Introduction to AWT

Advanced Java Programming - 6 -

a negative value for these properties. If the value of width or height is

negative, the behavior of some methods defined by other objects is undefined.

Fields of Dimension:

int height The height dimension; negative values can be used.
int width The width dimension; negative values can be used.

Constructors:

Dimension()

It creates an instance of Dimension with a width of zero and a height of
zero.

Dimension(Dimension d)

It creates an instance of Dimension whose width and height are the
same as for the specified dimension.

Dimension(int width, int height)
It constructs a Dimension and initializes it to the specified width and

specified height.

Methods:

boolean equals(Object obj)
It checks whether two dimension objects have equal values.

double getHeight()
It returns the height of this dimension in double precision.

Dimension getSize()
It gets the size of this Dimension object.

double getWidth()
It returns the width of this dimension in double precision.

void setSize(Dimension d)
It sets the size of this Dimension object to the specified size.

void setSize(double width, double height)
It sets the size of this Dimension object to the specified width and height

in double precision.

void setSize(int width, int height)
It sets the size of this Dimension object to the specified width and

height.

Working with Frame Windows

After the applet, the type of window we will most often create is derived

from Frame. We will use it to create child windows within applets, and top-level

Chapter 01 Introduction to AWT

Advanced Java Programming - 7 -

or child windows for applications. It creates a standard-style window. Following

are two of Frame‘s constructors:

Frame()

Frame(String title)

The first form creates a standard window that does not contain a title.

The second form creates a window with the title specified by title. Note that we
cannot specify the dimensions of the window. Instead, we must set the size of

the window after it has been created.

Setting the Windows Dimensions

The setSize() method is used to set the dimensions of the window. Its

signature is shown below:

void setSize(int newWidth, int newHeight)

void setSize(Dimension newSize)

The new size of the window is specified by ‗newWidth‘ and ‗newHeight‘, or

by the ‗width‘ and ‗height‘ fields of the Dimension object passed in ‗newSize‘.
The dimensions are specified in terms of pixels. The getSize() method is used

to obtain the current size of a window. Its signature is:

Dimension getSize()

This method returns the current size of the window contained within the

‗width‘ and ‗height‘ fields of a Dimension object.

Hiding and showing a Window

After a frame window has been created, it will not be visible until we call
setVisible(). Its signature is:

void setVisible(boolean visibleFlag)

The component is visible if the argument to this method is true.

Otherwise, it is hidden.

Setting a Windows Title

We can change the title in a frame window using setTitle(), which has

this general form:

void setTitle(String newTitle)

Here, ‗newTitle‘ is the new title for the window.

Chapter 01 Introduction to AWT

Advanced Java Programming - 8 -

Closing a Frame Window

When using a frame window, our program must remove that window from
the screen when it is closed, by calling setVisible(false). To intercept a window-

close event, we must implement the windowClosing() method of the
WindowListener interface. Inside windowClosing(), we must remove the

window from the screen.

Creating a Frame Window in an Applet

The following applet creates a subclass of Frame called SampleFrame. A

window of this subclass is instantiated within the init() method of AppletFrame.

Note that ‗SampleFrame‘ calls Frame‘s constructor. This causes a standard
frame window to be created with the title passed in title. This example

overrides the applet window‘s start() and stop() method s so that they show
and hide the child window, respectively. It also causes the child window to be

shown when the browser returns to the applet.

/*

<applet code="AppletFrame" width=300 height=50>

</applet>

*/

class SampleFrame extends Frame

{

SampleFrame(String title)

{

super(title);

}

public void paint(Graphics g)

{

g.drawString("This is in frame window", 10, 40);

}

}

public class AppletFrame extends Applet

{

Frame f;

public void init()

{

f = new SampleFrame("A Frame Window");

f.setSize(250, 250);

f.setVisible(true);

}

public void start()

{

f.setVisible(true);

}

Chapter 01 Introduction to AWT

Advanced Java Programming - 9 -

public void stop()

{

f.setVisible(false);

}

public void paint(Graphics g)

{

g.drawString("This is in applet window", 10, 20);

}

}

Output:

Creating a Windowed Program

Although creating applets is the most common use for Java‘s AWT, it is
possible to create stand-alone AWT-based applications, too. To do this, simply

create an instance of the window or windows we need inside main(). For
example, the following program creates a simple frame window.

public class AppWindow extends Frame

{

AppWindow(String title)

{

super(title);

}

public void paint(Graphics g)

{

setForeground(Color.red);

setBackground(Color.cyan);

g.drawString("This is my frame", 30, 70);

Chapter 01 Introduction to AWT

Advanced Java Programming - 10 -

}

public static void main(String args[])

throws Exception

{

AppWindow appwin = new AppWindow("Frame window");

appwin.setSize(new Dimension(300, 200));

appwin.setVisible(true);

Thread.sleep(5000);

appwin.setTitle("An AWT-Based Application");

Thread.sleep(5000);

System.exit(0);

}

}

Another Program:

public class AppWindow extends Frame

{

Font f;

static int val=5;

AppWindow(String title)

{

super(title);

}

public void paint(Graphics g)

{

setForeground(Color.red);

setBackground(Color.cyan);

Integer i = new Integer(val);

g.drawString(i.toString(), 30, 70);

val--;

}

public static void main(String args[])

throws Exception

{

AppWindow appwin = new AppWindow("Frame window");

appwin.setSize(new Dimension(300, 200));

appwin.setFont(new Font("Arial",Font.BOLD, 40));

appwin.setVisible(true);

Thread.sleep(5000);

appwin.setTitle("An AWT-Based Application");

for(int i=0;i<5;i++)

{

Thread.sleep(1000);

appwin.repaint();

}

Chapter 01 Introduction to AWT

Advanced Java Programming - 11 -

System.exit(0);

}

}

Displaying information within a Window

In the most general sense, a window is a container for information.

Although we have already output small amounts of text to a window in the
preceding examples, we have not begun to take advantage of a window‘s ability

to present high-quality text and graphics. Indeed, much of the power of the

AWT comes from its support for these items.

Working with Graphics

Working with Color

Java supports color in a portable, device-independent fashion. The AWT

color system allows us to specify any color that we want. It then finds the best

match for that color, given the limits of the display hardware currently
executing our program or applet. Thus, our code does not need to be concerned

with the differences in the way color is supported by various hardware devices.
Color is encapsulated by the Color class.

Constructors:

Color(int red, int green, int blue)

Color(int rgbValue)

Color(float red, float green, float blue)

The first constructor takes three integers that specify the color as a mix

of red, green, and blue. These values must be between 0 and 255, as in this
example:

new Color(255, 100, 100); // light red.

The second color constructor takes a single integer that contains the mix

of red, green, and blue packed into an integer. The integer is organized with
red in bits 16 to 23, green in bits 8 to 15, and blue in bits 0 to 7. Here is an

example of this constructor:

int newRed = (0xff000000 | (0xc0 << 16) | (0x00 << 8) | 0x00);
Color darkRed = new Color(newRed);

The final constructor, Color(float, float, float), takes three float values

(between 0.0 and 1.0) that specify the relative mix of red, green, and blue.
Once we have created a color, we can use it to set the foreground and/or

Chapter 01 Introduction to AWT

Advanced Java Programming - 12 -

background color by using the setForeground() and setBackground() methods.

You can also select it as the current drawing color.

Color Methods
The Color class defines several methods that help manipulate colors.

Using Hue, Saturation, and Brightness

The hue-saturation-brightness (HSB) color model is an alternative to red-
green-blue (RGB) for specifying particular colors. Figuratively, hue is a wheel of

color. The hue is specified with a number between 0.0 and 1.0 (the colors are

approximately: red, orange, yellow, green, blue, indigo, and violet). Saturation
is another scale ranging from 0.0 to 1.0, representing light pastels to intense

hues. Brightness values also range from 0.0 to 1.0, where 1 is bright white and
0 is black. Color supplies two methods that let us convert between RGB and

HSB. They are shown here:

static int HSBtoRGB(float hue, float sat, float brightness)

static float[] RGBtoHSB(int r, int g, int b, float values[])

HSBtoRGB() returns a packed RGB value compatible with the Color(int)

constructor. RGBtoHSB() returns a float array of HSB values corresponding to
RGB integers. If values is not null, then this array is given the HSB values and

returned. Otherwise, a new array is created and the HSB values are returned in
it. In either case, the array contains the hue at index 0, saturation at index 1,

and brightness at index 2.

getRed(), getGreen(), getBlue()

We can obtain the red, green, and blue components of a color

independently using getRed(), getGreen(), and getBlue(), shown below:

int getRed()

int getGreen()

int getBlue()

Each of these methods returns the RGB color component found in the

invoking Color object in the lower 8 bits of an integer.

getRGB()

To obtain a packed, RGB representation of a color, use getRGB(), shown
here:

int getRGB()

Chapter 01 Introduction to AWT

Advanced Java Programming - 13 -

The return value is organized as described earlier.

Setting the Current Graphics Color

By default, graphics objects are drawn in the current foreground color.

We can change this color by calling the Graphics method setColor():

void setColor(Color newColor)

Here, ‗newColor‘ specifies the new drawing color. We can obtain the

current color by calling getColor(), shown below:

Color getColor()

Example:

/*

<applet code="ColorDemo" width=300 height=200>

</applet>

*/

public class ColorDemo extends Applet

{

public void paint(Graphics g)

{

Color c1 = new Color(202, 146, 20);

Color c2 = new Color(110, 169, 107);

Color c3 = new Color(160, 100, 200);

g.setColor(c1);

g.drawLine(0, 0, 100, 100);

g.drawLine(0, 100, 100, 0);

g.setColor(Color.red);

g.drawLine(40, 25, 250, 180);

g.setColor(c3);

g.drawLine(20, 150, 400, 40);

g.setColor(c2);

g.drawOval(10, 10, 50, 50);

g.fillOval(70, 90, 140, 100);

}

}

Chapter 01 Introduction to AWT

Advanced Java Programming - 14 -

Setting the Paint Mode

The paint-mode determines how objects are drawn in a window. By

default, new output to a window overwrites any pre-existing contents.
However, it is possible to have new objects XORed onto the window by using

setXORMode(), as follows:

void setXORMode(Color xorColor)

Here, ‗xorColor‘ specifies the color that will be XORed to the window when

an object is drawn. The advantage of XOR mode is that the new object is
always guaranteed to be visible no matter what color the object is drawn over.

To return to overwrite mode, call setPaintMode(), shown here:

void setPaintMode()

In general, we will want to use overwrite mode for normal output, and

XOR mode for special purposes. For example, the following program displays
cross hairs that track the mouse pointer. The cross hairs are XORed onto the

window and are always visible, no matter what the underlying color is.

Working with Fonts

The AWT supports multiple type fonts. It provides flexibility by
abstracting font-manipulation operations and allowing for dynamic selection of

fonts. In Java, fonts have a family name, a logical font name, and a face name.

The family name is the general name of the font, such as Courier. The logical
name specifies a category of font, such as Monospaced. The face name

specifies a specific font, such as Courier Italic. Fonts are encapsulated by the
Font class. Several of the methods defined by Font are listed below.

The Font class defines these variables:

Variable Meaning
String name Name of the font

float pointSize Size of the font in points

int size Size of the font in points
int style Font style

Method Description

static Font decode(String str) Returns a font given its name.

boolean equals(Object FontObj) Returns true if the invoking object contains
the same font as that specified by FontObj.

Otherwise, it returns false.
String getFamily() Returns the name of the font family to

which the invoking font belongs.

Chapter 01 Introduction to AWT

Advanced Java Programming - 15 -

staticFontgetFont(Stringproperty) Returns the font associated with the system

property specified by property. Null is
returned if property does not exist.

staticFontgetFont(Stringproperty, Returns the font associated with the system
Font defaultFont) property specified by property. The font

specified by default Font is returned if
property does not exist.

String getFontName() Returns the face name of the invoking font.

String getName() Returns the logical name of the invoking
font.

int getSize() Returns the size, in points, of the invoking

font.
int getStyle() Returns the style values of the invoking

font.
int hashCode() Returns the hash code associated with the

invoking object.
boolean isBold() Returns true if the font includes the BOLD

style value. Otherwise, false is returned.
boolean isItalic() Returns true if the font includes the ITALIC

style value. Otherwise, false is returned.
boolean isPlain() Returns true if the font includes the PLAIN

style value. Otherwise, false is returned.
String toString() Returns the string equivalent of the

invoking font.

Determining the Available Fonts

When working with fonts, often we need to know which fonts are

available on our machine. To obtain this information, we can use the
getAvailableFontFamilyNames() method defined by the GraphicsEnvironment

class.
It is shown here:

String[] getAvailableFontFamilyNames()

This method returns an array of strings that contains the names of the
available font families. In addition, the getAllFonts() method is defined by the

GraphicsEnvironment class. It is shown here:

Font[] getAllFonts()

This method returns an array of Font objects for all of the available fonts.

Since these methods are members of GraphicsEnvironment, we need a
GraphicsEnvironment reference to call them. We can obtain this reference by

Chapter 01 Introduction to AWT

Advanced Java Programming - 16 -

using the getLocalGraphicsEnvironment() static method, which is defined by

GraphicsEnvironment. It is shown here:

static GraphicsEnvironment getLocalGraphicsEnvironment()

Here is an applet that shows how to obtain the names of the available
font families:

/*

<applet code="ShowFonts" width=550 height=60>

</applet>

*/

import java.applet.*;

import java.awt.*;

public class ShowFonts extends Applet

{

public void paint(Graphics g)

{

String msg = "";

String FontList[];

GraphicsEnvironment ge =

GraphicsEnvironment.getLocalGraphicsEnvironment();

FontList = ge.getAvailableFontFamilyNames();

for(int i = 0; i < FontList.length; i++)

msg += FontList[i] + " ";

g.drawString(msg, 4, 16);

}

}

Creating and Selecting a Font

In order to select a new font, we must first construct a Font object that

describes that font. One Font constructor has this general form:

Font(String fontName, int fontStyle, int pointSize)

Here, ‗fontName‘ specifies the name of the desired font. The name can be

specified using either the logical or face name. All Java environments will
support the following fonts:

 Dialog,
 DialogInput,
 Sans Serif,

 Serif,

Chapter 01 Introduction to AWT

Advanced Java Programming - 17 -

 Monospaced

 Symbol

Dialog is the font used by our system‘s dialog boxes. Dialog is also the

default if we don‘t explicitly set a font. We can also use any other fonts
supported by our particular environment, but these other fonts may not be

universally available. The style of the font is specified by ‗fontStyle‘. It may
consist of one or more of these three constants:

Font.PLAIN, Font.BOLD, and Font.ITALIC.

For combining styles, we can OR them together.
For example, Font.BOLD | Font.ITALIC specifies a bold, italics style.

The size, in points, of the font is specified by ‗pointSize‘. For using a font

that we have created, we must select it using setFont(), which is defined by
Component. It has this general form:

void setFont(Font fontObj)

Here, fontObj is the object that contains the desired font.

// Displaying different fonts

import java.awt.Font;

import java.awt.Graphics;

import java.applet.Applet;

/*

<applet code="Fonts" width=300 height=150>

</applet>

*/

public class Fonts extends Applet

{

public void paint(Graphics g)

{

Font f1 = new Font("TimesRoman", Font.PLAIN, 18);

Font f2 = new Font("Courier", Font.BOLD, 16);

Font f3 = new Font("Arial", Font.ITALIC, 20);

Font f4 = new Font("Times", Font.BOLD + Font.ITALIC,

22);

g.setFont(f1);

g.drawString("Times Roman plain font: 18", 10, 30);

g.setFont(f2);

g.drawString("Courier bold font: 16", 10, 60);

g.setFont(f3);

g.drawString("Arial italic font: 20", 10, 80);

g.setFont(f4);

g.drawString("Times bold italic font: 22", 10, 120);

}

}

Chapter 01 Introduction to AWT

Advanced Java Programming - 18 -

We can set any font available in our ‗windows\fonts‘ directory to the text
on the applet. For example: the Devnagari font named ―shusha‖ is freely

available on internet. The following code displays applet with that font.

Font f = new Font("Shusha02", Font.PLAIN, 35);
g.setColor(Color.red);

g.setFont(f);
g.drawString("kaoAr jaavaa p`aoga`^imaMga", 10, 40);

Output window:

Obtaining Font Information

Suppose we want to obtain information about the currently selected font.
To do this, we must first get the current font by calling getFont(). This method

is defined by the Graphics class, as shown here:

Font getFont()

Once we have obtained the currently selected font, we can retrieve

information about it using various methods defined by Font. For example, this
applet displays the name, family, size, and style of the currently selected font:

// Display font info.

Chapter 01 Introduction to AWT

Advanced Java Programming - 19 -

/*

<applet code="FontInfo" width=350 height=60>

</applet>

*/

public class FontInfo extends Applet

{

public void paint(Graphics g)

{

Font f = g.getFont();

String fontName = f.getName();

String fontFamily = f.getFamily();

int fontSize = f.getSize();

int fontStyle = f.getStyle();

String msg = "Family: " + fontName;

msg += ", Font: " + fontFamily;

msg += ", Size: " + fontSize + ", Style: ";

if((fontStyle & Font.BOLD) == Font.BOLD)

msg += "Bold ";

if((fontStyle & Font.ITALIC) == Font.ITALIC)

msg += "Italic ";

if((fontStyle & Font.PLAIN) == Font.PLAIN)

msg += "Plain ";

g.d rawString(msg, 4, 16);

}

}

Managing Text Output Using FontMetrics

Java supports a number of fonts. For most fonts, characters are not all

the same dimension most fonts are proportional. Also, the height of each

character, the length of descenders (the hanging parts of letters, such as y),
and the amount of space between horizontal lines vary from font to font.

Further, the point size of a font can be changed. That these (and other)
attributes are variable would not be of too much consequence except that Java

demands that the programmer, manually manage virtually all text output.
Given that the size of each font may differ and that fonts may be changed while

our program is executing, there must be some way to determine the
dimensions and various other attributes of the currently selected font. For

example, to write one line of text after another implies that we have some way
of knowing how tall the font is and how many pixels are needed between lines.

To fill this need, the AWT includes the FontMetrics class, which encapsulates
various information about a font. Common terminology used when describing

fonts:
Height The top-to-bottom size of the tallest character in the font.

Chapter 01 Introduction to AWT

Advanced Java Programming - 20 -

Baseline The line that the bottoms of characters are aligned to (not counting

descent).
Ascent The distance from the baseline to the top of a character

Descent The distance from the baseline to the bottom of a character
Leading The distance between the bottom of one line of text and the top of

the next.
We have used the drawString() method in many of the previous

examples. It paints a string in the current font and color, beginning at a

specified location. However, this location is at the left edge of the baseline of
the characters, not at the upper-left corner as is usual with other drawing

methods. It is a common error to draw a string at the same coordinate that we
would draw a box. For example, if you were to draw a rectangle at coordinate

0,0 of your applet, you would see a full rectangle. If you were to draw the
string Typesetting at 0,0, you would only see the tails (or descenders) of the y,

p, and g.As you will see, by using font metrics, you can determine the proper
placement of each string that you display. FontMetrics defines several methods

that help you manage text output. The most commonly used are listed below.
These methods help you properly display text in a window. Let‘s look at some

examples.

int bytesWidth(byte b[], int start, int numBytes)

Returns the width of numBytes characters held in array b, beginning at start.

int charWidth(char c[], int start, int numChars)

Returns the width of numChars characters held in array c, beginning at start.

int charWidth(char c) Returns the width of c.

int charWidth(int c) Returns the width of c.
int getAscent() Returns the ascent of the font.

int getDescent() Returns the descent of the font.

Font getFont() Returns the font.
int getHeight() Returns the height of a line of text. This value can

be used to output multiple lines of text in a
window.

int getLeading() Returns the space between lines of text.
int getMaxAdvance() Returns the width of the widest character. –1 is

returned if this value is not available.
int getMaxAscent() Returns the maximum ascent.

int getMaxDescent() Returns the maximum descent.
int[] getWidths() Returns the widths of the first 256 characters.

int stringWidth(String str) Returns the width of the string specified by str.
String toString() Returns the string equivalent of the

invoking object.

Chapter 01 Introduction to AWT

Advanced Java Programming - 21 -

Exploring Text and Graphics

Although we have covered the most important attributes and common

techniques that we will use when displaying text or graphics, it only scratches
the surface of Java‘s capabilities. This is an area in which further refinements

and enhancements are expected as Java and the computing environment
continue to evolve. For example, Java 2 added a subsystem to the AWT called

Java 2D. Java 2D supports enhanced control over graphics, including such

things as coordinate translations, rotation, and scaling. It also provides
advanced imaging features. If advanced graphics handling is of interest to us,

then we will definitely want to explore Java 2D in detail.

Using AWT Controls, Layout Managers and Menus

Controls are components that allow a user to interact with his application

in various ways—for example; a commonly used control is the push button. A
layout manager automatically positions components within a container. Thus,

the appearance of a window is determined by a combination of the controls that
it contains and the layout manager used to position them. In addition to the

controls, a frame window can also include a standard-style menu bar. Each
entry in a menu bar activates a drop-down menu of options from which the

user can choose. A menu bar is always positioned at the top of a window.
Although different in appearance, menu bars are handled in much the same

way as are the other controls. While it is possible to manually position
components within a window, doing so is quite tedious. The layout manager

automates this task.

Control Fundamentals

The AWT supports the following types of controls:

■ Labels

■ Push buttons
■ Check boxes

■ Choice lists

■ Lists
■ Scroll bars

■ Text Area

■ Text Field

These controls are subclasses of Component.

Adding and Removing Controls

In order to include a control in a window, we must add it to the window.
So, we must first create an instance of the desired control and then add it to a

Chapter 01 Introduction to AWT

Advanced Java Programming - 22 -

window by calling add(), which is defined by Container. The add() method

has several forms. The following form is the one that is used for the first part of
this chapter:

Component add(Component compObj)

Here, compObj is an instance of the control that we want to add. A

reference to compObj is returned. Once a control has been added, it will
automatically be visible whenever its parent window is displayed. Sometimes

we will want to remove a control from a window when the control is no longer

needed. For doing this, call remove(). This method is also defined by
Container. It has this general form:

void remove(Component obj)

Here, obj is a reference to the control that we want to remove. We can
remove all controls by calling removeAll().

Responding to Controls

Except for labels, which are passive controls, all controls generate events

when they are accessed by the user. For example, when the user clicks on a
push button, an event is sent that identifies the push button. In general, our

program simply implements the appropriate interface and then registers an

event listener for each control that we need to monitor.

Labels

The easiest control to use is a label. A label is an object of type Label,

and it contains a string, which it displays. Labels are passive controls that do
not support any interaction with the user. Label defines the following

constructors:

Label()

Label(String str)

Label(String str, int how)

The first version creates a blank label. The second version creates a label
that contains the string specified by str. This string is left-justified. The third

version creates a label that contains the string specified by str using the
alignment specified by how. The value of how must be one of these three

constants: Label.LEFT, Label.RIGHT, or Label.CENTER.

We can set or change the text in a label by using the setText() method.
We can obtain the current label by calling getText(). These methods are shown

here:

Chapter 01 Introduction to AWT

Advanced Java Programming - 23 -

void setText(String str)

String getText()

For setText(), str specifies the new label. For getText(), the current label

is returned. You can set the alignment of the string within the label by calling

setAlignment(). To obtain the current alignment, call getAlignment(). The
methods are as follows:

void setAlignment(int how)

int getAlignment()

Here, how must be one of the alignment constants shown earlier. The

following example creates three labels and adds them to an applet:

// Demonstrate Labels

import java.awt.*;

import java.applet.*;

/*

<applet code="LabelDemo" width=300 height=200>

</applet>

*/

public class LabelDemo extends Applet

{

public void init()

{

Label one = new Label("One");

Label two = new Label("Two");

Label three = new Label("Three");

// add labels to applet window

add(one);

add(two);

add(three);

}

}

Following is the window created by the LabelDemo applet. Notice that the
labels are organized in the window by the default layout manager.

Chapter 01 Introduction to AWT

Advanced Java Programming - 24 -

Buttons

The most widely used control is the push button. A push button is a
component that contains a label and that generates an event when it is

pressed. Push buttons are objects of type Button. Button defines these two
constructors:

Button()

Button(String str)

The first version creates an empty button. The second creates a button
that contains str as a label. After a button has been created, we can set its

label by calling setLabel(). We can retrieve its label by calling getLabel().
These methods are as follows:

void setLabel(String str)

String getLabel()

Here, str becomes the new label for the button.

// Demonstrate Buttons

import java.awt.*;

import java.applet.*;

/*

<applet code="ButtonDemo" width=250 height=150>

</applet>

*/

public class ButtonDemo extends Applet

{

String msg = "";

Chapter 01 Introduction to AWT

Advanced Java Programming - 25 -

Button yes, no, maybe;

public void init()

{

yes = new Button("Yes");

no = new Button("No");

maybe = new Button("Undecided");

add(yes);

add(no);

add(maybe);

}

public void paint(Graphics g)

{

g.drawString(msg, 6, 100);

}

}

Check Boxes

A check box is a control that is used to turn an option on or off. It

consists of a small box that can either contain a check mark or not. There is a
label associated with each check box that describes what option the box

represents. We change the state of a check box by clicking on it. Check boxes
can be used individually or as part of a group. Check boxes are objects of the

Checkbox class. Checkbox supports these constructors:

Checkbox()

Checkbox(String str)

Checkbox(String str, boolean on)

Checkbox(String str, boolean on, CheckboxGroup cbGroup)

Checkbox(String str, CheckboxGroup cbGroup, boolean on)

The first form creates a check box whose label is initially blank. The state
of the check box is unchecked. The second form creates a check box whose

Chapter 01 Introduction to AWT

Advanced Java Programming - 26 -

label is specified by str. The state of the check box is unchecked. The third form

allows us to set the initial state of the check box. If on is true, the check box is
initially checked; otherwise, it is cleared. The fourth and fifth forms create a

check box whose label is specified by str and whose group is specified by
cbGroup. If this check box is not part of a group, then cbGroup must be null.

The value of on determines the initial state of the check box.
In order to retrieve the current state of a check box, call getState(). For

setting its state, call setState(). We can obtain the current label associated

with a check box by calling getLabel(). For setting the label, setLabel() is
used. These methods are as follows:

boolean getState()

void setState(boolean on)

String getLabel()

void setLabel(String str)

Here, if on is true, the box is checked. If it is false, the box is cleared. The

string passed in str becomes the new label associated with the invoking check
box.

// Demonstrate check boxes.

import java.awt.*;

import java.applet.*;

/*

<applet code="CheckboxDemo" width=250 height=200>

</applet>

*/

public class CheckboxDemo extends Applet

{

String msg = "";

Checkbox Win98, winNT, solaris, mac;

public void init()

{

Win98 = new Checkbox("Windows 98/XP", null, true);

winNT = new Checkbox("Windows NT/2000");

solaris = new Checkbox("Solaris");

mac = new Checkbox("MacOS");

add(Win98);

add(winNT);

add(solaris);

add(mac);

}

public void paint(Graphics g)

{

}

}

Chapter 01 Introduction to AWT

Advanced Java Programming - 27 -

Checkbox Group

It is possible to create a set of mutually exclusive check boxes in which

one and only one check box in the group can be checked at any one time.
These check boxes are often called radio buttons, because they act like the

station selector on a car radio—only one station can be selected at any one
time. For creating a set of mutually exclusive check boxes, we must first define

the group to which they will belong and then specify that group when we
construct the check boxes. Check box groups are objects of type

CheckboxGroup. Only the default constructor is defined, which creates an
empty group.

We can determine which check box in a group is currently selected by
calling getSelectedCheckbox(). We can set a check box by calling

setSelectedCheckbox(). These methods are as follows:

Checkbox getSelectedCheckbox()

void setSelectedCheckbox(Checkbox wh)

Here, wh is the check box that we want to be selected. The previously
selected check box will be turned off. Here is a program that uses check boxes

that are part of a group:

import java.awt.*;

import java.applet.*;

/*

<applet code="CBGroup" width=250 height=200>

</applet>

*/

public class CBGroup extends Applet

{

Chapter 01 Introduction to AWT

Advanced Java Programming - 28 -

String msg = "";

Checkbox Win98, winNT, solaris, mac;

CheckboxGroup cbg;

public void init()

{

cbg = new CheckboxGroup();

Win98 = new Checkbox("Windows 98/XP", cbg, true);

winNT = new Checkbox("Windows NT/2000", cbg, false);

solaris = new Checkbox("Solaris", cbg, false);

mac = new Checkbox("MacOS", cbg, false);

add(Win98);

add(winNT);

add(solaris);

add(mac);

}

public void paint(Graphics g)

{

msg = "Current selection: ";

msg += cbg.getSelectedCheckbox().getLabel();

g.drawString(msg, 6, 100);

}

}

Choice Controls

The Choice class is used to create a pop-up list of items from which the

user may choose. Thus, a Choice control is a form of menu. When inactive, a
Choice component takes up only enough space to show the currently selected

item. When the user clicks on it, the whole list of choices pops up, and a new

selection can be made. Each item in the list is a string that appears as a left-
justified label in the order it is added to the Choice object. Choice only defines

Chapter 01 Introduction to AWT

Advanced Java Programming - 29 -

the default constructor, which creates an empty list. In order to add a selection

to the list, add() is used. It has this general form:

void add(String name)

Here, name is the name of the item being added. Items are added to the
list in the order in which calls to add() occur. In order to determine which item

is currently selected, we may call either any of the following methods:

String getSelectedItem()

int getSelectedIndex()

The getSelectedItem() method returns a string containing the name of
the item. getSelectedIndex() returns the index of the item. The first item is at

index 0. By default, the first item added to the list is selected. For obtaining the

number of items in the list, call getItemCount(). We can set the currently
selected item using the select() method with either a zero-based integer index

or a string that will match a name in the list. These methods are shown here:

int getItemCount()

void select(int index)

void select(String name)

Given an index, we can obtain the name associated with the item at that

index by calling getItem(), which has this general form:

String getItem(int index)

Here, index specifies the index of the desired item.

// Demonstrate Choice lists.

import java.awt.*;

import java.applet.*;

/*

<applet code="ChoiceDemo" width=300 height=180>

</applet>

*/

public class ChoiceDemo extends Applet

{

Choice os, browser;

String msg = "";

public void init()

{

os = new Choice();

browser = new Choice();

os.add("Windows 98/XP");

os.add("Windows NT/2000");

Chapter 01 Introduction to AWT

Advanced Java Programming - 30 -

os.add("Solaris");

os.add("MacOS");

browser.add("Netscape 3.x");

browser.add("Netscape 4.x");

browser.add("Netscape 5.x");

browser.add("Netscape 6.x");

browser.add("Internet Explorer 4.0");

browser.add("Internet Explorer 5.0");

browser.add("Internet Explorer 6.0");

browser.add("Lynx 2.4");

browser.select("Netscape 4.x");

add(os);

add(browser);

}

public void paint(Graphics g)

{

}

}

Lists

The List class provides a compact, multiple-choice, scrolling selection list.
Unlike the Choice object, which shows only the single selected item in the

menu, a List object can be constructed to show any number of choices in the
visible Window. It can also be created to allow multiple selections. List provides

these constructors:

List()

List(int numRows)

List(int numRows, boolean multipleSelect)

The first version creates a List control that allows only one item to be
selected at any one time. In the second form, the value of numRows specifies

Chapter 01 Introduction to AWT

Advanced Java Programming - 31 -

the number of entries in the list that will always be visible (others can be

scrolled into view as needed). In the third form, if multipleSelect is true, then
the user may select two or more items at a time. If it is false, then only one

item may be selected. For adding a selection to the list, we can call add(). It
has the following two forms:

void add(String name)

void add(String name, int index)

Here, name is the name of the item added to the list. The first form adds
items to the end of the list. The second form adds the item at the index

specified by index. Indexing begins at zero. We can specify –1 to add the item
to the end of the list. For lists that allow only single selection, we can determine

which item is currently selected by calling either getSelectedItem() or
getSelectedIndex(). These methods are shown here:

String getSelectedItem()

int getSelectedIndex()

The getSelectedItem() method returns a string containing the name of

the item. If more than one item is selected or if no selection has yet been
made, null is returned. getSelectedIndex() returns the index of the item. The

first item is at index 0. If more than one item is selected, or if no selection has

yet been made, –1 is returned. For lists that allow multiple selection, we must
use either getSelectedItems() or getSelectedIndexes(), shown here, to

determine the current selections:

String[] getSelectedItems()

int[] getSelectedIndexes()

The getSelectedItems() returns an array containing the names of the

currently selected items. getSelectedIndexes() returns an array containing the
indexes of the currently selected items. In order to obtain the number of items

in the list, call getItemCount(). We can set the currently selected item by using
the select() method with a zero-based integer index. These methods are

shown here:

int getItemCount()

void select(int index)

Given an index, we can obtain the name associated with the item at that

index by calling getItem(), which has this general form:

String getItem(int index)

Here, index specifies the index of the desired item.

Chapter 01 Introduction to AWT

Advanced Java Programming - 32 -

import java.awt.*;

import java.applet.*;

/*

<applet code="ListDemo" width=300 height=180>

</applet>

*/

public class ListDemo extends Applet

{

List os, browser;

String msg = "";

public void init()

{

os = new List(4, true);

browser = new List(4, false);

os.add("Windows 98/XP");

os.add("Windows NT/2000");

os.add("Solaris");

os.add("MacOS");

browser.add("Netscape 3.x");

browser.add("Netscape 4.x");

browser.add("Netscape 5.x");

browser.add("Netscape 6.x");

browser.add("Internet Explorer 4.0");

browser.add("Internet Explorer 5.0");

browser.add("Internet Explorer 6.0");

browser.add("Lynx 2.4");

browser.select(1);

add(os);

add(browser);

}

public void paint(Graphics g)

{

int idx[];

msg = "Current OS: ";

idx = os.getSelectedIndexes();

for(int i=0; i<idx.length; i++)

msg += os.getItem(idx[i]) + " ";

g.drawString(msg, 6, 120);

msg = "Current Browser: ";

msg += browser.getSelectedItem();

g.drawString(msg, 6, 140);

}

}

Chapter 01 Introduction to AWT

Advanced Java Programming - 33 -

Scroll Bars

Scroll bars are used to select continuous values between a specified

minimum and maximum. Scroll bars may be oriented horizontally or vertically.
A scroll bar is actually a composite of several individual parts. Each end has an

arrow that we can click to move the current value of the scroll bar one unit in
the direction of the arrow. The current value of the scroll bar relative to its

minimum and maximum values is indicated by the slider box (or thumb) for the
scroll bar. The slider box can be dragged by the user to a new position. The

scroll bar will then reflect this value. In the background space on either side of
the thumb, the user can click to cause the thumb to jump in that direction by

some increment larger than 1. Typically, this action translates into some form
of page up and page down. Scroll bars are encapsulated by the Scrollbar class.

Scrollbar defines the following constructors:

Scrollbar()

Scrollbar(int style)

Scrollbar(int style, int iValue, int tSize, int min, int max)

The first form creates a vertical scroll bar. The second and third forms

allow us to specify the orientation of the scroll bar. If style is

Scrollbar.VERTICAL, a vertical scroll bar is created. If style is
Scrollbar.HORIZONTAL, the scroll bar is horizontal. In the third form of the

constructor, the initial value of the scroll bar is passed in iValue. The number of
units represented by the height of the thumb is passed in tSize. The minimum

and maximum values for the scroll bar are specified by min and max. If we
construct a scroll bar by using one of the first two constructors, then we need

to set its parameters by using setValues(), shown here, before it can be used:

void setValues(int iValue, int tSize, int min, int max)

Chapter 01 Introduction to AWT

Advanced Java Programming - 34 -

The parameters have the same meaning as they have in the third

constructor just described. In order to obtain the current value of the scroll bar,
call getValue(). It returns the current setting. For setting the current value, we

can use setValue(). These methods are as follows:

int getValue()

void setValue(int newValue)

Here, newValue specifies the new value for the scroll bar. When we set a

value, the slider box inside the scroll bar will be positioned to reflect the new
value. We can also retrieve the minimum and maximum values via

getMinimum() and getMaximum(), shown here:

int getMinimum()

int getMaximum()

They return the requested quantity. By default, 1 is the increment added

to or subtracted from the scroll bar each time it is scrolled up or down one line.

We can change this increment by calling setUnitIncrement(). By default, page-
up and page-down increments are 10. You can change this value by calling

setBlockIncrement(). These methods are shown here:

void setUnitIncrement(int newIncr)

void setBlockIncrement(int newIncr)

Example:

import java.awt.*;

import java.applet.*;

/*

<applet code="SBDemo" width=300 height=200>

</applet>

*/

public class SBDemo extends Applet

{

String msg = "";

Scrollbar vertSB, horzSB;

public void init()

{

int width = Integer.parseInt(getParameter("width"));

int height = Integer.parseInt(getParameter("height"));

vertSB = new Scrollbar(Scrollbar.VERTICAL,

0, 1, 0, height);

horzSB = new Scrollbar(Scrollbar.HORIZONTAL,

0, 1, 0, width);

add(vertSB);

Chapter 01 Introduction to AWT

Advanced Java Programming - 35 -

TextField TextArea

TextComponent

add(horzSB);

}

public void paint(Graphics g)

{

msg = "Vertical: " + vertSB.getValue();

msg += ", Horizontal: " + horzSB.getValue();

g.drawString(msg, 6, 160);

}

}

TextField

The TextField class implements a single-line text-entry area, usually

called an edit control. Text fields allow the user to enter strings and to edit the

text using the arrow keys, cut and paste keys, and mouse selections. TextField
is a subclass of TextComponent. TextField defines the following constructors:

TextField()

TextField(int numChars)

TextField(String str)

TextField(String str, int numChars)

Chapter 01 Introduction to AWT

Advanced Java Programming - 36 -

The first version creates a default text field. The second form creates a

text field that is numChars characters wide. The third form initializes the text
field with the string contained in str. The fourth form initializes a text field and

sets its width. TextField (and its superclass TextComponent) provides several
methods that allow us to utilize a text field. In order to obtain the string

currently contained in the text field, we can use getText(). For setting the text,
we call setText(). These methods are as follows:

String getText()

void setText(String str)

Here, str is the new string. The user can select a portion of the text in a

text field. Also, we can select a portion of text under program control by using
select(). Our program can obtain the currently selected text by calling the

getSelectedText(). These methods are shown here:

String getSelectedText()

void select(int startIndex, int endIndex)

The getSelectedText() returns the selected text. The select() method

selects the characters beginning at startIndex and ending at endIndex–1. We

can control whether the contents of a text field may be modified by the user by

calling setEditable(). We can determine editability by calling isEditable().
These methods are shown here:

boolean isEditable()

void setEditable(boolean canEdit)

The isEditable() returns true if the text may be changed and false if not.
In setEditable(), if canEdit is true, the text may be changed. If it is false, the

text cannot be altered. There may be times when we will want the user to enter
text that is not displayed, such as a password. You can disable the echoing of

the characters as they are typed by calling setEchoChar(). This method
specifies a single character that the TextField will display when characters are

entered (thus, the actual characters typed will not be shown). We can check a
text field to see if it is in this mode with the echoCharIsSet() method. We can

retrieve the echo character by calling the getEchoChar() method. These
methods are as follows:

void setEchoChar(char ch)

boolean echoCharIsSet()

char getEchoChar()

Here, ch specifies the character to be echoed.

Chapter 01 Introduction to AWT

Advanced Java Programming - 37 -

import java.awt.*;

import java.applet.*;

/*

<applet code="TextFieldDemo" width=380 height=150>

</applet>

*/

public class TextFieldDemo extends Applet

{

TextField name, pass;

public void init()

{

Label namep = new Label("Name: ", Label.RIGHT);

Label passp = new Label("Password: ", Label.RIGHT);

name = new TextField(12);

pass = new TextField(8);

pass.setEchoChar('?');

add(namep);

add(name);

add(passp);

add(pass);

}

public void paint(Graphics g)

{

}

}

TextArea

Sometimes a single line of text input is not enough for a given task. To

handle these situations, the AWT includes a simple multiline editor called

TextArea. Following are the constructors for TextArea:

TextArea()

Chapter 01 Introduction to AWT

Advanced Java Programming - 38 -

TextArea(int numLines, int numChars)

TextArea(String str)

TextArea(String str, int numLines, int numChars)

TextArea(String str, int numLines, int numChars, int sBars)

Here, numLines specifies the height, in lines, of the text area, and
numChars specifies its width, in characters. Initial text can be specified by str.

In the fifth form we can specify the scroll bars that we want the control to have.
sBars must be one of these values:

SCROLLBARS_BOTH SCROLLBARS_NONE
SCROLLBARS_HORIZONTAL_ONLY SCROLLBARS_VERTICAL_ONLY

TextArea is a subclass of TextComponent. Therefore, it supports the

getText(), setText(), getSelectedText(), select(), isEditable(), and
setEditable() methods described in the preceding section. TextArea adds the

following methods:

void append(String str)

void insert(String str, int index)

void replaceRange(String str, int startIndex, int endIndex)

The append() method appends the string specified by str to the end of
the current text. The insert() inserts the string passed in str at the specified

index. In order to replace text, we call replaceRange(). It replaces the
characters from startIndex to endIndex–1, with the replacement text passed in

str. Text areas are almost self-contained controls.

import java.awt.*;

import java.applet.*;

/*

<applet code="TextAreaDemo" width=300 height=250>

</applet>

*/

public class TextAreaDemo extends Applet

{

public void init()

{

String val = "There are two ways of constructing " +

"a software design.\n" +

"One way is to make it so simple\n" +

"that there are obviously no deficiencies.\n" +

"And the other way is to make it so complicated\n" +

"that there are no obvious deficiencies.\n\n" +

" -C.A.R. Hoare\n\n" +

"There's an old story about the person who wished\n" +

"his computer were as easy to use as his telephone.\n" +

Chapter 01 Introduction to AWT

Advanced Java Programming - 39 -

"That wish has come true,\n" +

"since I no longer know how to use my telephone.\n\n" +

" -Bjarne Stroustrup, AT&T, (inventor of C++)";

TextArea text = new TextArea(val, 10, 30);

add(text);

}

}

Layout Managers

All of the components that we have shown so far have been positioned by

the default layout manager. A layout manager automatically arranges our
controls within a window by using some type of algorithm. If we have

programmed for other GUI environments, such as Windows, then we are
accustomed to laying out our controls by hand. While it is possible to lay out

Java controls by hand, too, we generally won‘t want to, for two main reasons.
First, it is very tedious to manually lay out a large number of components.

Second, sometimes the width and height information is not yet available when

we need to arrange some control, because the native toolkit components
haven‘t been realized. This is a chicken-and-egg situation; it is pretty confusing

to figure out when it is okay to use the size of a given component to position it
relative to another.

Each Container object has a layout manager associated with it. A layout
manager is an instance of any class that implements the LayoutManager

interface. The layout manager is set by the setLayout() method. If no call to
setLayout() is made, then the default layout manager is used. Whenever a

Chapter 01 Introduction to AWT

Advanced Java Programming - 40 -

container is resized (or sized for the first time), the layout manager is used to

position each of the components within it.

Fig. Layout Managers at work (Ref. No. 2)

The setLayout() method has the following general form:

void setLayout(LayoutManager layoutObj)

Here, layoutObj is a reference to the desired layout manager. If we wish

to disable the layout manager and position components manually, pass null for
layoutObj. If we do this, we will need to determine the shape and position of

each component manually, using the setBounds() method defined by
Component. Normally, we will want to use a layout manager.

Each layout manager keeps track of a list of components that are stored

by their names. The layout manager is notified each time we add a component
to a container. Whenever the container needs to be resized, the layout

manager is consulted via its minimumLayoutSize() and preferredLayoutSize()
methods. Each component that is being managed by a layout manager contains

the getPreferredSize() and getMinimumSize() methods. These return the
preferred and minimum size required to display each component. The layout

manager will honor these requests if at all possible, while maintaining the
integrity of the layout policy. We may override these methods for controls that

we subclass. Default values are provided otherwise. Java has several
predefined LayoutManager classes, several of which are described next. We can

use the layout manager that best fits our application.

FlowLayout

FlowLayout is the default layout manager. This is the layout manager that

the preceding examples have used. FlowLayout implements a simple layout
style, which is similar to how words flow in a text editor. Components are laid

out from the upper-left corner, left to right and top to bottom. When no more

Chapter 01 Introduction to AWT

Advanced Java Programming - 41 -

components fit on a line, the next one appears on the next line. A small space

is left between each component, above and below, as well as left and right.
Here are the constructors for FlowLayout:

FlowLayout()

FlowLayout(int how)

FlowLayout(int how, int horz, int vert)

The first form creates the default layout, which centers components and

leaves five pixels of space between each component. The second form lets us
specify how each line is aligned. Valid values for how are as follows:

FlowLayout.LEFT

FlowLayout.CENTER

FlowLayout.RIGHT

These values specify left, center, and right alignment, respectively. The

third form allows us to specify the horizontal and vertical space left between
components in horz and vert, respectively. Here is a version of the

CheckboxDemo applet shown earlier, modified so that it uses left-aligned flow
layout.

public class FlowLayoutDemo extends Applet

{

String msg = "";

Checkbox Win98, winNT, solaris, mac;

public void init()

{

Win98 = new Checkbox("Windows 98/XP", null, true);

winNT = new Checkbox("Windows NT/2000");

solaris = new Checkbox("Solaris");

mac = new Checkbox("MacOS");

setLayout(new FlowLayout(FlowLayout.CENTER));

add(Win98);

add(winNT);

add(solaris);

add(mac);

}

public void paint(Graphics g)

{

}

}

Chapter 01 Introduction to AWT

Advanced Java Programming - 42 -

BorderLayout

The BorderLayout class implements a common layout style for top-level
windows. It has four narrow, fixed-width components at the edges and one

large area in the center. The four sides are referred to as north, south, east,
and west. The middle area is called the center. Here are the constructors

defined by BorderLayout:

BorderLayout()

BorderLayout(int horz, int vert)

The first form creates a default border layout. The second allows us to

specify the horizontal and vertical space left between components in horz and
vert, respectively. BorderLayout defines the following constants that specify the

regions:

BorderLayout.CENTER BorderLayout.SOUTH

BorderLayout.EAST BorderLayout.WEST

BorderLayout.NORTH

When adding components, we will use these constants with the following
form of add(), which is defined by Container:

void add(Component compObj, Object region);

Here, compObj is the component to be added, and region specifies where

the component will be added. Here is an example of a BorderLayout with a

component in each layout area:

Chapter 01 Introduction to AWT

Advanced Java Programming - 43 -

import java.awt.*;

import java.applet.*;

/*

<applet code="BorderLayoutDemo" width=400 height=200>

</applet>

*/

public class BorderLayoutDemo extends Applet

{

public void init()

{

setLayout(new BorderLayout());

add(new Button("This is across the top."),

BorderLayout.NORTH);

add(new Label("The footer message might go here."),

BorderLayout.SOUTH);

add(new Button("Right"), BorderLayout.EAST);

add(new Button("Left"), BorderLayout.WEST);

String msg = "The reasonable man adapts " +

"himself to the world;\n" +

"the unreasonable one persists in " +

"trying to adapt the world to himself.\n" +

"Therefore all progress depends " +

"on the unreasonable man.\n\n" +

" - George Bernard Shaw\n\n";

add(new TextArea(msg), BorderLayout.CENTER);

}

}

Insets

Chapter 01 Introduction to AWT

Advanced Java Programming - 44 -

Sometimes we will want to leave a small amount of space between the

container that holds our components and the window that contains it. For doing
this, we have to override the getInsets() method that is defined by Container.

This function returns an Insets object that contains the top, bottom, left, and
right inset to be used when the container is displayed. These values are used

by the layout manager to inset the components when it lays out the window.
The constructor for Insets is shown here:

Insets(int top, int left, int bottom, int right)

The values passed in top, left, bottom, and right specify the amount of

space between the container and its enclosing window. The getInsets() method

has this general form:

Insets getInsets()

When overriding one of these methods, we must return a new Insets

object that contains the inset spacing we desire. Here is the preceding
BorderLayout example modified so that it insets its components ten pixels from

each border. The background color has been set to cyan to help make the
insets more visible.

public class InsetsDemo extends Applet

{

public void init()

{

setBackground(Color.cyan);

setLayout(new BorderLayout());

add(new Button("This is across the top."),

BorderLayout.NORTH);

add(new Label("The footer message might go here."),

BorderLayout.SOUTH);

add(new Button("Right"), BorderLayout.EAST);

add(new Button("Left"), BorderLayout.WEST);

String msg = "The reasonable man adapts " +

"himself to the world;\n" +

"the unreasonable one persists in " +

"trying to adapt the world to himself.\n" +

"Therefore all progress depends " +

"on the unreasonable man.\n\n" +

" - George Bernard Shaw\n\n";

add(new TextArea(msg), BorderLayout.CENTER);

}

public Insets getInsets()

{

return new Insets(10, 10, 10, 10);

}

Chapter 01 Introduction to AWT

Advanced Java Programming - 45 -

}

GridLayout

GridLayout lays out components in a two-dimensional grid. When we

instantiate a GridLayout, we define the number of rows and columns. The

constructors supported by GridLayout are shown here:

GridLayout()

GridLayout(int numRows, int numColumns)

GridLayout(int numRows, int numColumns, int horz, int vert)

The first form creates a single-column grid layout. The second form

creates a grid layout with the specified number of rows and columns. The third

form allows us to specify the horizontal and vertical space left between
components in horz and vert, respectively. Either numRows or numColumns

can be zero. Specifying numRows as zero allows for unlimited-length columns.
Specifying numColumns as zero allows for unlimited-length rows. Here is a

sample program that creates a 4×4 grid and fills it in with 15 buttons, each
labeled with its index:

import java.awt.*;

import java.applet.*;

/*

<applet code="GridLayoutDemo" width=300 height=200>

</applet>

*/

public class GridLayoutDemo extends Applet

{

static final int n = 4;

Chapter 01 Introduction to AWT

Advanced Java Programming - 46 -

public void init()

{

setLayout(new GridLayout(n, n));

setFont(new Font("SansSerif", Font.BOLD, 24));

for(int i = 0; i < n; i++)

{

for(int j = 0; j < n; j++)

{

int k = i * n + j;

if(k > 0)

add(new Button("" + k));

}

}

}

}

Menu Bars and Menus

A top-level window can have a menu bar associated with it. A menu bar
displays a list of top-level menu choices. Each choice is associated with a drop-

down menu. This concept is implemented in Java by the following classes:

MenuBar, Menu, and MenuItem. In general, a menu bar contains one or
more Menu objects. Each Menu object contains a list of MenuItem objects. Each

MenuItem object represents something that can be selected by the user. Since
Menu is a subclass of MenuItem, a hierarchy of nested submenus can be

created. It is also possible to include checkable menu items. These are menu
options of type CheckboxMenuItem and will have a check mark next to them

when they are selected. For creating a menu bar, we first create an instance of
MenuBar. This class only defines the default constructor. Next, create instances

of Menu that will define the selections displayed on the bar.

Chapter 01 Introduction to AWT

Advanced Java Programming - 47 -

Add

Fig. Creating a menu on Frame

Following are the constructors for Menu:

Menu()

Menu(String optionName)

Menu(String optionName, boolean removable)

Here, optionName specifies the name of the menu selection. If removable

is true, the pop-up menu can be removed and allowed to float free. Otherwise,
it will remain attached to the menu bar. (Removable menus are

implementation-dependent.) The first form creates an empty menu. Individual
menu items are of type MenuItem. It defines these constructors:

MenuItem()

MenuItem(String itemName)

MenuItem(String itemName, MenuShortcut keyAccel)

Here, itemName is the name shown in the menu, and keyAccel is the
menu shortcut for this item. We can disable or enable a menu item by using the

setEnabled() method. Its form is shown here:

void setEnabled(boolean enabledFlag)

If the argument enabledFlag is true, the menu item is enabled. If false,
the menu item is disabled. We can determine an item‘s status by calling

isEnabled(). This method is shown here:

boolean isEnabled()

The isEnabled() returns true if the menu item on which it is called is
enabled. Otherwise, it returns false. We can change the name of a menu item

by calling setLabel(). We can retrieve the current name by using getLabel().

These methods are as follows:

void setLabel(String newName)

String getLabel()

Here, newName becomes the new name of the invoking menu item.

getLabel() returns the current name. We can create a checkable menu item by

Menu
objects

Add
MenuBar
to Applet

Add
MenuItems
to Menu

Create
MenuBar
object

Chapter 01 Introduction to AWT

Advanced Java Programming - 48 -

using a subclass of MenuItem called CheckboxMenuItem. It has these

constructors:

CheckboxMenuItem()

CheckboxMenuItem(String itemName)

CheckboxMenuItem(String itemName, boolean on)

Here, itemName is the name shown in the menu. Checkable items

operate as toggles. Each time one is selected, its state changes. In the first two

forms, the checkable entry is unchecked. In the third form, if on is true, the
checkable entry is initially checked. Otherwise, it is cleared. We can obtain the

status of a checkable item by calling getState(). We can set it to a known state
by using setState(). These methods are shown here:

boolean getState()

void setState(boolean checked)

If the item is checked, getState() returns true. Otherwise, it returns

false. For checking an item, pass true to setState(). To clear an item, pass

false. Once we have created a menu item, we must add the item to a Menu
object by using add(), which has the following general form:

MenuItem add(MenuItem item)

Here, item is the item being added. Items are added to a menu in the
order in which the calls to add() take place. The item is returned. Once we

have added all items to a Menu object, we can add that object to the menu bar
by using this version of add() defined by MenuBar:

Menu add(Menu menu)

Here, menu is the menu being added. The menu is returned. Menus only

generate events when an item of type MenuItem or CheckboxMenuItem is

selected. They do not generate events when a menu bar is accessed to display
a drop-down menu, for example. Each time a menu item is selected, an

ActionEvent object is generated. Each time a check box menu item is checked
or unchecked, an ItemEvent object is generated. Thus, we must implement the

ActionListener and ItemListener interfaces in order to handle these menu
events. The getItem() method of ItemEvent returns a reference to the item

that generated this event. The general form of this method is shown here:

Object getItem()

Following is an example that adds a series of nested menus to a pop-up

window. The item selected is displayed in the window. The state of the two
check box menu items is also displayed.

Chapter 01 Introduction to AWT

Advanced Java Programming - 49 -

import java.awt.*;

import java.applet.*;

/*

<applet code="MenuDemo" width=250 height=250>

</applet>

*/

class MenuFrame extends Frame

{

String msg = "";

CheckboxMenuItem debug, test;

MenuFrame(String title)

{

super(title);

// create menu bar and add it to frame

MenuBar mbar = new MenuBar();

setMenuBar(mbar);

// create the menu items

Menu file = new Menu("File");

MenuItem item1, item2, item3, item4, item5;

file.add(item1 = new MenuItem("New..."));

file.add(item2 = new MenuItem("Open..."));

file.add(item3 = new MenuItem("Close"));

file.add(item4 = new MenuItem("-"));

file.add(item5 = new MenuItem("Quit..."));

mbar.add(file);

Menu edit = new Menu("Edit");

MenuItem item6, item7, item8, item9;

edit.add(item6 = new MenuItem("Cut"));

edit.add(item7 = new MenuItem("Copy"));

edit.add(item8 = new MenuItem("Paste"));

edit.add(item9 = new MenuItem("-"));

Menu sub = new Menu("Special");

MenuItem item10, item11, item12;

sub.add(item10 = new MenuItem("First"));

sub.add(item11 = new MenuItem("Second"));

sub.add(item12 = new MenuItem("Third"));

edit.add(sub);

// these are checkable menu items

debug = new CheckboxMenuItem("Debug");

edit.add(debug);

test = new CheckboxMenuItem("Testing");

edit.add(test);

mbar.add(edit);

}

}

public class MenuDemo extends Applet

{

Chapter 01 Introduction to AWT

Advanced Java Programming - 50 -

Frame f;

public void init()

{

f = new MenuFrame("Menu Demo");

f.setVisible(true);

int width = Integer.parseInt(getParameter("width"));

int height = Integer.parseInt(getParameter("height"));

setSize(width, height);

f.setSize(width, height);

}

public void start()

{

f.setVisible(true);

}

public void stop()

{

f.setVisible(false);

}

}

Dialog Boxes

Often, we will want to use a dialog box to hold a set of related controls.

Dialog boxes are primarily used to obtain user input. They are similar to frame
windows, except that dialog boxes are always child windows of a top-level

window. Also, dialog boxes don‘t have menu bars. In other respects, dialog

boxes function like frame windows. (We can add controls to them, for example,
in the same way that we add controls to a frame window.) Dialog boxes may be

Chapter 01 Introduction to AWT

Advanced Java Programming - 51 -

modal or modeless. When a modal dialog box is active, all input is directed to it

until it is closed. This means that we cannot access other parts of our program
until we have closed the dialog box. When a modeless dialog box is active,

input focus can be directed to another window in our program. Thus, other
parts of our program remain active and accessible. Dialog boxes are of type

Dialog. Two commonly used constructors are shown here:

Dialog(Frame parentWindow, boolean mode)

Dialog(Frame parentWindow, String title, boolean mode)

Here, parentWindow is the owner of the dialog box. If mode is true, the

dialog box is modal. Otherwise, it is modeless. The title of the dialog box can be
passed in title. Generally, we will subclass Dialog, adding the functionality

required by your application.

FileDialog

Java provides a built-in dialog box that lets the user specify a file. To
create a file dialog box, instantiate an object of type FileDialog. This causes a

file dialog box to be displayed. Usually, this is the standard file dialog box

provided by the operating system. FileDialog provides these constructors:

FileDialog(Frame parent, String boxName)

FileDialog(Frame parent, String boxName, int how)

FileDialog(Frame parent)

Here, parent is the owner of the dialog box, and boxName is the name
displayed in the box‘s title bar. If boxName is omitted, the title of the dialog

box is empty. If how is FileDialog.LOAD, then the box is selecting a file for
reading. If how is FileDialog.SAVE, the box is selecting a file for writing. The

third constructor creates a dialog box for selecting a file for reading.
FileDialog() provides methods that allows us to determine the name of

the file and its path as selected by the user. Here are two examples:

String getDirectory()

String getFile()

These methods return the directory and the filename, respectively. The

following program activates the standard file dialog box:

import java.awt.*;

class SampleFrame extends Frame

{

SampleFrame(String title)

{

super(title);

Chapter 01 Introduction to AWT

Advanced Java Programming - 52 -

}

}

class FileDialogDemo

{

public static void main(String args[])

{

Frame f = new SampleFrame("File Dialog Demo");

f.setVisible(true);

f.setSize(100, 100);

FileDialog fd = new FileDialog(f, "File Dialog");

fd.setVisible(true);

}

}

Event Handling

Applets are event-driven programs. Thus, event handling is at the core of
successful applet programming. Most events to which our applet will respond

are generated by the user. These events are passed to our applet in a variety of
ways, with the specific method depending upon the actual event. There are

several types of events. The most commonly handled events are those
generated by the mouse, the keyboard, and various controls, such as a push

button. Events are supported by the java.awt.event package.

Chapter 01 Introduction to AWT

Advanced Java Programming - 53 -

Register
the Event

Take Action4 Listener4

Take Action3 Listener3

Event
Sources

Take Action2 Listener2

Take Action1 Listener1

The Delegation Event Model

Fig. Delegation Event Model

The modern approach to handling events is based on the delegation event
model, which defines standard and consistent mechanisms to generate and

process events. Its concept is quite simple: a source generates an event and
sends it to one or more listeners. In this scheme, the listener simply waits until

it receives an event. Once received, the listener processes the event and then
returns. The advantage of this design is that the application logic that processes

events is cleanly separated from the user interface logic that generates those
events. A user interface element is able to ―delegate‖ the processing of an

event to a separate piece of code.

In the delegation event model, listeners must register with a source in
order to receive an event notification. This provides an important benefit:

notifications are sent only to listeners that want to receive them. This is a more
efficient way to handle events than the design used by the old Java 1.0

approach.
Java also allows us to process events without using the delegation event

model. This can be done by extending an AWT component. However, the
delegation event model is the preferred design for the reasons just cited.

Events

In the delegation model, an event is an object that describes a state
change in a source. It can be generated as a consequence of a person

interacting with the elements in a graphical user interface. Some of the
activities that cause events to be generated are pressing a button, entering a

character via the keyboard, selecting an item in a list, and clicking the mouse.

Chapter 01 Introduction to AWT

Advanced Java Programming - 54 -

Many other user operations could also be cited as examples. Events may also

occur that are not directly caused by interactions with a user interface. For
example, an event may be generated when a timer expires, a counter exceeds

a value, software or hardware failure occurs, or an operation is completed. We
are free to define events that are appropriate for your application.

Event Sources

A source is an object that generates an event. This occurs when the
internal state of that object changes in some way. Sources may generate more

than one type of event. A source must register listeners in order for the

listeners to receive notifications about a specific type of event. Each type of
event has its own registration method. Here is the general form:

public void addTypeListener(TypeListener el)

Here, Type is the name of the event and el is a reference to the event
listener. For example, the method that registers a keyboard event listener is

called addKeyListener(). The method that registers a mouse motion listener is
called addMouseMotionListener(). When an event occurs, all registered

listeners are notified and receive a copy of the event object. This is known as
multicasting the event. In all cases, notifications are sent only to listeners that

register to receive them. Some sources may allow only one listener to register.
The general form of such a method is this:

public void addTypeListener(TypeListener el)

throws java.util.TooManyListenersException

Here, Type is the name of the event and el is a reference to the event

listener. When such an event occurs, the registered listener is notified. This is
known as unicasting the event. A source must also provide a method that

allows a listener to un-register an interest in a specific type of event. The

general form of such a method is this:

public void removeTypeListener(TypeListener el)

Here, Type is the name of the event and el is a reference to the event

listener. For example, to remove a keyboard listener, we would call

removeKeyListener(). The methods that add or remove listeners are provided
by the source that generates events. For example, the Component class

provides methods to add and remove keyboard and mouse event listeners.

Event Listeners

Chapter 01 Introduction to AWT

Advanced Java Programming - 55 -

A listener is an object that is notified when an event occurs. It has two

major requirements. First, it must have been registered with one or more
sources to receive notifications about specific types of events. Second, it must

implement methods to receive and process these notifications. The methods
that receive and process events are defined in a set of interfaces found in

java.awt.event. For example, the MouseMotionListener interface defines two
methods to receive notifications when the mouse is dragged or moved. Any

object may receive and process one or both of these events if it provides an

implementation of this interface.

Event Classes

The classes that represent events are at the core of Java‘s event handling

mechanism. At the root of the Java event class hierarchy is EventObject,
which is in java.util. It is the superclass for all events. EventObject contains two

methods: getSource() and toString(). The getSource() method returns the
source of the event. Its general form is shown here:

Object getSource()

As expected, toString() returns the string equivalent of the event. The
class AWTEvent, defined within the java.awt package, is a subclass of

EventObject. It is the superclass (either directly or indirectly) of all AWT-based
events used by the delegation event model.

■ EventObject is a superclass of all events.
■ AWTEvent is a superclass of all AWT events that are handled by the

delegation event model.

The package java.awt.event defines several types of events that are
generated by various user interface elements.

Event Class Description

ActionEvent Generated when a button is pressed, a list item is double-
clicked, or a menu item is selected.

AdjustmentEvent Generated when a scroll bar is manipulated.

ComponentEvent Generated when a component is hidden, moved, resized, or
becomes visible.

ContainerEvent Generated when a component is added to or removed from a
container.

FocusEvent Generated when a component gains or loses keyboard focus.
InputEvent Abstract super class for all component input event classes.

ItemEvent Generated when a check box or list item is clicked; also
occurs when a choice selection is made or a checkable menu

item is selected or deselected.
KeyEvent Generated when input is received from the keyboard.

Chapter 01 Introduction to AWT

Advanced Java Programming - 56 -

MouseEvent Generated when the mouse is dragged, moved, clicked,

pressed, or released; also generated when the mouse enters
or exits a component.

MouseWheelEvent Generated when the mouse wheel is moved.

TextEvent Generated when the value of a text area or text field is

changed.
WindowEvent Generated when a window is activated, closed, deactivated,

deiconified, iconified, opened, or quit.

ActionEvent

An ActionEvent is generated when a button is pressed, a list item is

double-clicked, or a menu item is selected. The ActionEvent class defines four
integer constants that can be used to identify any modifiers associated with an

action event: ALT_MASK, CTRL_MASK, META_MASK, and SHIFT_MASK. In
addition, there is an integer constant, ACTION_PERFORMED, which can be used

to identify action events. We can obtain the command name for the invoking
ActionEvent object by using the getActionCommand() method, shown here:

String getActionCommand()

For example, when a button is pressed, an action event is generated that

has a command name equal to the label on that button. The getModifiers()
method returns a value that indicates which modifier keys (ALT, CTRL, META,

and/or SHIFT) were pressed when the event was generated. Its form is shown
here:

int getModifiers()

The method getWhen() that returns the time at which the event took

place. This is called the event‘s timestamp. The getWhen() method is shown
here.

long getWhen()

AdjustmentEvent

An AdjustmentEvent is generated by a scroll bar. There are five types of

adjustment events. The AdjustmentEvent class defines integer constants that
can be used to identify them. The constants and their meanings are shown

here:

BLOCK_DECREMENT The user clicked inside the scroll bar to decrease its
value.

Chapter 01 Introduction to AWT

Advanced Java Programming - 57 -

BLOCK_INCREMENT The user clicked inside the scroll bar to increase its

value.
TRACK The slider was dragged.

UNIT_DECREMENT The button at the end of the scroll bar was clicked to
decrease its value.

UNIT_INCREMENT The button at the end of the scroll bar was clicked to
increase its value.

The type of the adjustment event may be obtained by the

getAdjustmentType() method. It returns one of the constants defined by
AdjustmentEvent. The general form is shown here:

int getAdjustmentType()

The amount of the adjustment can be obtained from the getValue()
method, shown here:

int getValue()

For example, when a scroll bar is manipulated, this method returns the

value represented by that change.

ComponentEvent

A ComponentEvent is generated when the size, position, or visibility of a

component is changed. There are four types of component events. The

ComponentEvent class defines integer constants that can be used to identify
them. The constants and their meanings are shown here:

COMPONENT_HIDDEN The component was hidden.

COMPONENT_MOVED The component was moved.
COMPONENT_RESIZED The component was resized.

COMPONENT_SHOWN The component became visible.

ComponentEvent is the super-class either directly or indirectly of

ContainerEvent, FocusEvent, KeyEvent, MouseEvent, and WindowEvent. The
getComponent() method returns the component that generated the event. It is

shown here:

Component getComponent()

ContainerEvent

A ContainerEvent is generated when a component is added to or removed

from a container. There are two types of container events. The ContainerEvent
class defines int constants that can be used to identify them:

Chapter 01 Introduction to AWT

Advanced Java Programming - 58 -

COMPONENT_ADDED and COMPONENT_REMOVED. They indicate that a

component has been added to or removed from the container.

FocusEvent

A FocusEvent is generated when a component gains or loses input focus.
These events are identified by the integer constants FOCUS_GAINED and

FOCUS_LOST. FocusEvent is a subclass of ComponentEvent.
If the user moves the mouse to adjust a scroll bar, the focus is

temporarily lost.) The other component involved in the focus change, called the

opposite component, is passed in other. Therefore, if a FOCUS_GAINED event
occurred, other will refer to the component that lost focus. Conversely, if a

FOCUS_LOST event occurred, other will refer to the component that gains
focus.

InputEvent

The abstract class InputEvent is a subclass of ComponentEvent and is the

superclass for component input events. Its subclasses are KeyEvent and
MouseEvent. InputEvent defines several integer constants that represent any

modifiers, such as the control key being pressed, that might be associated with
the event. Originally, the InputEvent class defined the following eight values to

represent the modifiers.

ALT_MASK BUTTON2_MASK META_MASK
ALT_GRAPH_MASK BUTTON3_MASK SHIFT_MASK

BUTTON1_MASK CTRL_MASK

However, because of possible conflicts between the modifiers used by

keyboard events and mouse events, and other issues, Java 2, version 1.4
added the following extended modifier values.

ALT_DOWN_MASK ALT_GRAPH_DOWN_MASK

BUTTON1_DOWN_MASK BUTTON2_DOWN_MASK

BUTTON3_DOWN_MASK CTRL_DOWN_MASK
META_DOWN_MASK SHIFT_DOWN_MASK

When writing new code, it is recommended that we use the new,
extended modifiers rather than the original modifiers. To test if a modifier was

pressed at the time an event is generated, use the isAltDown(),
isAltGraphDown(), isControlDown(), isMetaDown(), and isShiftDown()

methods. The forms of these methods are shown here:

boolean isAltDown()

boolean isAltGraphDown()

Chapter 01 Introduction to AWT

Advanced Java Programming - 59 -

boolean isControlDown()

boolean isMetaDown()

boolean isShiftDown()

We can obtain a value that contains all of the original modifier flags by
calling the getModifiers() method. It is shown here:

int getModifiers()

We can obtain the extended modifiers by called getModifiersEx(), which

is shown here.

int getModifiersEx()

ItemEvent

An ItemEvent is generated when a check box or a list item is clicked or
when a checkable menu item is selected or deselected. There are two types of

item events, which are identified by the following integer constants:

DESELECTED The user deselected an item.
SELECTED The user selected an item.

In addition, ItemEvent defines one integer constant,

ITEM_STATE_CHANGED, that signifies a change of state.

The getItem() method can be used to obtain a reference to the item that
generated an event. Its signature is shown here:

Object getItem()

The getItemSelectable() method can be used to obtain a reference to the
ItemSelectable object that generated an event. Its general form is shown here:

ItemSelectable getItemSelectable()

Lists and choices are examples of user interface elements that implement
the ItemSelectable interface. The getStateChange() method returns the state

change (i.e., SELECTED or DESELECTED) for the event. It is shown here:

int getStateChange()

KeyEvent

A KeyEvent is generated when keyboard input occurs. There are three
types of key events, which are identified by these integer constants:

KEY_PRESSED, KEY_RELEASED, and KEY_TYPED. The first two events are

Chapter 01 Introduction to AWT

Advanced Java Programming - 60 -

generated when any key is pressed or released. The last event occurs only

when a character is generated. Remember, not all key presses result in
characters. For example, pressing the SHIFT key does not generate a character.

There are many other integer constants that are defined by KeyEvent. For
example, VK_0 through VK_9 and VK_A through VK_Z define the ASCII

equivalents of the numbers and letters. Here are some others:

VK_ENTER VK_ESCAPE VK_CANCEL VK_UP

VK_DOWN VK_LEFT VK_RIGHT VK_PAGE_DOWN
VK_PAGE_UP VK_SHIFT VK_ALT VK_CONTROL

The VK constants specify virtual key codes and are independent of any

modifiers, such as control, shift, or alt. KeyEvent is a subclass of InputEvent.
The KeyEvent class defines several methods, but the most commonly

used ones are getKeyChar(), which returns the character that was entered,
and getKeyCode(), which returns the key code. Their general forms are shown

here:

char getKeyChar()

int getKeyCode()

If no valid character is available, then getKeyChar() returns

CHAR_UNDEFINED. When a KEY_TYPED event occurs, getKeyCode() returns
VK_UNDEFINED.

MouseEvent

There are eight types of mouse events. The MouseEvent class defines the
following integer constants that can be used to identify them:

MOUSE_CLICKED The user clicked the mouse.

MOUSE_DRAGGED The user dragged the mouse.

MOUSE_ENTERED The mouse entered a component.
MOUSE_EXITED The mouse exited from a component.

MOUSE_MOVED The mouse moved.
MOUSE_PRESSED The mouse was pressed.

MOUSE_RELEASED The mouse was released.
MOUSE_WHEEL The mouse wheel was moved.

The most commonly used methods in this class are getX() and getY().

These returns the X and Y coordinate of the mouse when the event occurred.
Their forms are shown here:

int getX()

int getY()

Chapter 01 Introduction to AWT

Advanced Java Programming - 61 -

Alternatively, we can use the getPoint() method to obtain the

coordinates of the mouse. It is shown here:

Point getPoint()

It returns a Point object that contains the X, Y coordinates in its integer

members: x and y. The translatePoint() method changes the location of the
event. Its form is shown here:

void translatePoint(int x, int y)

Here, the arguments x and y are added to the coordinates of the event.

The getClickCount() method obtains the number of mouse clicks for this event.
Its signature is shown here:

int getClickCount()

The isPopupTrigger() method tests if this event causes a pop-up menu to

appear on this platform. Its form is shown here:

boolean isPopupTrigger()

Java 2, version 1.4 added the getButton() method, shown here.

int getButton()

It returns a value that represents the button that caused the event. The

return value will be one of these constants defined by MouseEvent.

NOBUTTON BUTTON1 BUTTON2 BUTTON3

The NOBUTTON value indicates that no button was pressed or released.

MouseWheelEvent

The MouseWheelEvent class encapsulates a mouse wheel event. It is a

subclass of MouseEvent and was added by Java 2, version 1.4. Not all mice

have wheels. If a mouse has a wheel, it is located between the left and right
buttons. Mouse wheels are used for scrolling. MouseWheelEvent defines these

two integer constants.

WHEEL_BLOCK_SCROLL A page-up or page-down scroll event occurred.

WHEEL_UNIT_SCROLL A line-up or line-down scroll event occurred.

Chapter 01 Introduction to AWT

Advanced Java Programming - 62 -

MouseWheelEvent defines methods that give us access to the wheel

event. For obtaining the number of rotational units, call getWheelRotation(),
shown here.

int getWheelRotation()

It returns the number of rotational units. If the value is positive, the

wheel moved counterclockwise. If the value is negative, the wheel moved
clockwise. For obtaining the type of scroll, call getScrollType(), shown next.

int getScrollType()

It returns either WHEEL_UNIT_SCROLL or WHEEL_BLOCK_SCROLL. If the

scroll type is WHEEL_UNIT_SCROLL, we can obtain the number of units to scroll

by calling getScrollAmount(). It is shown here.

int getScrollAmount()

TextEvent

Instances of this class describe text events. These are generated by text

fields and text areas when characters are entered by a user or program.
TextEvent defines the integer constant TEXT_VALUE_CHANGED.

The TextEvent object does not include the characters currently in the text

component that generated the event. Instead, our program must use other
methods associated with the text component to retrieve that information. This

operation differs from other event objects discussed in this section. For this
reason, no methods are discussed here for the TextEvent class. Think of a text

event notification as a signal to a listener that it should retrieve information
from a specific text component.

WindowEvent

There are ten types of window events. The WindowEvent class defines

integer constants that can be used to identify them. The constants and their
meanings are shown here:

WINDOW_ACTIVATED The window was activated.
WINDOW_CLOSED The window has been closed.

WINDOW_CLOSING The user requested that the window be closed.

WINDOW_DEACTIVATED The window was deactivated.
WINDOW_DEICONIFIED The window was deiconified.

WINDOW_GAINED_FOCUS The window gained input focus.
WINDOW_ICONIFIED The window was iconified.

WINDOW_LOST_FOCUS The window lost input focus.
WINDOW_OPENED The window was opened.

Chapter 01 Introduction to AWT

Advanced Java Programming - 63 -

WINDOW_STATE_CHANGED The state of the window changed.

WindowEvent is a subclass of ComponentEvent. The most commonly used

method in this class is getWindow(). It returns the Window object that
generated the event. Its general form is shown here:

Window getWindow()

Java 2, version 1.4, adds methods that return the opposite window (when

a focus event has occurred), the previous window state, and the current

window state. These methods are shown here:

Window getOppositeWindow()

int getOldState()

int getNewState()

Sources of Events

Following is list of some of the user interface components that can
generate the events described in the previous section. In addition to these

graphical user interface elements, other components, such as an applet, can
generate events. For example, we receive key and mouse events from an

applet. (We may also build our own components that generate events.)

Event Source Description

Button Generates action events when the button is pressed.

Checkbox Generates item events when the check box is selected or
deselected.

Choice Generates item events when the choice is changed.
List Generates action events when an item is double-clicked;

Generates item events when an item is selected or
deselected.

Menu Item Generates action events when a menu item is selected;
generates item events when a checkable menu item is

selected or deselected.
Scrollbar Generates adjustment events when the scroll bar is

manipulated.
Text components Generates text events when the user enters a

character.
Window Generates window events when a window is

activated, closed,deactivated, deiconified, iconified,

opened, or quit.

Event Listener Interfaces

Chapter 01 Introduction to AWT

Advanced Java Programming - 64 -

The delegation event model has two parts: sources and listeners.

Listeners are created by implementing one or more of the interfaces defined by
the java.awt.event package. When an event occurs, the event source invokes

the appropriate method defined by the listener and provides an event object as
its argument.

ActionListener Interface

This interface defines the actionPerformed() method that is invoked
when an action event occurs. Its general form is shown here:

void actionPerformed(ActionEvent ae)

AdjustmentListener Interface

This interface defines the adjustmentValueChanged() method that is
invoked when an adjustment event occurs. Its general form is shown here:

void adjustmentValueChanged(AdjustmentEvent ae)

ComponentListener Interface

This interface defines four methods that are invoked when a component is

resized, moved, shown, or hidden. Their general forms are shown here:

void componentResized(ComponentEvent ce)

void componentMoved(ComponentEvent ce)

void componentShown(ComponentEvent ce)

void componentHidden(ComponentEvent ce)

The AWT processes the resize and move events. The componentResized()

and componentMoved() methods are provided for notification purposes only.

ContainerListener Interface

This interface contains two methods. When a component is added to a
container, componentAdded() is invoked. When a component is removed from

a container, componentRemoved() is invoked. Their general forms are shown
here:

void componentAdded(ContainerEvent ce)

void componentRemoved(ContainerEvent ce)

FocusListener Interface

Chapter 01 Introduction to AWT

Advanced Java Programming - 65 -

This interface defines two methods. When a component obtains keyboard

focus, focusGained() is invoked. When a component loses keyboard focus,
focusLost() is called. Their general forms are shown here:

void focusGained(FocusEvent fe)

void focusLost(FocusEvent fe)

ItemListener Interface

This interface defines the itemStateChanged() method that is invoked
when the state of an item changes. Its general form is shown here:

void itemStateChanged(ItemEvent ie)

KeyListener Interface

This interface defines three methods. The keyPressed() and

keyReleased() methods are invoked when a key is pressed and released,

respectively. The keyTyped() method is invoked when a character has been
entered. For example, if a user presses and releases the A key, three events

are generated in sequence: key pressed, typed, and released. If a user presses
and releases the HOME key, two key events are generated in sequence: key

pressed and released. The general forms of these methods are shown here:

void keyPressed(KeyEvent ke)

void keyReleased(KeyEvent ke)

void keyTyped(KeyEvent ke)

MouseListener Interface

This interface defines five methods. If the mouse is pressed and released

at the same point, mouseClicked() is invoked. When the mouse enters a
component, the mouseEntered() method is called. When it leaves,

mouseExited() is called. The mousePressed() and mouseReleased() methods
are invoked when the mouse is pressed and released, respectively. The general

forms of these methods are shown here:

void mouseClicked(MouseEvent me)

void mouseEntered(MouseEvent me)

void mouseExited(MouseEvent me)

void mousePressed(MouseEvent me)

void mouseReleased(MouseEvent me)

MouseMotionListener Interface

Chapter 01 Introduction to AWT

Advanced Java Programming - 66 -

This interface defines two methods. The mouseDragged() method is

called multiple times as the mouse is dragged. The mouseMoved() method is
called multiple times as the mouse is moved. Their general forms are shown

here:

void mouseDragged(MouseEvent me)

void mouseMoved(MouseEvent me)

MouseWheelListener Interface

This interface defines the mouseWheelMoved() method that is invoked

when the mouse wheel is moved. Its general form is shown here.

void mouseWheelMoved(MouseWheelEvent mwe)

MouseWheelListener was added by Java 2, version 1.4.

TextListener Interface

This interface defines the textChanged() method that is invoked when a
change occurs in a text area or text field. Its general form is shown here:

void textChanged(TextEvent te)

WindowFocusListener Interface

This interface defines two methods: windowGainedFocus() and

windowLostFocus(). These are called when a window gains or losses input
focus. Their general forms are shown here.

void windowGainedFocus(WindowEvent we)

void windowLostFocus(WindowEvent we)

WindowFocusListener was added by Java 2, version 1.4.

WindowListener Interface

This interface defines seven methods. The windowActivated() and

windowDeactivated() methods are invoked when a window is activated or
deactivated, respectively. If a window is iconified, the windowIconified()

method is called. When a window is deiconified, the windowDeiconified()
method is called. When a window is opened or closed, the windowOpened() or

windowClosed() methods are called, respectively. The windowClosing()
method is called when a window is being closed. The general forms of these

methods are:

Chapter 01 Introduction to AWT

Advanced Java Programming - 67 -

void windowActivated(WindowEvent we)

void windowClosed(WindowEvent we)

void windowClosing(WindowEvent we)

void windowDeactivated(WindowEvent we)

void windowDeiconified(WindowEvent we)

void windowIconified(WindowEvent we)

void windowOpened(WindowEvent we)

Handling Mouse Events

In order to handle mouse events, we must implement the MouseListener

and the MouseMotionListener interfaces.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="MouseEvents" width=300 height=100>

</applet>

*/

public class MouseEvents extends Applet

implements MouseListener, MouseMotionListener

{

String msg = "";

int mouseX = 0, mouseY = 0; // coordinates of mouse

public void init()

{

addMouseListener(this);

addMouseMotionListener(this);

}

public void mouseClicked(MouseEvent me)

{

// save coordinates

mouseX = 0;

mouseY = 10;

msg = "Mouse clicked.";

repaint();

}

// Handle mouse entered.

public void mouseEntered(MouseEvent me)

{

// save coordinates

mouseX = 0;

mouseY = 10;

msg = "Mouse entered.";

repaint();

}

// Handle mouse exited.

Chapter 01 Introduction to AWT

Advanced Java Programming - 68 -

public void mouseExited(MouseEvent me)

{

// save coordinates

mouseX = 0;

mouseY = 10;

msg = "Mouse exited.";

repaint();

}

// Handle button pressed.

public void mousePressed(MouseEvent me)

{

// save coordinates

mouseX = me.getX();

mouseY = me.getY();

msg = "Down";

repaint();

}

// Handle button released.

public void mouseReleased(MouseEvent me)

{

// save coordinates

mouseX = me.getX();

mouseY = me.getY();

msg = "Up";

repaint();

}

// Handle mouse dragged.

public void mouseDragged(MouseEvent me)

{

// save coordinates

mouseX = me.getX();

mouseY = me.getY();

msg = "*";

showStatus("Dragging mouse at " + mouseX + ", " + mouseY);

repaint();

}

// Handle mouse moved.

public void mouseMoved(MouseEvent me)

{

// show status

showStatus("Moving mouse at " + me.getX() + ", " +

me.getY());

}

// Display msg in applet window at current X,Y location.

public void paint(Graphics g)

{

g.drawString(msg, mouseX, mouseY);

}

Chapter 01 Introduction to AWT

Advanced Java Programming - 69 -

}

Here, the MouseEvents class extends Applet and implements both the
MouseListener and MouseMotionListener interfaces. These two interfaces

contain methods that receive and process the various types of mouse events.
Notice that the applet is both the source and the listener for these events. This

works because Component, which supplies the addMouseListener() and
addMouseMotionListener() methods, is a superclass of Applet. Being both the

source and the listener for events is a common situation for applets.
Inside init(), the applet registers itself as a listener for mouse events.

This is done by using addMouseListener() and addMouseMotionListener(),
which, as mentioned, are members of Component. They are shown here:

void addMouseListener(MouseListener ml)

void addMouseMotionListener(MouseMotionListener mml)

Here, ml is a reference to the object receiving mouse events, and mml is

a reference to the object receiving mouse motion events. In this program, the
same object is used for both. The applet then implements all of the methods

defined by the MouseListener and MouseMotionListener interfaces. These are

the event handlers for the various mouse events. Each method handles its
event and then returns.

Handling Keyboard Events

We will be implementing the KeyListener interface for handling keyboard

events. Before looking at an example, it is useful to review how key events are
generated. When a key is pressed, a KEY_PRESSED event is generated. This

results in a call to the keyPressed() event handler. When the key is released, a
KEY_RELEASED event is generated and the keyReleased() handler is executed.

If a character is generated by the keystroke, then a KEY_TYPED event is sent
and the keyTyped() handler is invoked. Thus, each time the user presses a

key, at least two and often three events are generated. If all we care about are
actual characters, then we can ignore the information passed by the key press

and release events. However, if our program needs to handle special keys, such

Chapter 01 Introduction to AWT

Advanced Java Programming - 70 -

as the arrow or function keys, then it must watch for them through the

keyPressed() handler.
There is one other requirement that our program must meet before it can

process keyboard events: it must request input focus. To do this, call
requestFocus(), which is defined by Component. If we don‘t, then our program

will not receive any keyboard events. The following program demonstrates
keyboard input. It echoes keystrokes to the applet window and shows the

pressed/released status of each key in the status window.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="SimpleKey" width=300 height=100>

</applet>

*/

public class SimpleKey extends Applet

implements KeyListener

{

String msg = "";

int X = 10, Y = 20; // output coordinates

public void init()

{

addKeyListener(this);

requestFocus(); // request input focus

}

public void keyPressed(KeyEvent ke)

{

showStatus("Key Down");

}

public void keyReleased(KeyEvent ke)

{

showStatus("Key Up");

}

public void keyTyped(KeyEvent ke)

{

msg += ke.getKeyChar();

repaint();

}

// Display keystrokes.

public void paint(Graphics g)

{

g.drawString(msg, X, Y);

}

}

Chapter 01 Introduction to AWT

Advanced Java Programming - 71 -

If we want to handle the special keys, such as the arrow or function keys,

we need to respond to them within the keyPressed() handler. They are not
available through keyTyped(). To identify the keys, we use their virtual key

codes. For example, the next method shows the use of special keys:

public void keyPressed(KeyEvent ke)

{

showStatus("Key Down");

int key = ke.getKeyCode();

switch(key)

{

case KeyEvent.VK_F1:

msg += "<F1>";

break;

case KeyEvent.VK_F2:

msg += "<F2>";

break;

case KeyEvent.VK_F3:

msg += "<F3>";

break;

case KeyEvent.VK_PAGE_DOWN:

msg += "<PgDn>";

break;

case KeyEvent.VK_PAGE_UP:

msg += "<PgUp>";

break;

case KeyEvent.VK_LEFT:

msg += "<Left Arrow>";

break;

case KeyEvent.VK_RIGHT:

msg += "<Right Arrow>";

break;

}

repaint();

}

Adapter Classes

Chapter 01 Introduction to AWT

Advanced Java Programming - 72 -

Java provides a special feature, called an adapter class that can simplify
the creation of event handlers in certain situations. An adapter class provides

an empty implementation of all methods in an event listener interface. Adapter
classes are useful when we want to receive and process only some of the

events that are handled by a particular event listener interface. We can define a
new class to act as an event listener by extending one of the adapter classes

and implementing only those events in which we are interested. For example,
the MouseMotionAdapter class has two methods, mouseDragged() and

mouseMoved(). The signatures of these empty methods are exactly as defined

in the MouseMotionListener interface. If you were interested in only mouse drag
events, then you could simply extend MouseMotionAdapter and implement

mouseDragged(). The empty implementation of mouseMoved() would handle
the mouse motion events for you.

List below shows the commonly used adapter classes in java.awt.event

and notes the interface that each implements. The following example
demonstrates an adapter. It displays a message in the status bar of an applet

viewer or browser when the mouse is clicked or dragged. However, all other
mouse events are silently ignored. The program has three classes.

AdapterDemo extends Applet. Its init() method creates an instance of
MyMouseAdapter and registers that object to receive notifications of mouse

events. It also creates an instance of MyMouseMotionAdapter and registers that
object to receive notifications of mouse motion events. Both of the constructors

take a reference to the applet as an argument. MyMouseAdapter implements
the mouseClicked() method. The other mouse events are silently ignored by

code inherited from the MouseAdapter class. MyMouseMotionAdapter
implements the mouseDragged() method. The other mouse motion event is

silently ignored by code inherited from the MouseMotionAdapter class.

Adapter Class Listener Interface

ComponentAdapter ComponentListener
ContainerAdapter ContainerListener

FocusAdapter FocusListener
KeyAdapter KeyListener

MouseAdapter MouseListener

MouseMotionAdapter MouseMotionListener
WindowAdapter WindowListener

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="AdapterDemo" width=300 height=100>

</applet>

*/

Chapter 01 Introduction to AWT

Advanced Java Programming - 73 -

public class AdapterDemo extends Applet

{

public void init()

{

addMouseListener(new MyMouseAdapter(this));

addMouseMotionListener(new MyMouseMotionAdapter(this));

}

}

class MyMouseAdapter extends MouseAdapter

{

AdapterDemo adapterDemo;

public MyMouseAdapter(AdapterDemo adapterDemo)

{

this.adapterDemo = adapterDemo;

}

// Handle mouse clicked.

public void mouseClicked(MouseEvent me)

{

adapterDemo.showStatus("Mouse clicked");

}

}

class MyMouseMotionAdapter extends MouseMotionAdapter

{

AdapterDemo adapterDemo;

public MyMouseMotionAdapter(AdapterDemo adapterDemo)

{

this.adapterDemo = adapterDemo;

}

// Handle mouse dragged.

public void mouseDragged(MouseEvent me)

{

adapterDemo.showStatus("Mouse dragged");

}

}

As we can see by looking at the program, not having to implement all of

the methods defined by the MouseMotionListener and MouseListener interfaces

saves our considerable amount of effort and prevents our code from becoming
cluttered with empty methods.

Inner Classes

For understanding the benefit provided by inner classes, consider the
applet shown in the following listing. It does not use an inner class. Its goal is

to display the string ―Mouse Pressed‖ in the status bar of the applet viewer or
browser when the mouse is pressed. There are two top-level classes in this

program. MousePressedDemo extends Applet, and MyMouseAdapter extends

Chapter 01 Introduction to AWT

Advanced Java Programming - 74 -

MouseAdapter. The init() method of MousePressedDemo instantiates

MyMouseAdapter and provides this object as an argument to the
addMouseListener() method. Notice that a reference to the applet is supplied

as an argument to the MyMouseAdapter constructor. This reference is stored in
an instance variable for later use by the mousePressed() method. When the

mouse is pressed, it invokes the showStatus() method of the applet through
the stored applet reference. In other words, showStatus() is invoked relative to

the applet reference stored by MyMouseAdapter.

// This applet does NOT use an inner

class. import java.applet.*;

import java.awt.event.*;

/*

<applet code="MousePressedDemo" width=200 height=100>

</applet>

*/

public class MousePressedDemo extends Applet

{

public void init()

{

addMouseListener(new MyMouseAdapter(this));

}

}

class MyMouseAdapter extends MouseAdapter

{

MousePressedDemo mousePressedDemo;

public MyMouseAdapter(MousePressedDemo mousePressedDemo)

{

this.mousePressedDemo = mousePressedDemo;

}

public void mousePressed(MouseEvent me)

{

mousePressedDemo.showStatus("Mouse Pressed.");

}

}

The following listing shows how the preceding program can be improved

by using an inner class. Here, InnerClassDemo is a top-level class that extends
Applet. MyMouseAdapter is an inner class that extends MouseAdapter. Because

MyMouseAdapter is defined within the scope of InnerClassDemo, it has access
to all of the variables and methods within the scope of that class. Therefore, the

mousePressed() method can call the showStatus() method directly. It no
longer needs to do this via a stored reference to the applet. Thus, it is no

longer necessary to pass MyMouseAdapter() a reference to the invoking object.

// Inner class demo.

import java.applet.*;

Chapter 01 Introduction to AWT

Advanced Java Programming - 75 -

import java.awt.event.*;

/*

<applet code="InnerClassDemo" width=200 height=100>

</applet>

*/

public class InnerClassDemo extends Applet

{

public void init()

{

addMouseListener(new MyMouseAdapter());

}

class MyMouseAdapter extends MouseAdapter

{

public void mousePressed(MouseEvent me)

{

showStatus("Mouse Pressed");

}

}

}

Anonymous Inner Classes

An anonymous inner class is one that is not assigned a name. Consider

the applet shown in the following listing. As before, its goal is to display the

string ―Mouse Pressed‖ in the status bar of the applet viewer or browser when
the mouse is pressed.

// Anonymous inner class demo.

import java.applet.*;

import java.awt.event.*;

/*

<applet code="AnonymousInnerClassDemo" width=200 height=100>

</applet>

*/

public class AnonymousInnerClassDemo extends Applet

{

public void init()

{

addMouseListener(new MouseAdapter() {

public void mousePressed(MouseEvent me) {

showStatus("Mouse Pressed");

}

});

}

}

There is one top-level class in this program: AnonymousInnerClassDemo.
The init() method calls the addMouseListener() method. Its argument is an

Chapter 01 Introduction to AWT

Advanced Java Programming - 76 -

expression that defines and instantiates an anonymous inner class. Let‘s

analyze this expression carefully. The syntax new MouseAdapter() { ... }
indicates to the compiler that the code between the braces defines an

anonymous inner class. Furthermore, that class extends MouseAdapter. This
new class is not named, but it is automatically instantiated when this

expression is executed. Because this anonymous inner class is defined within
the scope of AnonymousInnerClassDemo, it has access to all of the variables

and methods within the scope of that class. Therefore, it can call the

showStatus() method directly. As just illustrated, both named and anonymous
inner classes solve some annoying problems in a simple yet effective way. They

also allow us to create more efficient code.

Handling Buttons

// Demonstrate Buttons

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="ButtonDemo" width=250 height=150>

</applet>

*/

public class ButtonDemo extends Applet implements ActionListener

{

String msg = "";

Button yes, no, maybe;

public void init()

{

yes = new Button("Yes");

no = new Button("No");

maybe = new Button("Undecided");

add(yes);

add(no);

add(maybe);

yes.addActionListener(this);

no.addActionListener(this);

maybe.addActionListener(this);

}

public void actionPerformed(ActionEvent ae)

{

String str = ae.getActionCommand();

if(str.equals("Yes"))

{

msg = "You pressed Yes.";

}

else if(str.equals("No"))

{

Chapter 01 Introduction to AWT

Advanced Java Programming - 77 -

msg = "You pressed No.";

}

else

{

msg = "You pressed Undecided.";

}

repaint();

}

public void paint(Graphics g)

{

g.drawString(msg, 6, 100);

}

}

Handling Checkboxes

// Demonstrate check boxes.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="CheckboxDemo" width=250 height=200>

</applet>

*/

public class CheckboxDemo extends Applet implements ItemListener

{

String msg = "";

Checkbox Win98, winNT, solaris, mac;

public void init()

{

Win98 = new Checkbox("Windows 98/XP", null, true);

winNT = new Checkbox("Windows NT/2000");

solaris = new Checkbox("Solaris");

mac = new Checkbox("MacOS");

add(Win98);

add(winNT);

add(solaris);

add(mac);

Win98.addItemListener(this);

winNT.addItemListener(this);

solaris.addItemListener(this);

mac.addItemListener(this);

}

public void itemStateChanged(ItemEvent ie)

{

repaint();

}

// Display current state of the check boxes.

Chapter 01 Introduction to AWT

Advanced Java Programming - 78 -

public void paint(Graphics g)

{

msg = "Current state: ";

g.drawString(msg, 6, 80);

msg = " Windows 98/XP: " + Win98.getState();

g.drawString(msg, 6, 100);

msg = " Windows NT/2000: " + winNT.getState();

g.drawString(msg, 6, 120);

msg = " Solaris: " + solaris.getState();

g.drawString(msg, 6, 140);

msg = " MacOS: " + mac.getState();

g.drawString(msg, 6, 160);

}

}

Handling Radio Buttons

// Demonstrate check box group.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="CBGroup" width=250 height=200>

</applet>

*/

public class CBGroup extends Applet implements ItemListener

{

String msg = "";

Checkbox Win98, winNT, solaris, mac;

CheckboxGroup cbg;

public void init()

{

cbg = new CheckboxGroup();

Win98 = new Checkbox("Windows 98/XP", cbg, true);

winNT = new Checkbox("Windows NT/2000", cbg, false);

solaris = new Checkbox("Solaris", cbg, false);

mac = new Checkbox("MacOS", cbg, false);

add(Win98);

add(winNT);

add(solaris);

add(mac);

Win98.addItemListener(this);

winNT.addItemListener(this);

solaris.addItemListener(this);

mac.addItemListener(this);

}

public void itemStateChanged(ItemEvent ie)

{

Chapter 01 Introduction to AWT

Advanced Java Programming - 79 -

repaint();

}

// Display current state of the check boxes.

public void paint(Graphics g)

{

msg = "Current selection: ";

msg += cbg.getSelectedCheckbox().getLabel();

g.drawString(msg, 6, 100);

}

}

Handling Choice Controls

// Demonstrate Choice lists.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="ChoiceDemo" width=300 height=180>

</applet>

*/

public class ChoiceDemo extends Applet implements ItemListener

{

Choice os, browser;

String msg = "";

public void init()

{

os = new Choice();

browser = new Choice();

// add items to os list

os.add("Windows 98/XP");

os.add("Windows NT/2000");

os.add("Solaris");

os.add("MacOS");

// add items to browser list

browser.add("Netscape 3.x");

browser.add("Netscape 4.x");

browser.add("Netscape 5.x");

browser.add("Netscape 6.x");

browser.add("Internet Explorer 4.0");

browser.add("Internet Explorer 5.0");

browser.add("Internet Explorer 6.0");

browser.add("Lynx 2.4");

browser.select("Netscape 4.x");

// add choice lists to window

add(os);

add(browser);

// register to receive item events

Chapter 01 Introduction to AWT

Advanced Java Programming - 80 -

os.addItemListener(this);

browser.addItemListener(this);

}

public void itemStateChanged(ItemEvent ie)

{

repaint();

}

// Display current selections.

public void paint(Graphics g)

{

msg = "Current OS: ";

msg += os.getSelectedItem();

g.drawString(msg, 6, 120);

msg = "Current Browser: ";

msg += browser.getSelectedItem();

g.drawString(msg, 6, 140);

}

}

Handling Lists

// Demonstrate Lists.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="ListDemo" width=300 height=180>

</applet>

*/

public class ListDemo extends Applet implements ActionListener

{

List os, browser;

String msg = "";

public void init()

{

os = new List(4, true);

browser = new List(4, false);

// add items to os list

os.add("Windows 98/XP");

os.add("Windows NT/2000");

os.add("Solaris");

os.add("MacOS");

// add items to browser list

browser.add("Netscape 3.x");

browser.add("Netscape 4.x");

browser.add("Netscape 5.x");

browser.add("Netscape 6.x");

browser.add("Internet Explorer 4.0");

Chapter 01 Introduction to AWT

Advanced Java Programming - 81 -

browser.add("Internet Explorer 5.0");

browser.add("Internet Explorer 6.0");

browser.add("Lynx 2.4");

browser.select(1);

// add lists to window

add(os);

add(browser);

// register to receive action events

os.addActionListener(this);

browser.addActionListener(this);

}

public void actionPerformed(ActionEvent ae)

{

repaint();

}

// Display current selections.

public void paint(Graphics g)

{

int idx[];

msg = "Current OS: ";

idx = os.getSelectedIndexes();

for(int i=0; i<idx.length; i++)

msg += os.getItem(idx[i]) + " ";

g.drawString(msg, 6, 120);

msg = "Current Browser: ";

msg += browser.getSelectedItem();

g.drawString(msg, 6, 140);

}

}

Handling Scrollbars

// Demonstrate scroll bars.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="SBDemo" width=300 height=200>

</applet>

*/

public class SBDemo extends Applet

implements AdjustmentListener, MouseMotionListener

{

String msg = "";

Scrollbar vertSB, horzSB;

public void init()

{

int width = Integer.parseInt(getParameter("width"));

Chapter 01 Introduction to AWT

Advanced Java Programming - 82 -

int height = Integer.parseInt(getParameter("height"));

vertSB = new Scrollbar(Scrollbar.VERTICAL,

0, 1, 0, height);

horzSB = new Scrollbar(Scrollbar.HORIZONTAL,

0, 1, 0, width);

add(vertSB);

add(horzSB);

// register to receive adjustment events

vertSB.addAdjustmentListener(this);

horzSB.addAdjustmentListener(this);

addMouseMotionListener(this);

}

public void adjustmentValueChanged(AdjustmentEvent ae)

{

repaint();

}

// Update scroll bars to reflect mouse dragging.

public void mouseDragged(MouseEvent me)

{

int x = me.getX();

int y = me.getY();

vertSB.setValue(y);

horzSB.setValue(x);

repaint();

}

// Necessary for MouseMotionListener

public void mouseMoved(MouseEvent me)

{

}

// Display current value of scroll bars.

public void paint(Graphics g)

{

msg = "Vertical: " + vertSB.getValue();

msg += ", Horizontal: " + horzSB.getValue();

g.drawString(msg, 6, 160);

// show current mouse drag position

g.drawString("*", horzSB.getValue(),

vertSB.getValue());

}

}

Handling Text field

// Demonstrate text field.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

Chapter 01 Introduction to AWT

Advanced Java Programming - 83 -

<applet code="TextFieldDemo" width=380 height=150>

</applet>

*/

public class TextFieldDemo extends Applet

implements ActionListener

{

TextField name, pass;

public void init()

{

Label namep = new Label("Name: ", Label.RIGHT);

Label passp = new Label("Password: ", Label.RIGHT);

name = new TextField(12);

pass = new TextField(8);

pass.setEchoChar('?');

add(namep);

add(name);

add(passp);

add(pass);

// register to receive action events

name.addActionListener(this);

pass.addActionListener(this);

}

// User pressed Enter.

public void actionPerformed(ActionEvent ae)

{

repaint();

}

public void paint(Graphics g)

{

g.drawString("Name: " + name.getText(), 6, 60);

g.drawString("Selected text in name: "

+ name.getSelectedText(), 6, 80);

g.drawString("Password: " + pass.getText(), 6, 100);

}

}

Handling Menus

// Illustrate menus.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="MenuDemo1" width=250 height=250>

</applet>

*/

// Create a subclass of Frame

Chapter 01 Introduction to AWT

Advanced Java Programming - 84 -

class MenuFrame extends Frame {

String msg = "";

CheckboxMenuItem debug, test;

MenuFrame(String title) {

super(title);

// create menu bar and add it to frame

MenuBar mbar = new MenuBar();

setMenuBar(mbar);

// create the menu items

Menu file = new Menu("File");

MenuItem item1, item2, item3, item4, item5;

file.add(item1 = new MenuItem("New..."));

file.add(item2 = new MenuItem("Open..."));

file.add(item3 = new MenuItem("Close"));

file.add(item4 = new MenuItem("-"));

file.add(item5 = new MenuItem("Quit..."));

mbar.add(file);

Menu edit = new Menu("Edit");

MenuItem item6, item7, item8, item9;

edit.add(item6 = new MenuItem("Cut"));

edit.add(item7 = new MenuItem("Copy"));

edit.add(item8 = new MenuItem("Paste"));

edit.add(item9 = new MenuItem("-"));

Menu sub = new Menu("Special");

MenuItem item10, item11, item12;

sub.add(item10 = new MenuItem("First"));

sub.add(item11 = new MenuItem("Second"));

sub.add(item12 = new MenuItem("Third"));

edit.add(sub);

// these are checkable menu items

debug = new CheckboxMenuItem("Debug");

edit.add(debug);

test = new CheckboxMenuItem("Testing");

edit.add(test);

mbar.add(edit);

// create an object to handle action and item events

MyMenuHandler handler = new MyMenuHandler(this);

// register it to receive those events

item1.addActionListener(handler);

item2.addActionListener(handler);

item3.addActionListener(handler);

Chapter 01 Introduction to AWT

Advanced Java Programming - 85 -

item4.addActionListener(handler);

item5.addActionListener(handler);

item6.addActionListener(handler);

item7.addActionListener(handler);

item8.addActionListener(handler);

item9.addActionListener(handler);

item10.addActionListener(handler);

item11.addActionListener(handler);

item12.addActionListener(handler);

debug.addItemListener(handler);

test.addItemListener(handler);

// create an object to handle window events

MyWindowAdapter adapter = new MyWindowAdapter(this);

// register it to receive those events

addWindowListener(adapter);

}

public void paint(Graphics g) {

g.drawString(msg, 10, 200);

if(debug.getState())

g.drawString("Debug is on.", 10, 220);

else

g.drawString("Debug is off.", 10, 220);

if(test.getState())

g.drawString("Testing is on.", 10, 240);

else

g.drawString("Testing is off.", 10, 240);

}

}

class MyWindowAdapter extends WindowAdapter {

MenuFrame menuFrame;

public MyWindowAdapter(MenuFrame menuFrame) {

this.menuFrame = menuFrame;

}

public void windowClosing(WindowEvent we) {

menuFrame.setVisible(false);

}

}

class MyMenuHandler implements ActionListener, ItemListener {

MenuFrame menuFrame;

public MyMenuHandler(MenuFrame menuFrame) {

this.menuFrame = menuFrame;

}

Chapter 01 Introduction to AWT

Advanced Java Programming - 86 -

// Handle action events

public void actionPerformed(ActionEvent ae) {

String msg = "You selected ";

String arg = (String)ae.getActionCommand();

if(arg.equals("New..."))

msg += "New.";

else if(arg.equals("Open..."))

msg += "Open.";

else if(arg.equals("Close"))

msg += "Close.";

else if(arg.equals("Quit..."))

msg += "Quit.";

else if(arg.equals("Edit"))

msg += "Edit.";

else if(arg.equals("Cut"))

msg += "Cut.";

else if(arg.equals("Copy"))

msg += "Copy.";

else if(arg.equals("Paste"))

msg += "Paste.";

else if(arg.equals("First"))

msg += "First.";

else if(arg.equals("Second"))

msg += "Second.";

else if(arg.equals("Third"))

msg += "Third.";

else if(arg.equals("Debug"))

msg += "Debug.";

else if(arg.equals("Testing"))

msg += "Testing.";

menuFrame.msg = msg;

menuFrame.repaint();

}

// Handle item events

public void itemStateChanged(ItemEvent ie) {

menuFrame.repaint();

}

}

// Create frame window.

public class MenuDemo1 extends Applet {

Frame f;

public void init() {

f = new MenuFrame("Menu Demo");

int width = Integer.parseInt(getParameter("width"));

int height = Integer.parseInt(getParameter("height"));

setSize(new Dimension(width, height));

Chapter 01 Introduction to AWT

Advanced Java Programming - 87 -

f.setSize(width, height);

f.setVisible(true);

}

public void start() {

f.setVisible(true);

}

public void stop() {

f.setVisible(false);

}

}

CardLayout

The CardLayout class is unique among the other layout managers in that

it stores several different layouts. Each layout can be thought of as being on a
separate index card in a deck that can be shuffled so that any card is on top at

a given time. This can be useful for user interfaces with optional components
that can be dynamically enabled and disabled upon user input. We can prepare

the other layouts and have them hidden, ready to be activated when needed.
CardLayout provides these two constructors:

CardLayout()

CardLayout(int horz, int vert)

The first form creates a default card layout. The second form allows us to
specify the horizontal and vertical space left between components in horz and

vert, respectively. Use of a card layout requires a bit more work than the other
layouts. The cards are typically held in an object of type Panel. This panel must

have CardLayout selected as its layout manager. The cards that form the deck
are also typically objects of type Panel. Thus, we must create a panel that

contains the deck and a panel for each card in the deck. Next, we add to the

appropriate panel the components that form each card. We then add these
panels to the panel for which CardLayout is the layout manager. Finally, we add

this panel to the main applet panel. Once these steps are complete, we must
provide some way for the user to select between cards. One common approach

is to include one push button for each card in the deck. When card panels are
added to a panel, they are usually given a name. Thus, most of the time, we

will use this form of add() when adding cards to a panel:

void add(Component panelObj, Object name);

Chapter 01 Introduction to AWT

Advanced Java Programming - 88 -

Here, name is a string that specifies the name of the card whose panel is

specified by panelObj. After we have created a deck, our program activates a
card by calling one of the following methods defined by CardLayout:

void first(Container deck)

void last(Container deck)

void next(Container deck)

void previous(Container deck)

void show(Container deck, String cardName)

Here, deck is a reference to the container (usually a panel) that holds the

cards, and cardName is the name of a card. Calling first() causes the first card

in the deck to be shown. For showing the last card, call last() and for the next
card, call next(). To show the previous card, call previous(). Both next() and

previous() automatically cycle back to the top or bottom of the deck,
respectively. The show() method displays the card whose name is passed in

cardName. The following example creates a two-level card deck that allows the
user to select an operating system. Windows-based operating systems are

displayed in one card. Macintosh and Solaris are displayed in the other card.
The process of creating a card layout is visualized as below:

add

Fig. Creation of card layout

// Demonstrate CardLayout.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="CardLayoutDemo" width=300 height=100>

</applet>

*/

public class CardLayoutDemo extends Applet

implements ActionListener, MouseListener

add

add

add Panel3
AWT Controls
(Layout3)

Main
Panel

Panel2
AWT Controls
(Layout2)

Panel1
AWT Controls
(Layout1)

Applet

Chapter 01 Introduction to AWT

Advanced Java Programming - 89 -

{

Checkbox Win98, winNT, solaris, mac;

Panel osCards;

CardLayout cardLO;

Button Win, Other;

public void init()

{

Win = new Button("Windows");

Other = new Button("Other");

add(Win);

add(Other);

cardLO = new CardLayout();

osCards = new Panel();

osCards.setLayout(cardLO); // set panel layout to card layout

Win98 = new Checkbox("Windows 98/XP", null, true);

winNT = new Checkbox("Windows NT/2000");

solaris = new Checkbox("Solaris");

mac = new Checkbox("MacOS");

// add Windows check boxes to a panel

Panel winPan = new Panel();

winPan.setLayout(new BorderLayout());

winPan.add(Win98,BorderLayout.NORTH);

winPan.add(winNT,BorderLayout.SOUTH);

// Add other OS check boxes to a panel

Panel otherPan = new Panel();

otherPan.add(solaris);

otherPan.add(mac);

otherPan.setLayout(new GridLayout(2,2));

// add panels to card deck panel

osCards.add(winPan, "Windows");

osCards.add(otherPan, "Other");

// add cards to main applet panel

add(osCards);

// register to receive action events

Win.addActionListener(this);

Other.addActionListener(this);

// register mouse events

addMouseListener(this);

Chapter 01 Introduction to AWT

Advanced Java Programming - 90 -

}

// Cycle through panels.

public void mousePressed(MouseEvent me)

{

cardLO.next(osCards);

}

public void mouseClicked(MouseEvent me) {

}

public void mouseEntered(MouseEvent me) {

}

public void mouseExited(MouseEvent me) {

}

public void mouseReleased(MouseEvent me) {

}

public void actionPerformed(ActionEvent ae)

{

if(ae.getSource() == Win)

cardLO.show(osCards, "Windows");

else

cardLO.show(osCards, "Other");

}

}

Handling Events by Extending AWT Components

Java also allows us to handle events by subclassing AWT components.
Doing so allows us to handle events in much the same way as they were

handled under the original 1.0 version of Java. Of course, this technique is
discouraged, because it has the same disadvantages of the Java 1.0 event

model, the main one being inefficiency. In order to extend an AWT component,
we must call the enableEvents() method of Component. Its general form is

shown here:

protected final void enableEvents(long eventMask)

The eventMask argument is a bit mask that defines the events to be

delivered to this component. The AWTEvent class defines int constants for

making this mask. Several are shown here:

ACTION_EVENT_MASK KEY_EVENT_MASK
ADJUSTMENT_EVENT_MASK MOUSE_EVENT_MASK

COMPONENT_EVENT_MASK MOUSE_MOTION_EVENT_MASK

CONTAINER_EVENT_MASK MOUSE_WHEEL_EVENT_MASK
FOCUS_EVENT_MASK TEXT_EVENT_MASK

Chapter 01 Introduction to AWT

Advanced Java Programming - 91 -

INPUT_METHOD_EVENT_MASK WINDOW_EVENT_MASK

ITEM_EVENT_MASK

We must also override the appropriate method from one of our
superclasses in order to process the event. Methods listed below most

commonly used and the classes that provide them.

Event Processing Methods

Class Processing Methods

Button processActionEvent()

Checkbox processItemEvent()
CheckboxMenuItem processItemEvent()

Choice processItemEvent()
Component processComponentEvent(), processFocusEvent(),

processKeyEvent(), processMouseEvent(),

processMouseMotionEvent(),
processMouseWheelEvent ()

List processActionEvent(), processItemEvent()

MenuItem processActionEvent()

Scrollbar processAdjustmentEvent()
TextComponent processTextEvent()

Extending Button

The following program creates an applet that displays a button labeled

―Test Button‖. When the button is pressed, the string ―action event: ‖ is
displayed on the status line of the applet viewer or browser, followed by a

count of the number of button presses. The program has one top-level class

named ButtonDemo2 that extends Applet. A static integer variable named i is
defined and initialized to zero. It records the number of button pushes. The

init() method instantiates MyButton and adds it to the applet. MyButton is an
inner class that extends Button. Its constructor uses super to pass the label of

the button to the superclass constructor. It calls enableEvents() so that action
events may be received by this object. When an action event is generated,

processActionEvent() is called. That method displays a string on the status line
and calls processActionEvent() for the superclass. Because MyButton is an

inner class, it has direct access to the showStatus() method of ButtonDemo2.

/*

* <applet code=ButtonDemo2 width=200 height=100>
* </applet>
*/

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

Chapter 01 Introduction to AWT

Advanced Java Programming - 92 -

public class ButtonDemo2 extends Applet

{

MyButton myButton;

static int i = 0;

public void init()

{

myButton = new MyButton("Test Button");

add(myButton);

}

class MyButton extends Button

{

public MyButton(String label)

{

super(label);

enableEvents(AWTEvent.ACTION_EVENT_MASK);

}

protected void processActionEvent(ActionEvent ae)

{

showStatus("action event: " + i++);

super.processActionEvent(ae);

}

}

}

Extending Checkbox

The following program creates an applet that displays three check boxes

labeled ―Item 1‖, ―Item 2‖, and ―Item 3‖. When a check box is selected or
deselected, a string containing the name and state of that check box is

displayed on the status line of the applet viewer or browser.
The program has one top-level class named CheckboxDemo2 that

extends Applet. Its init() method creates three instances of MyCheckbox and
adds these to the applet. MyCheckbox is an inner class that extends Checkbox.

Its constructor uses super to pass the label of the check box to the superclass
constructor. It calls enableEvents() so that item events may be received by

this object. When an item event is generated, processItemEvent() is called.
That method displays a string on the status line and calls processItemEvent()

for the superclass.

/*

* <applet code=CheckboxDemo2 width=300 height=100>
* </applet>
*/

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

public class CheckboxDemo2 extends Applet

Chapter 01 Introduction to AWT

Advanced Java Programming - 93 -

{

MyCheckbox myCheckbox1, myCheckbox2, myCheckbox3;

public void init()

{

myCheckbox1 = new MyCheckbox("Item 1");

add(myCheckbox1);

myCheckbox2 = new MyCheckbox("Item 2");

add(myCheckbox2);

myCheckbox3 = new MyCheckbox("Item 3");

add(myCheckbox3);

}

class MyCheckbox extends Checkbox

{

public MyCheckbox(String label)

{

super(label);

enableEvents(AWTEvent.ITEM_EVENT_MASK);

}

protected void processItemEvent(ItemEvent ie)

{

showStatus("Checkbox name/state: " + getLabel() +

"/" + getState());

super.processItemEvent(ie);

}

}

}

Extending a Check Box Group

The following program reworks the preceding check box example so that

the check boxes form a check box group. Thus, only one of the check boxes
may be selected at any time.

/*

* <applet code=CheckboxGroupDemo2 width=300 height=100>
* </applet>
*/

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

public class CheckboxGroupDemo2 extends Applet

{

CheckboxGroup cbg;

MyCheckbox myCheckbox1, myCheckbox2, myCheckbox3;

public void init()

{

cbg = new CheckboxGroup();

myCheckbox1 = new MyCheckbox("Item 1", cbg, true);

Chapter 01 Introduction to AWT

Advanced Java Programming - 94 -

add(myCheckbox1);

myCheckbox2 = new MyCheckbox("Item 2", cbg, false);

add(myCheckbox2);

myCheckbox3 = new MyCheckbox("Item 3", cbg, false);

add(myCheckbox3);

}

class MyCheckbox extends Checkbox

{

public MyCheckbox(String label, CheckboxGroup cbg,

boolean flag)

{

super(label, cbg, flag);

enableEvents(AWTEvent.ITEM_EVENT_MASK);

}

protected void processItemEvent(ItemEvent ie)

{

showStatus("Checkbox name/state: " + getLabel() +

"/" + getState());

super.processItemEvent(ie);

}

}

}

Extending Choice

The following program creates an applet that displays a choice list with

items labeled ―Red‖, ―Green‖, and ―Blue‖. When an entry is selected, a string

that contains the name of the color is displayed on the status line of the applet
viewer or browser. There is one top-level class named ChoiceDemo2 that

extends Applet. Its init() method creates a choice element and adds it to the
applet. MyChoice is an inner class that extends Choice. It calls enableEvents()

so that item events may be received by this object. When an item event is
generated, processItemEvent() is called. That method displays a string on the

status line and calls processItemEvent() for the superclass.

/*

* <applet code=ChoiceDemo2 width=300 height=100>
* </applet>
*/

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

public class ChoiceDemo2 extends Applet

{

MyChoice choice;

public void init()

{

choice = new MyChoice();

Chapter 01 Introduction to AWT

Advanced Java Programming - 95 -

choice.add("Red");

choice.add("Green");

choice.add("Blue");

add(choice);

}

class MyChoice extends Choice

{

public MyChoice()

{

enableEvents(AWTEvent.ITEM_EVENT_MASK);

}

protected void processItemEvent(ItemEvent ie)

{

showStatus("Choice selection: " +

getSelectedItem());

super.processItemEvent(ie);

}

}

}

Extending List

The following program modifies the preceding example so that it uses a
list instead of a choice menu. There is one top-level class named ListDemo2

that extends Applet. Its init() method creates a list element and adds it to the
applet. MyList is an inner class that extends List. It calls enableEvents() so that

both action and item events may be received by this object. When an entry is
selected or deselected, processItemEvent() is called. When an entry is double-

clicked, processActionEvent() is also called. Both methods display a string and
then hand control to the superclass.

/*

* <applet code=ListDemo2 width=300 height=100>
* </applet>
*/

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

public class ListDemo2 extends Applet

{

MyList list;

public void init()

{

list = new MyList();

list.add("Red");

list.add("Green");

list.add("Blue");

Chapter 01 Introduction to AWT

Advanced Java Programming - 96 -

add(list);

}

class MyList extends List

{

public MyList()

{

enableEvents(AWTEvent.ITEM_EVENT_MASK |

AWTEvent.ACTION_EVENT_MASK);

}

protected void processActionEvent(ActionEvent ae)

{

showStatus("Action event: " +

ae.getActionCommand());

super.processActionEvent(ae);

}

protected void processItemEvent(ItemEvent ie)

{

showStatus("Item event: " + getSelectedItem());

super.processItemEvent(ie);

}

}

}

Extending Scrollbar

The following program creates an applet that displays a scroll bar. When
this control is manipulated, a string is displayed on the status line of the applet

viewer or browser. That string includes the value represented by the scroll bar.
There is one top-level class named ScrollbarDemo2 that extends Applet. Its

init() method creates a scroll bar element and adds it to the applet.

MyScrollbar is an inner class that extends Scrollbar. It calls enableEvents() so
that adjustment events may be received by this object. When the scroll bar is

manipulated, processAdjustmentEvent() is called. When an entry is selected,
processAdjustmentEvent() is called. It displays a string and then hands control

to the superclass.

/*

* <applet code=ScrollbarDemo2 width=300 height=100>
* </applet>
*/

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

public class ScrollbarDemo2 extends Applet

{

MyScrollbar myScrollbar;

public void init()

Chapter 01 Introduction to AWT

Advanced Java Programming - 97 -

{

myScrollbar = new MyScrollbar(Scrollbar.HORIZONTAL,

0, 1, 0, 100);

add(myScrollbar);

}

class MyScrollbar extends Scrollbar

{

public MyScrollbar(int style, int initial, int thumb,

int min, int max)

{

super(style, initial, thumb, min, max);

enableEvents(AWTEvent.ADJUSTMENT_EVENT_MASK);

}

protected void processAdjustmentEvent(AdjustmentEvent ae)

{

showStatus("Adjustment event: " + ae.getValue());

setValue(getValue());

super.processAdjustmentEvent(ae);

}

}

}

Chapter 01 Introduction to AWT

Advanced Java Programming - 98 -

References

1. Java 2 the Complete Reference,
Fifth Edition by Herbert Schildt, 2001 Osborne McGraw Hill.

Chapter 20: Event Handling
Chapter 21: Introducing the AWT: Working with Windows, Graphics, and

Text

Chapter 22: Using AWT Controls, Layout Managers, and Menus
(Most of the data is referred from this book)

2. Learning Java,

3rd Edition , By Jonathan Knudsen, Patrick Niemeyer, O'Reilly, May 2005
Chapter 19: Layout Managers

