Chapter 3 Stoichiometry

Chapter Objectives:

- Learn how to use the atomic mass of an element and the molecular weight of a compound to relate grams, moles, and the number of formula units.
- Learn how to balance chemical equations.
- Learn how to use the mole concept to relate amounts of chemicals to each other (stoichiometry), and how to find the theoretical yield in limiting reactant problems.
- Learn how to use percent compositions to find empirical and molecular formulas.
- Learn how to use molarity to perform calculations involving solution stoichiometry.

Mr. Kevin A. Boudreaux
Angelo State University
CHEM 1311 General Chemistry

Chemistry $2 e$ (Flowers, Theopold, Langley, Robinson; openstax, $2^{\text {nd }} \mathrm{ed}$, 2019) www.angelo.edu/faculty/kboudrea

The Mole Concept

Counting By Weighing

- If the total mass of a sample of small objects is known, and the average mass of the small objects is known, the number of objects in the sample can be determined:
$\frac{\text { mass of jellybeans (g) }}{\text { average mass of a jellybean (g/jellybean) }}=$ number of jellybeans
- The same logic works for counting atoms or molecules in a sample, but first we have to figure out how to weigh an atom.

The Mole Concept

- It is not possible to count the number of atoms or molecules involved in chemical reactions, since the molecules are so small, and so many are involved, even in a very small-scale reaction.
- Instead, it is necessary to measure amounts of molecules by using their mass.
- The relationship between sub-microscopic quantities like atoms and molecules, and macroscopic quantities like grams, is made using the mole concept.
- Using moles allows us to count particles by weighing them.
- The mole (abbreviated mol) is the SI unit for amount of substance.
- A mole is defined as the amount of a substance that contains the same number of entities as there are atoms in exactly 12 g of carbon-12.
- 12 g of carbon- 12 contains 6.022×10^{23} atoms. This number is known as Avogadro's number, \boldsymbol{N}_{A}, in honor of Amedeo Avogadro (1776-1856, who first proposed the concept, and who also coined the word "molecule").

1 mole $=\mathbf{6 . 0 2 2} \times \mathbf{1 0}^{\mathbf{2 3}}$ units $\left(\right.$ Avogadro's number, $\left.N_{A}\right)$
1 mol carbon- 12 contains 6.022×10^{23} atoms
$1 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2}$
1 mol NaCl
contains $\quad 6.022 \times 10^{23}$ molecules
contains $\quad 6.022 \times 10^{23}$ formula units

The Molar Mass of an Element

- The molar mass (\mathcal{M} or MM) of an element is the mass in grams of one mole of atoms of the element. It is numerically equal to the atomic mass of the element in amu's:

molar mass in $\mathbf{g} / \mathbf{m o l}=$ atomic mass in amu

- 1 Fe atom has a mass of 55.847 amu .

1 mole of Fe atoms has a mass of 55.847 grams.

- 1 O atom has a mass of 15.9994 amu .

1 mole of O atoms has a mass of 15.9994 grams.

- 1 mole $\mathrm{Al}=26.98 \mathrm{~g} \mathrm{Al}=6.022 \times 10^{23}$ atoms Al
- 1 mole $\mathrm{He}=6.022 \times 10^{23}$ atoms $\mathrm{He}=4.003 \mathrm{~g} \mathrm{He}$

The Molar Mass of a Compound

- The formula mass or molar mass of a compound is the mass in grams of one mole of molecules or formula units of the compound. It is numerically equal to the mass of the compound in amu's:
molar mass in $\mathbf{g} / \mathrm{mol}=$
sum of the atomic masses of the atoms in the molecule/formula unit
- For molecular compounds, this is often referred to as the molecular mass or molecular weight.

Molar mass $\mathrm{H}_{2} \mathrm{O}=(2 \times$ atomic mass H$)+(1 \times$ atomic mass O$)$

$$
\begin{aligned}
& =(2 \times 1.00794)+(1 \times 15.9994) \\
& =18.02
\end{aligned}
$$

- $1 \mathrm{H}_{2} \mathrm{O}$ molecule has a mass of 18.02 amu .

1 mole of $\mathrm{H}_{2} \mathrm{O}$ molecules has a mass of 18.02 grams.

Relating Moles, aти's and Grams

Molar mass $=(1 \times \mathrm{Ca})+(2 \times \mathrm{N})+(6 \times \mathrm{O})$ of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}=(1 \times 40.08)+(2 \times 14.0067)+(6 \times 15.9994)$
$=164.09$
The molar mass of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ is $164.09 \mathrm{~g} / \mathrm{mol}$

- $1 \mathrm{O}_{2}$ molecule has a mass of 32.00 amu

1 mole of O_{2} has a mass of 32.00 g

- 1 NaCl formula unit has a mass of 58.44 amu 1 mole of NaCl has a mass of 58.44 g
- 1 mole of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.16 \mathrm{~g}$
- 1 mole of $\mathrm{Mg}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}=83.35 \mathrm{~g}$

Just How Large is Avogadro's Number?

- How much is a mole of water molecules?

Using Gram-Mole Conversions

- Thus, the molar mass $(\mathrm{g} / \mathrm{mol})$ is a conversion factor between numbers of moles and mass:
- moles \times molar mass $=$ mass in grams
- grams \div molar mass $=$ amount in moles
- and Avogadro's number (things/mol) is a conversion factor between numbers of things (molecules, atoms, or formula units) and moles:
- moles $\times N_{A}=$ number of things
- number of things $\div N_{A}=$ amount in moles

Examples: Gram-Mole Conversions

1. How many moles are present in 4.60 g of silicon?

Answer: 0.164 mol Si

Examples: Gram-Mole Conversions

2. How many g of Si are present in 9.0 mol of Si ?

Examples: Gram-Mole Conversions

3. How many atoms are in a sample of uranium with a mass of $1.000 \mu \mathrm{~g}$?

Answer: 2.530×10^{15} atoms U

Examples: Gram-Mole Conversions

4. How many atoms of carbon are in 2.5 mol of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$?

Examples: Gram-Mole Conversions

5. A pure silver ring contains 2.80×10^{22} silver atoms. How many grams of silver atoms does it contain?

Examples: Gram-Mole Conversions

6. How many moles of sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$, are in a tablespoon of sugar that contains 2.85 g ?

Examples: Gram-Mole Conversions

7. How many grams are in 0.0626 mol of NaHCO_{3}, the main ingredient in Alka-Seltzer tablets?

Examples: Gram-Mole Conversions

8. A sample of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, contains 1.52×10^{25} molecules. How many kilograms of glucose is this?

Chemical Equations

Chemical Reactions and Chemical Equations

- A chemical reaction occurs when atoms of different elements combine and create a new chemical compound, with properties which may be completely unlike those of its constituent elements.
- A chemical reaction is written in a standard format called a chemical equation. The reactants (starting materials) are written on the left, and the products on the right, with an arrow in between to indicate a transformation.
- Equations are the "sentences" of chemistry, just as formulas are the "words" and atomic symbols are the "letters."

$$
\mathrm{Zn}+\mathrm{S} \longrightarrow \mathrm{ZnS}
$$

A Chemical Reaction Illustrated

Sodium
(Na)
solid
mp $97.8^{\circ} \mathrm{C}$
bp $881.4^{\circ} \mathrm{C}$
silvery metallic surface
soft, easily cut conducts electricity
reacts violently with water

gas
$\mathrm{mp}-101^{\circ} \mathrm{C}$
bp $-34^{\circ} \mathrm{C}$
pale, yellow-green gas
poisonous; causes lung damage does not conduct electricity dissolves slightly in water

Sodium Chloride (NaCl)

solid
$\mathrm{mp} 801^{\circ} \mathrm{C}$
bp $1413^{\circ} \mathrm{C}$
white crystals or powder pleasant taste conducts electricity when dissolved in water dissolves freely in water

$2 \mathrm{Na}+\mathrm{Cl}_{\mathbf{2}} \rightarrow \mathbf{2 N a C l}$

Balancing Chemical Reactions

- A chemical equation must be balanced: the kinds and numbers of atoms must be the same on both sides of the reaction arrow (conservation of mass).

$$
\begin{array}{ll}
\text { unbalanced: } & \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O} \\
\text { wrong equation: } & \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2} \\
\text { balanced: } & \mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O} \\
\text { balanced: } & 2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
\end{array}
$$

Balancing Chemical Reactions

- Equations are balanced by placing a stoichiometric coefficient in front of each species, indicating how many units of each compound participate in the reaction.
- If no coefficient is present, it is assumed to be 1.
- Usually, we use the smallest whole-number ratios for the coefficients.
- Never balance equations by changing subscripts! This changes the identity of the species involved in the reaction!
- In general, it's a good idea to balance the atoms in the most complex substances first, and the atoms in the simpler substances last.

Examples: Balancing Reactions

1.

$$
\ldots \mathrm{C}(\mathrm{~s})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \ldots \mathrm{CO}_{2}(\mathrm{~g})
$$

$$
\ldots \mathrm{SO}_{2}(\mathrm{~g})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \ldots \mathrm{SO}_{3}(\mathrm{~g})
$$

$$
\ldots \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+\ldots \mathrm{C}(\mathrm{~s}) \rightarrow \ldots \mathrm{Fe}(\mathrm{~s})+\ldots \mathrm{CO}_{2}(\mathrm{~g})
$$

$\ldots \mathrm{HCl}(\mathrm{aq})+\ldots \mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \ldots \mathrm{CaCl}_{2}(\mathrm{aq})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\ldots \mathrm{CO}_{2}(\mathrm{~g})$

$$
\ldots \mathrm{N}_{2}(\mathrm{~g})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \ldots \mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})
$$

$$
\ldots \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}+\ldots \mathrm{CaSO}_{4} \rightarrow \ldots \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\ldots \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}
$$

Examples: Balancing Combustion Reactions

- In a combustion reaction, hydrocarbons (containing only H and C) react with molecular oxygen $\left(\mathrm{O}_{2}\right)$ to produce carbon dioxide and water. (Incomplete combustion can result in other products, such as carbon monoxide and atomic carbon, or soot.)

2. $\ldots \mathrm{C}_{4} \mathrm{H}_{10}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$
$\ldots \mathrm{C}_{2} \mathrm{H}_{6}+\ldots \mathrm{O}_{2} \rightarrow$
$\ldots \mathrm{C}_{3} \mathrm{H}_{8}+\ldots \mathrm{O}_{2} \rightarrow$
$\ldots \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\ldots \mathrm{O}_{2} \rightarrow$

What Do the Coefficients Mean?

- Since moles combine in the same ratio that atoms or molecules do, the coefficients in a balanced chemical reaction specify the relative amounts in moles of the substances involved in the reaction.

Stoichiometry

Stoichiometry: Chemical Arithmetic

$$
\text { Greek: } \begin{gathered}
\text { stoicheion } \\
\text { element or part }
\end{gathered}+\begin{gathered}
\text { metron } \\
\text { measure }
\end{gathered}
$$

- Stoichiometry is the study of the numerical relationships in chemical formulas and reactions.
- Knowing the stoichiometry of a formula allows us to relate moles and grams for particular reactants or products (e.g., that 1 mole of $\mathrm{H}_{2} \mathrm{O}$ weighs 18.02 g).
- Knowing the stoichiometry of a reaction allows us to relate amounts of different substances to each other, using the mole ratios in the balanced equation, and allows us to predict how much of the products will be formed or how much of the reactants will be needed.

Reaction Stoichiometry: An Example

$2 \mathrm{H}_{2}(\mathrm{~g})+1 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

- Suppose we have 25.0 g of O_{2}. How many grams of H_{2} will be needed for this reaction? How many grams of $\mathrm{H}_{2} \mathrm{O}$ will be produced?
- We can't convert g O_{2}. directly into $\mathrm{g} \mathrm{H}_{2}$, but if we convert $\mathrm{g} \mathrm{O}_{2}$ into moles, we can use the coefficients of the balanced equation to obtain moles of H_{2}, and then convert to $\mathrm{g} \mathrm{H}_{2}$.

Reaction Stoichiometry: An Example $2 \mathrm{H}_{2}(\mathrm{~g})+1 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Convert $\mathrm{g} \mathrm{O}_{2}$ to mol O_{2} :

$$
25.0 \mathrm{~g} \mathrm{O}_{2} \times \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{32.00 \mathrm{~g} \mathrm{O}_{2}}=0.781 \mathrm{~mol} \mathrm{O}_{2}
$$

Convert mol O \mathbf{O}_{2} to $\mathbf{m o l ~}_{\mathbf{2}}$:

$$
0.781 \mathrm{~mol} \mathrm{O}_{2} \times \frac{\underbrace{\sqrt{2} \mathrm{~mol} \mathrm{H}_{2}}_{\text {coefficient of what were c anceling out }}}{\underbrace{\text { coefficient of what were interseded in }}}=1.56 \mathrm{~mol} \mathrm{H}_{2}
$$

Convert mol $\mathbf{H}_{\mathbf{2}}$ to $\mathrm{g} \mathrm{H}_{\mathbf{2}}$:
$1.56 \mathrm{~mol} \mathrm{H}_{2} \times \frac{2.016 \mathrm{~g} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{H}_{2}}=3.15 \mathrm{~g} \mathrm{H}_{2}$

Reaction Stoichiometry: An Example $2 \mathrm{H}_{2}(\mathrm{~g})+1 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Or we can put everything together:
$25.0 \mathrm{~g} \mathrm{O}_{2} \times \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{32.00 \mathrm{~g} \mathrm{O}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}} \times \frac{2.016 \mathrm{~g} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{H}_{2}}=3.15 \mathrm{~g} \mathrm{H}_{2}$

How many grams of $\mathrm{H}_{2} \mathrm{O}$ will be formed?
$25.0 \mathrm{~g} \mathrm{O}_{2} \times \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{32.00 \mathrm{~g} \mathrm{O}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}_{2}} \times \frac{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=28.2 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$

Examples: Reaction Stoichiometry

$$
\mathrm{C}_{3} \mathrm{H}_{8}(g)+5 \mathrm{O}_{2}(g) \rightarrow 3 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g)
$$

1a. How many moles of CO_{2} can we make from 2.0 moles of $\mathrm{C}_{3} \mathrm{H}_{8}$?

1b. How many moles of $\mathrm{H}_{2} \mathrm{O}$ can we make from 2.0 moles of $\mathrm{C}_{3} \mathrm{H}_{8}$?

1c. How many moles of O_{2} are needed to react with 2.0 moles of $\mathrm{C}_{3} \mathrm{H}_{8}$?

1d. How many moles of CO_{2} can be produced from $3.5 \mathrm{~mol} \mathrm{O}_{2}$?

1e. How many grams of CO_{2} are produced from 50.0 g of $\mathrm{C}_{3} \mathrm{H}_{8}$?

Examples: Reaction Stoichiometry

2. In 2004, the world burned 3.0×10^{10} barrels of petroleum, roughly equivalent to $3.4 \times 10^{15} \mathrm{~g}$ of gasoline $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$. How much CO_{2} is released into the atmosphere from the combustion of this much gasoline?
$2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})+25 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Answer: $1.0 \times 10^{16} \mathrm{~g} \mathrm{CO}_{2}$

Examples: Reaction Stoichiometry

3. Aqueous sodium hypochlorite (NaOCl), best known as household bleach, is prepared by reaction of sodium hydroxide with chlorine:
$2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{NaOCl}(\mathrm{aq})+\mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}$
How many grams of NaOH are needed to react with 25.0 g of Cl_{2} ?

Examples: Molecule Stoichiometry

4. How many grams of Cl atoms are needed to combine with 24.4 g of Si atoms to make silicon tetrachloride, SiCl_{4} ?

Examples: Reaction Stoichiometry

5. One of the most spectacular reactions of aluminum, the thermite reaction, is with iron(III) oxide, $\mathrm{Fe}_{2} \mathrm{O}_{3}$, by which metallic iron is made. So much heat is generated that the iron forms in the liquid state. The equation is

$$
2 \mathrm{Al}(\mathrm{~s})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Fe}(\mathrm{l})
$$

A certain welding operation, used over and over, requires that each time at least 86.0 g of Fe be produced. (a) What is the minimum mass in grams of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ that must be used for each operation? (b) How many grams of aluminum are also needed?

Answer: (a) $123 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}$; (b) 41.5 g Al

Yields of Chemical Reactions

- In the examples we've seen, we have assumed that all of the reactions "go to completion" - that is, that all reactant molecules are converted into product molecules.
- In real life, some product is almost always lost due to:
- small amounts of contamination in the glassware
- impurities in the reactants
- incomplete reactions
- reactants evaporating into the air
- side reactions that that form other products
- too much heating
- too little heating
- klutzes
- gremlins
- evil spirits
- evil co-workers
- etc.

Yields of Chemical Reactions

- The theoretical yield is the amount that would be obtained if the reaction goes to completion (i.e., the maximum amount that could be made).
- The actual yield of a reaction is the amount that is actually obtained. (You could've guessed that.)
- The percent yield ($\%$ yield) is the actual yield expressed as a percentage of the theoretical yield:

$$
\% \text { yield }=\frac{\text { actual yield }}{\text { theoretica } 1 \text { yield }} \times 100 \%
$$

Yields of Chemical Reactions

- Whenever there is a reaction between more than one reactant, we can run out of one reactant before we run out of the other one.
- The reactant we run out of first, which limits the yield of the entire reaction, is the limiting reactant (or limiting reagent).
- The excess reactant is any reactant that is present in a larger amount than what is required to react completely with the limiting reactant.

Examples: Percent Yiela

6. Methyl tert-butyl ether (MTBE, $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$), a substance used as an octane booster in gasoline, can be made by reaction of isobutylene $\left(\mathrm{C}_{4} \mathrm{H}_{8}\right)$, with methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$. What is the percent yield of the reaction if 32.8 g of MTBE is obtained from reaction of 26.3 g of isobutylene with sufficient methanol?

$$
\mathrm{C}_{4} \mathrm{H}_{8}(\mathrm{~g})+\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l}) \rightarrow \mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}(\mathrm{l})
$$

Answer: 79.4\%

Limiting Reactants

Limiting Reactants

- When we are given a reaction between two or more reactants, one may be completely consumed before the other(s). The reaction must stop at this point, leaving us with the remaining reactants in excess.
- The amount of this reactant, then, determines the maximum amount of the product(s) that can form, and is known as the limiting reactant.
- For example, suppose we were making standard 4door cars, and we had the following (incomplete) list of "ingredients." How many cars could we make?

4 engines
4 steering wheels
15 doors
8 headlights
4 drivers' seats
4 rear-view mirrors
8 windshield wipers
11 wheels

Limiting Reactants and Sundaes

 Ice Cream Sundae Recipe 100 mL

A 12 oz (2 scoops) 1 cherry 50 mL syrup 1 sundae ice cream

Actual Ingredients

Limiting Reactants and Pizza

Pizza recipe:

1 crust +5 oz. tomato sauce +2 cups cheese $\rightarrow 1$ pizza
If we have 4 crusts, 10 cups of cheese, and 15 oz . of tomato sauce, how many pizzas can we make?

$$
4 \text { crusts } \times \frac{1 \text { pizza }}{1 \text { crust }}=4 \text { pizzas }
$$

10 cups cheese $\times \frac{1 \text { pizza }}{2 \text { cups cheese }}=5$ pizzas
15 ounces tomato sauce $\times \frac{1 \text { pizza }}{5 \text { ounces tomato sauce }}=3$ pizzas
Tomato sauce is the limiting reagent, and the theoretical yield is 3 pizzas.

Limiting Reactants

$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad$ [Haber process]

- Suppose we mix 1.00 mol of N_{2} and 5.00 mol of H_{2}. What is the maximum amount of NH_{3} that can be produced? How much H_{2} will be left over?
- Now suppose we mix 2.15 mol of N_{2} and 6.15 mol of H_{2}. What is the theoretical yield of NH_{3} ?

Assuming the N_{2} reacts completely, how much NH_{3} can be made?

$$
2.15 \mathrm{~mol} \mathrm{~N}_{2} \times \frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{1 \mathrm{~mol} \mathrm{~N}_{2}}=4.30 \mathrm{~mol} \mathrm{NH}_{3}
$$

Assuming the H_{2} reacts completely, how much NH_{3} can be made?

$$
6.15 \mathrm{~mol} \mathrm{H}_{2} \times \frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{3 \mathrm{~mol} \mathrm{H}_{2}}=4.10 \mathrm{~mol} \mathrm{NH}_{3}
$$

H_{2} is the limiting reactant; the theoretical yield of NH_{3} is 4.10 mol

Examples: Limiting Reactants

1. Butane, $\mathrm{C}_{4} \mathrm{H}_{10}$, undergoes combustion with oxygen, O_{2}, to form carbon dioxide and water:
$\underset{58.12}{2 \mathrm{C}_{\mathbf{g}} \mathbf{g}_{1 \text { mol }}}(\mathbf{g})+\underset{32.00}{\mathbf{1 3 O}_{\text {g/mol }}(\mathbf{g})} \rightarrow \underset{44.01 \text { g/mol }}{\mathbf{8 C O}_{2}(\mathbf{g})}+\underset{18.02}{\mathbf{1 0 H}_{\text {g/mol }}} \mathbf{O}(\mathbf{g})$ If 100. g of $\mathrm{C}_{4} \mathrm{H}_{10}$ and 100. g of O_{2} are mixed,
a. Which of the two reactants is the limiting reagent, and how many grams of CO_{2} will be formed?
b. How many grams of $\mathrm{H}_{2} \mathrm{O}$ will be formed?
c. How many grams of excess reagent are left over?
d. If the actual yield of CO_{2} had been 75.0 g , what would be the percent yield of the reaction?
Answer: (a) O_{2} limiting; $84.6 \mathrm{~g} \mathrm{CO}_{2}$; (b) 43.3 g $\mathrm{H}_{2} \mathrm{O}$; (c) $72 \mathrm{~g} \mathrm{C}_{4} \mathrm{H}_{10}$; (d) 88.6%

Examples: Limiting Reactants

2. Ammonia, NH_{3}, can be synthesized by the following reaction:

$$
2 \mathrm{NO}(\mathrm{~g})+5 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Starting with 86.3 g NO and $25.6 \mathrm{~g} \mathrm{H}_{2}$, find the theoretical yield of ammonia in grams.

Examples: Limiting Reactants

3. In a synthesis of phosphorus trichloride, a chemist mixed 12.0 g P with $35.0 \mathrm{~g} \mathrm{Cl}_{2}$; she obtained 42.4 g of PCl_{3}. What is the $\%$ yield of PCl_{3} ?

$$
2 \mathrm{P}(\mathrm{~s})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{PCl}_{3}(\mathrm{l})
$$

Percent Composition

and
 Empirical Formulas

Percent Composition and Mass Percentage

- The percent composition of a compound is a list of the elements present in a substance listed by mass percent. Knowing the percent composition is often a first step to determining the formula of an unknown compound.
- The mass percentage (mass \%) of an element in the compound is the portion of the compound's mass contributed by that element, expressed as a percentage:

Mass \% of element $\mathrm{X}=\frac{\text { atoms of } \mathrm{X} \text { in formula } \times \text { molar mass of } \mathrm{X}}{\text { molar mass of compound }} \times 100$

Percent Composition and Mass Percentage

- What is the mass percentage of Cl in the chlorofluorocarbon $\mathrm{CCl}_{2} \mathrm{~F}_{2}$ (Freon-12)?

$$
\begin{aligned}
\text { Mass } \% \text { of } \mathrm{Cl} & =\frac{2 \times \text { atomic mass of } \mathrm{Cl}}{\text { molar mass of } \mathrm{CCl}_{2} \mathrm{~F}_{2}} \times 100 \\
& =\frac{2 \times 35.453 \mathrm{~g} / \mathrm{mol}}{120.91 \mathrm{~g} / \mathrm{mol}} \times 100 \\
& =58.64 \%
\end{aligned}
$$

Examples: Mass Percentage

1. Glucose, or blood sugar, has the molecular formula $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$.
a. What is the percent composition of glucose?
b. How many grams of carbon are in 39.0 g of glucose (the amount of sugar in a typical soft drink)?

Answer: a) 40.00% C, $\mathbf{6 . 7 1 4 \%}$ H, 53.29% O
b) 15.6 g C

Examples: Mlass Percentage

2. The U.S. Food and Drug Administration (FDA) recommends that you consume less than 2.4 g of sodium per day. What mass of sodium chloride in grams can you consume and still be within the FDA guidelines?

Empirical Formula from Mass Percentage

- We can use the percent composition of a substance to find its empirical and molecular formula.
- If by some process we determine the percent composition of an unknown compound, we can convert this into a gram ratio by assuming that we have 100 g of the compound, and then to a mole ratio by using the atomic weights:

Sample: 84.1% C, 15.9% H
Assume 100 g of sample:

$$
\begin{aligned}
& 84.1 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01115 \mathrm{~g} \mathrm{C}}=7.00 \mathrm{~mol} \mathrm{C} \\
& 15.9 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.00797 \mathrm{~g} \mathrm{H}}=15.8 \mathrm{~mol} \mathrm{H}
\end{aligned}
$$

Empirical Formula from Mass Percentage

- Since atoms combine in the same ratio that moles do, we divide all of the numbers of moles by the smallest number to put everything into lowest terms:

$$
\mathrm{C}_{7.00} \mathrm{H}_{15.8} \xrightarrow{\text { divideby smallest number }} \mathrm{C}_{\frac{7.00}{7.00}} \mathrm{H}_{\frac{15.8}{7.00}} \rightarrow \mathrm{C}_{1.00} \mathrm{H}_{2.26}
$$

- If the mole ratio is not all whole numbers, we multiply through by the smallest integer which will turn all of the numbers into integers. These numbers are the subscripts of the elements in the empirical formula.

$$
\left(\mathrm{C}_{1.00} \mathrm{H}_{2.26}\right)_{4} \rightarrow \mathrm{C}_{4.00} \mathrm{H}_{9.04} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \text { (empirical formula) }
$$

Molecular Formula from Empirical Formula

- If we know the molar mass of the compound, we can obtain the molecular formula by dividing the weight of the empirical formula into the molar mass; this will determine the number of empirical formula units in the molecule.

Suppose the molar mass of the substance is found to be $228.48 \mathrm{~g} / \mathrm{mol}$. What is its molecular formula?
$\frac{\text { molecular weight }}{\text { empirical formula weight }} \rightarrow \frac{228.48 \mathrm{~g} / \mathrm{mol}}{57.12 \mathrm{~g} / \mathrm{mol}}=4.000$

$$
\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \rightarrow \mathrm{C}_{16} \mathrm{H}_{36} \text { (molecular formula) }
$$

Examples: Eimpirical \& Molecular Formulas

3. Vitamin C (ascorbic acid) contains $40.92 \% \mathrm{C}$, $4.58 \% \mathrm{H}$, and $54.50 \% \mathrm{O}$ by mass. What is the empirical formula of ascorbic acid?

Examples: Eimpirical \& Molecular Formulas

4. Black iron oxide is an ore containing iron and oxygen that occurs in magnetite. A 2.4480 g sample of the ore is found to contain 1.7714 g of iron. Calculate the empirical formula of black iron oxide.

Examples: Eimpirical \& Molecular Formulas

5. Styrofoam is a polymer made from the monomer styrene. Elemental analysis of styrene shows its percent composition to be $92.26 \% \mathrm{C}$ and $7.75 \% \mathrm{H}$. Its molecular mass is found to be $104.15 \mathrm{~g} / \mathrm{mol}$. What are the empirical and molecular formulas of styrene?

Answer: empirical $=\mathbf{C H}$, molecular $=\mathrm{C}_{8} \mathrm{H}_{8}$

Examples: Eimpirical \& Molecular Formulas

6. Butanedione is a main component in the smell and taste of butter and cheese. The empirical formula of butanedione is $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}$ and its molar mass is 86.09 $\mathrm{g} / \mathrm{mol}$. What is its molecular formula?

Elemental / Combustion Analysis

- One common way of obtaining a chemical formula is by performing a combustion analysis (a specific type of elemental analysis).
- In this technique, an unknown sample is burned in pure O_{2} (a combustion reaction), which converts all of the carbon atoms in the sample into CO_{2} and all of the hydrogen atoms into $\mathrm{H}_{2} \mathrm{O}$.

$$
\mathrm{C}, \mathrm{H}, \mathrm{O}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Sample

Elemental / Combustion Analysis

- The masses of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ are measured after the process is complete, and from this data, the amount of carbon and hydrogen in the original sample can be determined.
- Elements besides C and H must be determined by other methods; O is usually found by difference.
$\mathrm{g} \mathrm{CO}_{2} \rightarrow \mathrm{~mol} \mathrm{CO} 2 \rightarrow \mathrm{molC} \rightarrow \mathrm{gC}$ in sample $\rightarrow \% \mathrm{C}$
$\mathrm{g} \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{mol} \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{molH} \rightarrow \mathrm{g} \mathrm{H}$ in sample $\rightarrow \% \mathrm{H}$

$$
\% \mathrm{O}=100 \%-(\% \mathrm{C}+\% \mathrm{H})
$$

Examples: Combustion Analysis

7. A sample of an unknown compound with a mass of 0.5438 g is burned in a combustion analysis. The mass of CO_{2} produced was 1.039 g and the mass of $\mathrm{H}_{2} \mathrm{O}$ was 0.6369 g . What is the empirical formula of the compound?

Molecules and Isomers

- Even knowing the empirical or molecular formulas of a compound does not necessarily tell us what that compound actually is.
- We've already seen that the empirical formula only tells us about the relative numbers of atoms present within the formula unit or molecule.
- Many different compounds can have the same empirical formula. For instance, there are dozens of different compounds that have the empirical formula $\mathrm{CH}_{2} \mathrm{O}$.
- Notice that in on the following slide, there is no relationship between the structure and how many ' $\mathrm{CH}_{2} \mathrm{O}$ ' units the molecule contains.

Some Compounds with Empirical Formula $\mathrm{CH}_{2} \mathrm{O}$

- Composition by mass $40.0 \% \mathrm{C}, 6.71 \% \mathrm{H}, 53.3 \% \mathrm{O}$

Name	Molecular Formula	$\begin{gathered} \text { No. of } \\ { }^{\text {' } \mathrm{CH}_{2} \mathrm{O}^{\prime}} \\ \text { Units } \end{gathered}$	$\begin{gathered} \text { Molar } \\ \text { Mass } \\ (\mathrm{g} / \mathrm{mol}) \end{gathered}$	Function
Formaldehyde	$\mathrm{CH}_{2} \mathrm{O}$	1	30.03	Disinfectant; biological preservative
Acetic acid	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$	2	60.05	Vinegar (5\% solution); acetate polymers
Lactic acid	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$	3	90.08	Found in sour milk and sourdough bread; forms in muscles during exercise
Erythrose	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4}$	4	120.10	Forms during sugar metabolism
Ribose	$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5}$	5	150.13	Component of ribonucleic acid (RNA); found in vitamin B_{2}
Glucose	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	6	180.16	Major nutrient for energy in cells

Structural Isomers

- Even compounds that have the same molecular formula can have the atoms connected in a different order - these are structural isomers.

	Ethanol	Dimethyl ether
Molecular Formula	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
Molar Mass (g/mol)	46.07	46.07
Appearance	Colorless liquid	Colorless gas
Melting point	$-117^{\circ} \mathrm{C}$	$-139^{\circ} \mathrm{C}$
Boiling point	$78.5^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$
Density (at 20 ${ }^{\circ} \mathbf{C}$)	$0.789 \mathrm{~g} / \mathrm{mL}$	$0.00195 \mathrm{~g} / \mathrm{mL}$
Function	Intoxicant	Refrigerant

Solution
 Stoichiometry

Solutions

- For a chemical reaction to occur, the reacting species have to come in close contact with each other. Most chemical reactions are performed in a solution (or in the gas phase) rather than in the solid state.
- A solution consists of a smaller amount of one substance, the solute (usually a liquid or solid), dissolved in a larger amount of another substance, the solvent (usually a liquid).
- Other kinds of solutions, such as of two or more solids (e.g., metal alloys), or gases dissolved in solids, or gases dissolved in other gases (e.g., the atmosphere), are also possible.
- Solutions in which water is the solvent are known as aqueous solutions.

Dilute and Concentrated Solutions

- A solution that contains a small amount of solute relative to the solvent is a dilute solution.
- A solution that contains a large amount of solute relative to the solvent is a concentrated solution.

Solution Concentration - Molarity

- We must know the amount of material present in a certain volume of solution - the concentration in order to perform measurements and calculations.
- A common unit of concentration is molarity (\boldsymbol{M}), defined as the number of moles of solute per liter of solution (that's solution, not solvent!):
Molarity $(M)=\frac{\text { moles of solute }}{\text { liters of solution }}=\mathrm{mol} / \mathrm{L}=\mathrm{mol} \mathrm{L}^{-1}$
- The molarity of a solution can be used as a conversion factor to relate the solution volume to the number of moles of solute present.

Volume A
Amount A
(in moles)

Amount B
(in moles)

Making Solutions of a Desired Molarity

- Because the volume of a solution comes from the solute and the solvent, a 1 molar solution cannot be made by adding one mole of solute to 1 L of solvent.
- Solutions of a desired molarity are usually prepared by placing the appropriate amount of solute in a volumetric flask, and adding solvent until a calibrated final volume is reached (with frequent swirling to make sure the solute dissolves).

Other Concentration Units

- Mass percentage - ratio of the solute's mass to the mass of the solution:

$$
\text { mass percentage }=\frac{\text { mass of solute }}{\text { mass of solution }} \times 100 \%
$$

- also known as percent mass, percent weight, weight/weight percent; abbreviated as (w/w)\%
- Volume percentage - ratio of the solute's volume to the volume of the solution:

$$
\text { volume percentage }=\frac{\text { volume of solute }}{\text { volume of solution }} \times 100 \%
$$

- commonly used when one liquid is dissolved in another; abbreviated as \%vol or (v/v) \%
- Mass-volume percentage - sometimes used when a solid is dissolved in a liquid (e.g., $0.9(\mathrm{~m} / \mathrm{v}) \%$ saline is 0.9 g of NaCl per 100 mL of solution).

Other Concentration Units

- Small concentrations may be expressed as parts per million (ppm) or parts per billion (ppb):

$$
\begin{aligned}
& \mathrm{ppm}=\frac{\text { mass of solute }}{\text { mass of solution }} \times 10^{6} \\
& \mathrm{ppb}=\frac{\text { mass of solute }}{\text { mass of solution }} \times 10^{9}
\end{aligned}
$$

- a solution of 1 ppm is equivalent to a mass of 1 mg of solute in 1 kg of solution

Solution Dilution

- Solutions can also be prepared by diluting a more concentrated stock solution.

Concentrated solution + Solvent \rightarrow Dilute solution

- The initial molarity $\left(\mathrm{M}_{1}\right)$ and volume $\left(\mathrm{V}_{1}\right)$ of a concentrated solution are related to the final molarity $\left(\mathrm{M}_{2}\right)$ and volume $\left(\mathrm{V}_{2}\right)$ of a dilute solution by the equation:

$$
\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}
$$

Note that the units for volume and concentration don't actually matter in this equation.

Examples: Molarity

1. What is the molarity of a solution made by dissolving 2.355 g of sulfuric acid in water and diluting to a final volume of 50.00 mL ?

Examples: Molarity

2. How many grams of solute are in 1.75 L of 0.460 M sodium monohydrogen phosphate?

Examples: Molarity

3. How many liters of a 0.125 M NaOH solution contains 0.255 mol of NaOH ?

Examples: Solution by Dilution

4. Isotonic saline is a 0.150 M aqueous solution of NaCl that simulates the total concentration of ions found in many cellular fluids. Its uses range from a cleansing rinse for contact lenses to a washing medium for red blood cells. How would you prepare $800 . \mathrm{mL}$ of isotonic saline from a 6.00 M stock solution?

Examples: Solution by Dilution

5. To what volume should you dilute 0.200 L of a 15.0 M NaOH solution to obtain a 3.00 M NaOH solution?

Examples: Stoichiometry of Reactions in Soln

6. Stomach acid, a dilute solution of HCl in water, can be neutralized by reaction with sodium bicarbonate according to the equation
$\mathrm{HCl}(\mathrm{aq})+\mathrm{NaHCO}_{3}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})$
How many mL of $0.125 \mathrm{M} \mathrm{NaHCO}_{3}$ solution are needed to neutralize 18.0 mL of 0.100 M HCl ?

Answer: 14.4 mL

Examples: Stoichiometry of Reactions in Soln

7. The reaction of acid rain with limestone/marble (calcium carbonate) can be represented by the equation
$2 \mathrm{HCl}(\mathrm{aq})+\mathrm{CaCO}_{3}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})$
How many mL of concentrated hydrochloric acid (12.0 M) would it take to dissolve 5.00 g of calcium carbonate?

Answer: 8.33 mL

Examples: Stoichiometry of Reactions in Soln

8. A $0.4550-\mathrm{g}$ solid mixture containing MgSO_{4} is dissolved in water and treated with an excess of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$, resulting in the precipitation of 0.6168 g of BaSO_{4}.

$$
\mathrm{MgSO}_{4}(\mathrm{aq})+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})+\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})
$$

What is the concentration of MgSO_{4} in the mixture, expressed as a mass percentage?
[This is an example of gravimetric analysis, in which a sample mixture is treated in a way that causes a change in the physical state of the analyte, which allows it to be separated from the other components of the sample. The concentration of the analyte is determined from a careful measurement of its mass, and the stoichiometry of the compounds involved.

Answer: 69.91\%

The End

