
 Chapter 04 Networking in Java

- 1 - Advanced Java Programming

Chapter 04
Networking Basics

Contents:

4.1 Basics Socket overview, client/server, reserved

sockets, proxy servers, internet addressing.
4.2 Java & the Net: The networking classes & interfaces

4.3 InetAddress class: Factory methods, instance method
4.4 TCP/IP Client Sockets,

4.5 TCP/IP Server Sockets
4.6 URL Format

4.7 URLConnection class

4.8 Data grams Data gram packets, Data gram server & Client

 Chapter 04 Networking in Java

- 2 - Advanced Java Programming

Introduction[Ref. 2]

Sun Microsystems, the developer of Java having their motto as,

„The Network is Computer‟. So they made the Java programming

language, more appropriate for writing networked programs than, say, C++ or
FORTRAN. What makes Java a good language for networking are the

classes defined in the java.net package.

These networking classes encapsulate the socket paradigm pioneered in
the Berkeley Software Distribution (BSD) from the University of California

at Berkeley. No discussion of Internet networking libraries would be
complete without a brief recounting of the history of UNIX and BSD sockets.

Networking Basics

Ken Thompson and Dennis Ritchie developed UNIX in concert with the C

language at Bell Telephone Laboratories, in 1969. For many years, the

development of UNIX remained in Bell Labs and in a few universities
and research facilities that had the DEC-PDP machines it was designed to be run

on. In 1978, Bill Joy was leading a project at Cal Berkeley to add many
new features to UNIX, such as virtual memory and full-screen display

capabilities. By early 1984, just as Bill was leaving to found Sun Microsystems,

he shipped
4.2BSD, commonly known as Berkeley UNIX. 4.2 BSD came with a fast

file system, reliable signals, inter-process communication, and, most
important, networking. The networking support first found in 4.2 eventually

became the de facto standard for the Internet. Berkeley‟s implementation
of TCP/IP remains the primary standard for communications within the

Internet. The socket paradigm for inter-process and network
communication has also been widely adopted outside of Berkeley. Even

Windows and the Macintosh started talking Berkeley sockets in the late 80s.

The OSI Reference Model

A formal OSI - Open System Interconnection - model has 7 layers

but this one shows the essential layer definitions. Each layer has

its own standardized protocols and applications programming interface
(API), which refers to the functions, and their arguments and return values,

called by the next higher layer. Internally, the layers can be implemented in
different ways as long as externally they obey the standard API.

For example, the Network Layer does not know if the Physical Layer is
Ethernet or a wireless system because the device drivers respond to the

function calls the same way. The Internet refers primarily to the Network Layer
that implements the Internet Protocol (IP) and the Transport Layer that

implements the Transmission Control Protocol (TCP). In fact, we often
here people refer to the "TCP/IP" network rather than calling it the Internet.

 Chapter 04 Networking in Java

- 3 - Advanced Java Programming

The application layer also includes various protocols, such as FTP

(File Transport Protocol) and HTTP (Hypertext Transfer Protocol) for the Web,

that rely on the TCP/IP layers. Most users never look below the application

layer. Most application programmers never work below the TCP/IP layers.

Socket Overview

A network socket is a lot like an electrical socket. Various plugs around

the network have a standard way of delivering their payload. Anything

that understands the standard protocol can plug into the socket and

communicate. With electrical sockets, it doesn‟t matter if you plug in a lamp or
a toaster; as long as they are expecting 50Hz, 115-volt electricity, the

devices will work. Think how our electric bill is created. There is a meter some
where between our house and the rest of the network. For each kilowatt

of power that goes through that meter, we are billed. The bill comes to
our address. So even though the electricity flows freely around the power

grid, all of the sockets in our house have a particular address. The same idea
applies to network sockets, except we talk about TCP/IP packets and IP

addresses rather than electrons and street addresses. Internet Protocol (IP) is
a low-level routing protocol that breaks data into small packets and sends them

to an address across a network, which does not guarantee to deliver
said packets to the destination. Transmission Control Protocol (TCP) is a

higher-level protocol that manages to robustly string together these packets,
sorting and re-transmitting them as necessary to reliably transmit our

data. A third protocol, User Datagram Protocol (UDP), sits next to TCP

and can be used directly to support fast, connectionless, unreliable
transport of packets.

Client/Server

A server is anything that has some resource that can be shared. There are

compute servers, which provide computing power; print servers, which

manage a collection of printers; disk servers, which provide networked
disk space; and web servers, which store web pages. A client is simply any

other entity that wants to gain access to a particular server. The interaction
between client and server is just like the interaction between a lamp and an

electrical socket. The power grid of the house is the server, and the
lamp is a power client. The server is a permanently available resource, while

the client is free to unplug after it is has been served.

 Chapter 04 Networking in Java

- 4 - Advanced Java Programming

Fig. Client-Server Communication

In Berkeley sockets, the notion of a socket allows a single computer to
serve many different clients at once, as well as serving many different types of

information. This feat is managed by the introduction of a port, which is
a numbered socket on a particular machine. A server process is said to listen to

a port until a client connects to it. A server is allowed to accept multiple clients
connected to the same port number, although each session is unique. To

manage multiple client connections, a server process must be multithreaded or
have some other means of multiplexing the simultaneous I/O.

Reserved Sockets

Once connected, a higher-level protocol ensues, which is dependent

on which port we are using. TCP/IP reserves the lower 1,024 ports for

specific protocols. Many of these will seem familiar to us if we have
spent any time surfing the Internet. Port number 21 is for FTP, 23 is for

Telnet, 25 is for e- mail, 79 is for finger, 80 is for HTTP, 119 is for net-news and

the list goes on. It is up to each protocol to determine how a client should
interact with the port.

 Chapter 04 Networking in Java

- 5 - Advanced Java Programming

Table- Well-known port assignments

Protocol Port Protocol Purpose

daytime 13 TCP/UDP
Provides an ASCII representation of the current
time on the server.

FTP data 20 TCP
FTP uses two well-known ports. This port is
used to transfer files.

FTP 21 TCP
This port is used to send FTP commands like put
and get.

SSH 22 TCP Used for encrypted, remote logins.

telnet 23 TCP
Used for interactive, remote command-line

sessions.

smtp 25 TCP
The Simple Mail Transfer Protocol is used to

send email between machines.

A time server returns the number of seconds

time 37 TCP/UDP
that have elapsed on the server since midnight,
January 1, 1900, as a four-byte, signed, big-

endian integer.

whois 43 TCP
A simple directory service for Internet network
administrators.

finger 79 TCP
A service that returns information about a user

or users on the local system.

HTTP 80 TCP The underlying protocol of the World Wide Web.

Post Office Protocol Version 3 is a protocol for
POP3 110 TCP the transfer of accumulated email from the host

to sporadically connected clients.

 Chapter 04 Networking in Java

- 6 - Advanced Java Programming

NNTP 119 TCP
Usenet news transfer; more formally known as
the "Network News Transfer Protocol".

IMAP 143 TCP
Internet Message Access Protocol is a protocol
for accessing mailboxes stored on a server.

RMI Registry 1099 TCP The registry service for Java remote objects.

For example, HTTP is the protocol that web browsers and servers use to

transfer hypertext pages and images. It is quite a simple protocol for a basic
page-browsing web server. When a client requests a file from an HTTP server,

an action known as a hit, it simply prints the name of the file in a special format
to a predefined port and reads back the contents of the file. The server also

responds with a status code number to tell the client whether the request can
be fulfilled and why. Here‟s an example of a client requesting a single

file, /index.html, and the server replying that it has successfully found the file

and is sending it to the client:

Server Client
Listens to port 80 Connects to port 80

Accepts the connection Writes GET /index.html

HTTP/1.0\n\n.

Reads up until the second end-of-line (\n)

Sees that GET is a known command and that
HTTP/1.0 is a valid protocol version.

Reads a local file called /index.html
Writes HTTP/1.0 200 OK\n\n. “200” means here comes the

file
Copies the contents of the file into the socket. Reads the contents of the file

and displays it.

Hangs up. Hangs up.

Proxy Servers

A proxy server speaks the client side of a protocol to another server. This

is often required when clients have certain restrictions on which servers they

can connect to. Thus, a client would connect to a proxy server, which did not

have such restrictions, and the proxy server would in turn communicate for the
client. A proxy server has the additional ability to filter certain requests

or cache the results of those requests for future use. A caching proxy HTTP
server can help reduce the bandwidth demands on a local network‟s connection

to the Internet. When a popular web site is being hit by hundreds of users, a
proxy server can get the contents of the web server‟s popular pages

once, saving expensive internet work transfers while providing faster access to
those pages to the clients.

 Chapter 04 Networking in Java

- 7 - Advanced Java Programming

Internet Addressing

Every computer on the Internet has an address. An Internet address is a

number that uniquely identifies each computer on the Net. Originally, all
Internet addresses consisted of 32-bit values. This address type was specified

by IPv4 (Internet Protocol, version 4). However, a new addressing
scheme, called IPv6 (Internet Protocol, version 6) has come into play. IPv6 uses

a 128- bit value to represent an address. Although there are several reasons for
and advantages to IPv6, the main one is that it supports a much larger

address space than does IPv4. Fortunately, IPv6 is downwardly compatible with
IPv4. Currently, IPv4 is by far the most widely used scheme, but this

situation is likely to change over time.
Because of the emerging importance of IPv6, Java 2, version 1.4

has begun to add support for it. However, at the time of this writing, IPv6 is not

supported by all environments. Furthermore, for the next few years, IPv4 will
continue to be the dominant form of addressing. As mentioned, IPv4 is, loosely,

a subset of IPv6, and the material contained in this chapter is largely applicable
to both forms of addressing.

There are 32 bits in an IPv4 IP address, and we often refer to them as a
sequence of four numbers between 0 and 255 separated by dots (.).

This makes them easier to remember; because they are not randomly assigned
they are hierarchically assigned. The first few bits define which class of

network, lettered A, B, C, D, or E, the address represents. Most Internet users
are on a class C network, since there are over two million networks in class C.

The first byte of a class C network is between 192 and 224, with the last byte
actually identifying an individual computer among the 256 allowed on a single

class C network. This scheme allows for half a billion devices to live on

class C networks.

Domain Naming Service (DNS)

The Internet wouldn‟t be a very friendly place to navigate if everyone had

to refer to their addresses as numbers. For example, it is difficult to imagine

seeing http://192.9.9.1/ at the bottom of an advertisement. Thankfully, a

clearing house exists for a parallel hierarchy of names to go with all
these numbers. It is called the Domain Naming Service (DNS). Just as

the four numbers of an IP address describe a network hierarchy from left to
right, the name of an Internet address, called its domain name, describes

a machine‟s location in a name space, from right to left. For example,
www.google.com is in the COM domain (reserved for commercial sites), it is

called Google (after the company name), and www is the name of the specific
computer that is Google‟s web server. www corresponds to the rightmost

number in the equivalent IP address.

http://192.9.9.1/
http://192.9.9.1/
http://192.9.9.1/
http://192.9.9.1/
http://192.9.9.1/
http://192.9.9.1/
http://192.9.9.1/
http://192.9.9.1/

 Chapter 04 Networking in Java

- 8 - Advanced Java Programming

Java and the Net

Now that the stage has been set, let‟s take a look at how Java relates to

all of these network concepts. Java supports TCP/IP both by extending

the already established stream I/O interface and by adding the features
required to build I/O objects across the network. Java supports both the

TCP and UDP protocol families. TCP is used for reliable stream-based I/O
across the network. UDP supports a simpler, hence faster, point-to-point

datagram-oriented model.

The Networking Classes and Interfaces

The classes contained in the java.net package are listed here:

Authenticator InetSocketAddress SocketImpl
ContentHandler JarURLConnection SocketPermission

DatagramPacket MulticastSocket URI
DatagramSocket NetPermission URL

DatagramSocketImpl NetworkInterface URLClassLoader
HttpURLConnection PasswordAuthentication URLConnection

InetAddress ServerSocket URLDecoder

Inet4Address Socket URLEncoder
Inet6Address SocketAddress URLStreamHandler

Some of these classes are to support the new IPv6 addressing scheme.

Others provide some added flexibility to the original java.net package. Java 2,

version 1.4 also added functionality, such as support for the new I/O classes, to
several of the preexisting networking classes. The java.net package‟s interfaces

are listed here:

ContentHandlerFactory SocketImplFactory URLStreamHandlerFactory

FileNameMap SocketOptions
DatagramSocketImplFactory

 Chapter 04 Networking in Java

- 9 - Advanced Java Programming

Fig. java.net package

 Chapter 04 Networking in Java

- 10 - Advanced Java Programming

InetAddress

Whether we are making a phone call, sending mail, or establishing

a connection across the Internet, addresses are fundamental. The

InetAddress class is used to encapsulate both the numerical IP address
and the domain name for that address. We interact with this class by using the

name of an IP host, which is more convenient and understandable than its

IP address. The InetAddress class hides the number inside. As of Java 2,
version 1.4, InetAddress can handle both IPv4 and IPv6 addresses. This

discussion assumes IPv4.

Factory Methods

The InetAddress class has no visible constructors. To create

an InetAddress object, we have to use one of the available factory
methods. Factory methods are merely a convention whereby static

methods in a class return an instance of that class. This is done in lieu of
overloading a constructor with various parameter lists when having unique

method names makes the results much clearer. Three commonly used
InetAddress factory methods are shown here.

static InetAddress getLocalHost() throws UnknownHostException

static InetAddress getByName(String hostName) throws

UnknownHostException

static InetAddress[] getAllByName(String hostName) throws

UnknownHostException

The getLocalHost() method simply returns the InetAddress object

that represents the local host. The getByName() method returns an

InetAddress for a host name passed to it. If these methods are unable
to resolve the host name, they throw an UnknownHostException.

On the Internet, it is common for a single name to be used to represent
several machines. In the world of web servers, this is one way to provide some

degree of scaling. The getAllByName() factory method returns an array
of InetAddresses that represent all of the addresses that a particular

name resolves to. It will also throw an UnknownHostException if it can‟t resolve
the name to at least one address. Java2, version1.4 also includes the

factory method getByAddress(), which takes an IP address and returns an
InetAddress object. Either an IPv4 or an IPv6 address can be used. The

following example prints the addresses and names of the local machine

and two well-known Internet web sites:

// Demonstrate InetAddress.

import java.net.*;

class InetAddressTest

{

 Chapter 04 Networking in Java

- 11 - Advanced Java Programming

public static void main(String args[])

throws UnknownHostException

{

InetAddress Address = InetAddress.getLocalHost();

System.out.println(Address);

Address = InetAddress.getByName("google.com");

System.out.println(Address);

InetAddress SW[] =

InetAddress.getAllByName("www.yahoo.com");

for (int i=0; i<SW.length; i++)

System.out.println(SW[i]);

}

}

itdept-server/194.168.1.75
google.com/209.85.171.100

www.yahoo.com/87.248.113.14

Instance Methods

The InetAddress class also has several other methods, which can be used

on the objects returned by the methods just discussed. Here are some of the

most commonly used.

boolean equals(Object other)

It returns true if this object has the same Internet address as other.

byte[] getAddress()

It returns a byte array that represents the object‟s Internet
address in network byte order.

String getHostAddress()

It returns a string that represents the host address associated with the

InetAddress object.

String getHostName()

It returns a string that represents the host name associated with
the

InetAddress object.

boolean isMulticastAddress()

It returns true if this Internet address is a multicast address. Otherwise, it
returns false.

String toString()

It returns a string that lists the host name and the IP address for
convenience.

http://www.yahoo.com/
http://www.yahoo.com/
http://www.yahoo.com/87.248.113.14
http://www.yahoo.com/87.248.113.14

 Chapter 04 Networking in Java

- 12 - Advanced Java Programming

Internet addresses are looked up in a series of hierarchically
cached servers. That means that our local computer might know a particular

name-to- IP-address mapping automatically, such as for itself and nearby
servers. For other names, it may ask a local DNS server for IP address

information. If that server doesn‟t have a particular address, it can go to a
remote site and ask for it. This can continue all the way up to the root

server, called InterNIC (internic.net). This process might take a long time, so
it is wise to structure our code so that we cache IP address information

locally rather than look it up repeatedly.

TCP/IP Client Sockets

TCP/IP sockets are used to implement t reliable, bidirectional, persistent,

point-to-point, and stream-based connections between hosts on the Internet. A
socket can be used to connect Java‟s I/O system to other programs that may

reside either on the local machine or on any other machine on the Internet.

Fig. Clients and servers, Sockets and ServerSockets

Applets may only establish socket connections back to the host

from which the applet was downloaded. This restriction exists because it would

be dangerous for applets loaded through a firewall to have access to any
arbitrary machine. There are two kinds of TCP sockets in Java. One is for

servers, and the other is for clients. The ServerSocket class is designed
to be a listener, which waits for clients to connect before doing anything.

The Socket class is designed to connect to server sockets and initiate protocol
exchanges.

The creation of a Socket object implicitly establishes a connection
between the client and server. There are no methods or constructors

that explicitly expose the details of establishing that connection. Here are
two constructors used to create client sockets:

 Chapter 04 Networking in Java

- 13 - Advanced Java Programming

Socket(String hostName, int port) throws UnknownHostException,

IOException

Creates a socket connecting the local host to the named host and port;

can throw an UnknownHostException or an IOException.

Socket(InetAddress ipAddress, int port)throws UnknownHostException,

IOException

Creates a socket using a preexisting InetAddress object and a port; can
throw an IOException. A socket can be examined at any time for the address
and port information associated with it, by use of the following methods:

InetAddress getInetAddress()

It returns the InetAddress associated with the Socket object.

int getPort()

It returns the remote port to which this Socket object is connected.

int getLocalPort()

It returns the local port to which this Socket object is connected.

Once the Socket object has been created, it can also be examined to gain

access to the input and output streams associated with it. Each of these
methods can throw an IOException if the sockets have been invalidated by a

loss of connection on the Net. These streams are used exactly like the other I/O
streams to send and receive data.

InputStream getInputStream()

This returns the InputStream associated with the invoking socket.

OutputStream getOutputStream()

This returns the OutputStream associated with the invoking socket.

Find out which of the first 1,024 ports seem to be hosting TCP servers

on a specified host

import java.net.*;

import java.io.*;

public class LowPortScanner

{

public static void main(String[] args)

{

String host = "localhost";

for (int i = 1; i < 1024; i++)

{

try {

Socket s = new Socket(host, i);

 Chapter 04 Networking in Java

- 14 - Advanced Java Programming

System.out.println("There is a server on port " + i

+ " of " + host);

}

catch (UnknownHostException ex)

{

System.err.println(ex);

break;

}

catch (IOException ex)

{

// must not be a server on this port

}

} // end for

} // end main

} // end PortScanner

Here's the output this program produces on local host. Results will vary,

depending on which ports are occupied. As a rule, more ports will be occupied
on a Unix workstation than on a PC or a Mac:

java LowPortScanner

There is a server on port 21 of localhost

There is a server on port 80 of localhost

There is a server on port 110 of localhost

There is a server on port 135 of localhost

There is a server on port 443 of localhost

A daytime protocol client [Ref. 1]

import java.net.*;

import java.io.*;

public class DaytimeClient

{

public static void main(String[] args)

{

String hostname;

try

{

Socket theSocket = new Socket(“localhost”, 13);

InputStream timeStream = theSocket.getInputStream();

StringBuffer time = new StringBuffer();

int c;

while ((c = timeStream.read()) != -1) time.append((char) c);

String timeString = time.toString().trim();

System.out.println("It is " + timeString + " at "

+ hostname);

 Chapter 04 Networking in Java

- 15 - Advanced Java Programming

} // end try

catch (UnknownHostException ex)

{

System.err.println(ex);

}

catch (IOException ex)

{

System.err.println(ex);

}

} // end main

} // end DaytimeClient

DaytimeClient reads the hostname of a daytime server from

the command line and uses it to construct a new Socket that connects to port
13 on the server. Here the National Institute of Standards and

Technology's time server at time.nist.gov is used as a host name.
The client then calls theSocket.getInputStream() to get theSocket's input

stream, which is stored in the variable timeStream. Since the daytime
protocol specifies ASCII, DaytimeClient doesn't bother chaining a reader to

the stream. Instead, it just reads the bytes into a StringBuffer one at a
time, breaking when the server closes the connection as the protocol requires

it to do. Here's what happens:

java DaytimeClient

It is 52956 03-11-13 04:45:28 00 0 0 706.3 UTC(NIST) * at

time.nist.gov

Whois

The very simple example that follows opens a connection to a whois port

on the InterNIC server, sends the command-line argument down the
socket, and then prints the data that is returned. InterNIC will try to

lookup the argument as a registered Internet domain name, then send back
the IP address and contact information for that site.

//Demonstrate Sockets.

import java.net.*;

import java.io.*;

class Whois

{

public static void main(String args[]) throws Exception

{

int c;

Socket s = new Socket("internic.net", 43);

InputStream in = s.getInputStream(); OutputStream out

= s.getOutputStream(); Stringstr=(args.length==0?

"google.com":args[0])+"\n";

 Chapter 04 Networking in Java

- 16 - Advanced Java Programming

byte buf[] = str.getBytes();

out.write(buf);

while ((c = in.read()) != -1)

System.out.print((char) c);

s.close();

}

}

If, for example, you obtained information about osborne.com, we‟d

get something similar to the following:

TCP/IP Server Sockets [Ref. 2]

Java has a different socket class that must be used for creating server

applications. The ServerSocket class is used to create servers that listen

for either local or remote client programs to connect to them on published
ports. Since the Web is driving most of the activity on the Internet, this

section develops an operational web (http) server.
ServerSockets are quite different from normal Sockets. When we create a

ServerSocket, it will register itself with the system as having an interest
in client connections. The constructors for ServerSocket reflect the port number

that we wish to accept connections on and, optionally, how long we want the

queue for said port to be. The queue length tells the system how many client
connections it can leave pending before it should simply refuse

connections. The default is 50.
The ServerSocket class contains everything needed to write servers

in Java. It has constructors that create new ServerSocket objects, methods that
listen for connections on a specified port, methods that configure the various

server socket options, and the usual miscellaneous methods such as toString().
In Java, the basic life cycle of a server program is:

1. A new ServerSocket is created on a particular port using a ServerSocket()
constructor.

2. The ServerSocket listens for incoming connection attempts on that port
using its accept() method. accept() blocks until a client attempts

to make a connection, at which point accept() returns a Socket
object connecting the client and the server.

3. Depending on the type of server, either the Socket's

getInputStream() method, getOutputStream() method, or both are called
to get input and output streams that communicate with the client.

4. The server and the client interact according to an agreed-upon protocol
until it is time to close the connection.

5. The server, the client, or both close the connection.

6. The server returns to step 2 and waits for the next connection.

 Chapter 04 Networking in Java

- 17 - Advanced Java Programming

The constructors might throw an IOException under adverse conditions.

Here are the constructors:

ServerSocket(int port) throws BindException, IOException

It creates server socket on the specified port with a queue length of 50.

ServerSocket(int port, int maxQueue) throws BindException,

IOException

This creates a server socket on the specified port with a maximum queue

length of maxQueue.

ServerSocket(int port, int maxQueue, InetAddress localAddress)

throws IOException

It creates a server socket on the specified port with a maximum queue
length of maxQueue. On a multi-homed host, local Address specifies the
IP address to which this socket binds. ServerSocket has a method called accept(
),
which is a blocking call that will wait for a client to initiate communications, and
then return with a normal Socket that is then used for communication with the
client.

Scanner for the server ports: [Ref. 1]

import java.net.*;

import java.io.*;

public class LocalPortScanner

{

public static void main(String[] args)

{

for (int port = 1; port <= 65535; port++)

{

try

{

// the next line will fail and drop into the catch block if

// there is already a server running on the port

ServerSocket server = new ServerSocket(port);

}

catch (IOException ex)

{

System.out.println("There is a server on port " + port

+ ".");

} // end catch

} // end for

}

}

 Chapter 04 Networking in Java

- 18 - Advanced Java Programming

Accepting and Closing Connections [Ref. 1]

A ServerSocket customarily operates in a loop that repeatedly

accepts connections. Each pass through the loop invokes the accept()

method. This returns a Socket object representing the connection between the
remote client and the local server. Interaction with the client takes place

through this Socket object. When the transaction is finished, the server should
invoke the Socket object's close() method. If the client closes the connection

while the server is still operating, the input and/or output streams that connect
the server to the client throw an InterruptedIOException on the next read

or write. In either case, the server should then get ready to
process the next incoming connection. However, when the server needs to

shut down and not process any further incoming connections, we should
invoke the ServerSocket object's close() method.

public Socket accept() throws IOException

When server setup is done and we're ready to accept a connection, call

the ServerSocket's accept() method. This method "blocks"; that is, it stops the

flow of execution and waits until a client connects. When a client does connect,
the accept() method returns a Socket object. We use the streams returned by

this Socket's getInputStream() and getOutputStream() methods to
communicate with the client. For example:

ServerSocket server = new ServerSocket(5776);

while (true)

{

Socket connection = server.accept();

OutputStreamWriter out

= new OutputStreamWriter(connection.getOutputStream());

out.write("You've connected to this server. Bye-bye now.\r\n");

connection.close();

}

If we don't want the program to halt while it waits for a connection, put

the call to accept() in a separate thread.

When exception handling is added, the code becomes somewhat
more convoluted. It's important to distinguish between exceptions that

should probably shut down the server and log an error message, and exceptions
that should just close that active connection. Exceptions thrown by accept() or

the input and output streams generally should not shut down the server.
Most other exceptions probably should. To do this, we‟ll need to nest our try

blocks.
Finally, most servers will want to make sure that all sockets they accept

are closed when they're finished. Even if the protocol specifies that clients are
responsible for closing connections, clients do not always strictly adhere to the
protocol. The call to close() also has to be wrapped in a try block that catches

 Chapter 04 Networking in Java

- 19 - Advanced Java Programming

an IOException. However, if we do catch an IOException when closing

the socket, ignore it. It just means that the client closed the socket
before the server could. Here's a slightly more realistic example:

try

{

ServerSocket server = new ServerSocket(5776);

while (true)

{

Socket connection = server.accept();

try

{

Writer out

= new OutputStreamWriter(connection.getOutputStream());

out.write("You've connected to this server. Bye-bye now.");

out.flush();

connection.close();

}

catch (IOException ex)

{

// This tends to be a transitory error for this one connection;

// e.g. the client broke the connection early. Consequently,

// we don't want to break the loop or print an error message.
// However, we might choose to log this exception in an error log.
}

finally

{

// Guarantee that sockets are closed when complete.

try

{

if (connection != null) connection.close();

}

catch (IOException ex) {}

}

}

catch (IOException ex)

{

System.err.println(ex);

}

public void close() throws IOException

If we're finished with a server socket, we should close it, especially if the

program is going to continue to run for some time. This frees up the port for

other programs that may wish to use it. Closing a ServerSocket should not be
confused with closing a Socket. Closing a ServerSocket frees a port on the local

 Chapter 04 Networking in Java

- 20 - Advanced Java Programming

host, allowing another server to bind to the port; it also breaks all

currently open sockets that the ServerSocket has accepted.

public InetAddress getInetAddress()

This method returns the address being used by the server (the

local host). If the local host has a single IP address (as most do), this is the
address returned by InetAddress.getLocalHost(). If the local host has more

than one IP address, the specific address returned is one of the host's IP
addresses. we can't predict which address we will get. For example:

ServerSocket httpd = new ServerSocket(80);

InetAddress ia = httpd.getInetAddress();

If the ServerSocket has not yet bound to a network interface, this method

returns null.

public int getLocalPort()

The ServerSocket constructors allow us to listen on an unspecified port by

passing 0 for the port number. This method lets us find out what port we're

listening on.

Example: A Daytime server for daytime client: [Ref. 1]

public class DaytimeServer

{

public static void main(String[] args)

{

try

{

ServerSocket server = new ServerSocket(13);

Socket connection = null;

while (true)

{

try

{

connection = server.accept();

Writer out = new

OutputStreamWriter(connection.getOutputStream());

Date now = new Date();

out.write(now.toString() +"\r\n");

out.flush();

connection.close();

}

catch (IOException ex) {}

finally

 Chapter 04 Networking in Java

- 21 - Advanced Java Programming

{

try

{

if (connection != null) connection.close();

}

catch (IOException ex) {}

}

} // end while

} // end try

catch (IOException ex)

{

System.err.println(ex);

} // end catch

} // end main

}

URL [Ref. 2]

The Web is a loose collection of higher-level protocols and file formats, all

unified in a web browser. One of the most important aspects of the Web is that
Tim Berners-Lee devised a scaleable way to locate all of the resources of the

Net. Once we can reliably name anything and everything, it becomes a
very powerful paradigm. The Uniform Resource Locator (URL) does exactly that.

The URL provides a reasonably intelligible form to uniquely identify
or address information on the Internet. URLs are ubiquitous; every browser

uses them to identify information on the Web. In fact, the Web is really just that
same old Internet with all of its resources addressed as URLs plus HTML. Within

Java‟s network class library, the URL class provides a simple, concise

API to access information across the Internet using URLs.

Format [Ref. 2]

Two examples of URLs are http://www.rediff.com/

and http://www.rediff.com:80/index.htm/. A URL specification is based on

four components. The first is the protocol to use, separated from the rest of
the locator by a colon (:). Common protocols are http, ftp, gopher, and

file, although these days almost everything is being done via HTTP (in fact,
most browsers will proceed correctly if we leave off the http:// from our

URL specification). The second component is the host name or IP address of
the host to use; this is delimited on the left by double slashes (//) and on the

right by a slash (/) or optionally a colon (:). The third component, the port
number, is an optional parameter, delimited on the left from the host name by

a colon (:) and on the right by a slash (/). (It defaults to port 80, the predefined
HTTP port; thus:80 is redundant.) The fourth part is the actual file path. Most

HTTP servers will append a file named index.html or index.htm to URLs
that refer directly to a directory resource. Thus, http://www.rediff.com/ is

the same as

http://www.rediff.com/
http://www.rediff.com/
http://www.rediff.com/index.htm/
http://www.rediff.com/index.htm/
http://www.rediff.com/index.htm/
http://www.rediff.com/index.htm/
http://www.rediff.com/index.htm/
http://www.rediff.com/index.htm/
http://www.rediff.com/index.htm/
http://www.rediff.com/index.htm/
http://www.rediff.com/index.htm/
http://www.rediff.com/index.htm/
http://www.rediff.com/index.htm/
http://www.rediff.com/index.htm/
http://www.rediff.com/index.htm/
http://www.rediff.com/index.htm/
http://www.rediff.com/

 Chapter 04 Networking in Java

- 22 - Advanced Java Programming

http://www.rediff.com/index.htm. Java‟s URL class has several

constructors, and each can throw a MalformedURLException. One
commonly used form specifies the URL with a string that is identical to what

you see displayed in a browser:

URL(String urlSpecifier)

The next two forms of the constructor allow you to break up the URL into

its component parts:

URL(String protName, String hostName, int port, String path)

URL(String protName, String hostName, String path)

Another frequently used constructor allows us to use an existing URL as a

reference context and then create a new URL from that context. Although this
sounds a little contorted, it‟s really quite easy and useful.

URL(URL urlObj, String urlSpecifier)

In the following example, we create a URL to cric-info‟s news page and

then examine its properties:

// Demonstrate URL. [Ref. 2]

import java.net.*;

class URLDemo

{

public static void main(String args[])

throws MalformedURLException

{

URL hp = new URL("http://content-

ind.cricinfo.com/ci/content/current/story/news.html");

System.out.println("Protocol: " + hp.getProtocol());

System.out.println("Port: " + hp.getPort());

System.out.println("Host: " + hp.getHost());

System.out.println("File: " + hp.getFile());

System.out.println("Ext:" + hp.toExternalForm());

}

}

Output
Protocol: http

Port: -1
Host: content-ind.cricinfo.com

File: /ci/content/current/story/news.html

Ext:http://content-ind.cricinfo.com/ci/content/current/story/news.html

http://content-/
http://content-/

 Chapter 04 Networking in Java

- 23 - Advanced Java Programming

Notice that the port is 1; this means that one was not explicitly set. Now

that we have created a URL object, we want to retrieve the data
associated with it. To access the actual bits or content information of a URL, we

create a URLConnection object from it, using its openConnection() method, like

this:

url.openConnection()

openConnection() has the following general form:

URLConnection openConnection()

It returns a URLConnection object associated with the invoking URL

object. It may throw an IOException.

URLConnection [Ref. 1]

URLConnection is an abstract class that represents an active connection to

a resource specified by a URL. The URLConnection class has two different but
related purposes. First, it provides more control over the interaction with

a server (especially an HTTP server) than the URL class. With a URLConnection,
we can inspect the header sent by the server and respond accordingly. We can

set the header fields used in the client request. We can use a URLConnection to
download binary files. Finally, a URLConnection lets us send data back to a web

server with POST or PUT and use other HTTP request methods.
A program that uses the URLConnection class directly follows this basic

sequence of steps:

1. Construct a URL object.

2. Invoke the URL object's openConnection() method to retrieve a
URLConnection object for that URL.

3. Configure the URLConnection.
4. Read the header fields.

5. Get an input stream and read data.

6. Get an output stream and write data.
7. Close the connection.

We don't always perform all these steps. For instance, if the default setup

for a particular kind of URL is acceptable, then we're likely to skip step 3. If we
only want the data from the server and don't care about any meta-information,

or if the protocol doesn't provide any meta-information, we'll skip step 4. If we

only want to receive data from the server but not send data to the server, we'll
skip step 6. Depending on the protocol, steps 5 and 6 may be reversed

or interlaced.
The single constructor for the URLConnection class is protected:

 Chapter 04 Networking in Java

- 24 - Advanced Java Programming

protected URLConnection(URL url)

Consequently, unless we're sub-classing URLConnection to handle a new

kind of URL (that is, writing a protocol handler), we can only get a reference to
one of these objects through the openConnection() methods of the URL and

URLStreamHandler classes. For example:

try {

URL u = new URL("http://www.greenpeace.org/");

URLConnection uc = u.openConnection();

}

catch (MalformedURLException ex) {

System.err.println(ex);

}

catch (IOException ex) {

System.err.println(ex);

}

Reading Data from a Server

Here is the minimal set of steps needed to retrieve data from a URL using

a URLConnection object:

1. Construct a URL object.

2. Invoke the URL object's openConnection() method to retrieve a
URLConnection object for that URL.

3. Invoke the URLConnection's getInputStream() method.

4. Read from the input stream using the usual stream API.
5. The getInputStream() method returns a generic InputStream that lets

you read and parse the data that the server sends.
6. public InputStream getInputStream()

Example- Download a web page with a URLConnection

import java.net.*;

import java.io.*;

public class SourceViewer2 {

public static void main (String[] args) {

if (args.length > 0) {

try {

//Open the URLConnection for reading

URL u = new URL(args[0]);

URLConnection uc = u.openConnection();

InputStream raw = uc.getInputStream();

InputStream buffer = new BufferedInputStream(raw);

// chain the InputStream to a Reader

Reader r = new InputStreamReader(buffer);

http://www.greenpeace.org/
http://www.greenpeace.org/

 Chapter 04 Networking in Java

- 25 - Advanced Java Programming

int c;

while ((c = r.read()) != -1) {

System.out.print((char) c);

}

}

catch (MalformedURLException ex) {

System.err.println(args[0] + " is not a parseable URL");

}

catch (IOException ex) {

System.err.println(ex);

}

} // end if

} // end main

} // end SourceViewer2

The differences between URL and URLConnection aren't apparent

with just a simple input stream as in this example. The biggest differences

between the two classes are: [Ref. 1]

1. URLConnection provides access to the HTTP header.

2. URLConnection can configure the request parameters sent to the server.
3. URLConnection can write data to the server as well as read data from the

server.

Reading the Header

HTTP servers provide a substantial amount of information in the header

that precedes each response. For example, here's a typical HTTP header

returned by an Apache web server:

HTTP/1.1 200 OK

Date: Mon, 18 Oct 1999 20:06:48 GMT

Server: Apache/1.3.4 (Unix) PHP/3.0.6 mod_perl/1.17

Last-Modified: Mon, 18 Oct 1999 12:58:21 GMT

ETag: "1e05f2-89bb-380b196d"

Accept-Ranges: bytes

Content-Length: 35259

Connection: close

Content-Type: text/html

1. public String getContentType()

This method returns the MIME content type of the data. It relies on the

web server to send a valid content type.

For Example:
text/plain, image/gif, application/xml, and image/jpeg.

 Chapter 04 Networking in Java

- 26 - Advanced Java Programming

Content-type: text/html; charset=UTF-8

or
Content-Type: text/xml; charset=iso-2022-jp

2. public int getContentLength()

The getContentLength() method tells us how many bytes there are in the

content. Many servers send Content-length headers only when
they're transferring a binary file, not when transferring a text file. If

there is no Content-length header, getContentLength() returns -1. The

method throws no exceptions. It is used when we need to know exactly how
many bytes to read or when we need to create a buffer large enough to hold

the data in advance.

3. public long getDate()

The getDate() method returns a long that tells us when the document

was sent, in milliseconds since midnight, Greenwich Mean Time (GMT), January

1, 1970. We can convert it to a java.util.Date. For example:

Date documentSent = new Date(uc.getDate());

This is the time the document was sent as seen from the server; it may

not agree with the time on our local machine. If the HTTP header does

not include a Date field, getDate() returns 0.

4. public long getExpiration()

Some documents have server-based expiration dates that indicate when

the document should be deleted from the cache and reloaded from the server.

getExpiration() is very similar to getDate(), differing only in how the return
value is interpreted. It returns a long indicating the number of

milliseconds after 12:00 A.M., GMT, January 1, 1970, at which point the

document expires. If the HTTP header does not include an Expiration field,
getExpiration() returns
0, which means 12:00 A.M., GMT, January 1, 1970. The only reasonable
interpretation of this date is that the document does not expire and can remain
in the cache indefinitely.

5. public long getLastModified()

The final date method, getLastModified(), returns the date on which the

document was last modified. Again, the date is given as the number of

milliseconds since midnight, GMT, January 1, 1970. If the HTTP header
does not include a Last-modified field (and many don't), this method returns 0.

 Chapter 04 Networking in Java

- 27 - Advanced Java Programming

Example:
import java.net.*;

import java.io.*;

import java.util.*;

public class HeaderViewer

{

public static void main(String args[])

{

try

{

URL u = new URL("http://www.rediffmail.com/index.html");

URLConnection uc = u.openConnection();

System.out.println("Content-type: " +

uc.getContentType());

System.out.println("Content-encoding: "

+ uc.getContentEncoding());

System.out.println("Date: " + new Date(uc.getDate()));

System.out.println("Last modified: "

+ new Date(uc.getLastModified()));

System.out.println("Expiration date: "

+ new Date(uc.getExpiration()));

System.out.println("Content-length: " +

uc.getContentLength());

} // end try

catch (MalformedURLException ex)

{

System.out.println("I can't understand this URL...");

}

catch (IOException ex)

{

System.err.println(ex);

}

System.out.println();

} // end main

} // end HeaderViewer

Sample output:

Content-type: text/html

Content-encoding: null

Date: Mon Oct 18 13:54:52 PDT 1999

Last modified: Sat Oct 16 07:54:02 PDT 1999

Expiration date: Wed Dec 31 16:00:00 PST 1969

Content-length: -1

Sample output for: http://www.oreilly.com/graphics/space.gif

Content-type: image/gif

Content-encoding: null

Date: Mon Oct 18 14:00:07 PDT 1999

http://www.rediffmail.com/index.html
http://www.rediffmail.com/index.html
http://www.rediffmail.com/index.html
http://www.oreilly.com/graphics/space.gif

 Chapter 04 Networking in Java

- 28 - Advanced Java Programming

Last modified: Thu Jan 09 12:05:11 PST 1997

Expiration date: Wed Dec 31 16:00:00 PST 1969

Content-length: 57

Retrieving Arbitrary Header Fields

The last six methods requested specific fields from the header, but there's

no theoretical limit to the number of header fields a message can contain. The
next five methods inspect arbitrary fields in a header. Indeed, the methods of

the last section are just thin wrappers over the methods discussed here; we can
use these methods to get header fields that Java's designers did not plan for. If

the requested header is found, it is returned. Otherwise, the method
returns null.

public String getHeaderField(String name)

The getHeaderField() method returns the value of a named header field.

The name of the header is not case-sensitive and does not include a closing

colon. For example, to get the value of the Content-type and Content-encoding
header fields of a URLConnection object uc, we could write:

String contentType = uc.getHeaderField("content-type");

String contentEncoding = uc.getHeaderField("content-encoding"));

To get the Date, Content-length, or Expires headers, you'd do the same:

String data = uc.getHeaderField("date");

String expires = uc.getHeaderField("expires");

String contentLength = uc.getHeaderField("Content-length");

These methods all return String, not int or long as the getContentLength(),

getExpirationDate(), getLastModified(), and getDate() methods of the
last section did. If we're interested in a numeric value, convert the String to a

long or an int.
Do not assume the value returned by getHeaderField() is valid. We must

check to make sure it is non-null.

public String getHeaderFieldKey(int n)

This method returns the key (that is, the field name: for example,

Content-length or Server) of the nth header field. The request method is header
zero and has a null key. The first header is one. For example, to get the sixth
key of the header of the URLConnection uc, we would write:

 Chapter 04 Networking in Java

- 29 - Advanced Java Programming

String header6 = uc.getHeaderFieldKey(6);

public String getHeaderField(int n)

This method returns the value of the nth header field. In HTTP,

the request method is header field zero and the first actual header is one.

Example below uses this method in conjunction with getHeaderFieldKey() to
print the entire HTTP header.

//Print the entire HTTP header

import java.net.*;

import java.io.*;

public class AllHeaders {

public static void main(String args[]) {

for (int i=0; i < args.length; i++) {

try {

URL u = new URL(args[i]);

URLConnection uc = u.openConnection();

for (int j = 1; ; j++) {

String header = uc.getHeaderField(j); if (header ==

null) break;

System.out.println(uc.getHeaderFieldKey(j) + ": " +

header);

} // end for

} // end try

catch (MalformedURLException ex) {

System.err.println(args[i] + " is not a URL I

understand.");

}

catch (IOException ex) {

System.err.println(ex);

}

System.out.println();

} // end for

} // end main

} // end AllHeaders

For example, here's the output when this program is run against

http://www.oreilly.com:

java AllHeaders http://www.oreilly.com

Server: WN/1.15.1

Date: Mon, 18 Oct 1999 21:20:26 GMT

Last-modified: Sat, 16 Oct 1999 14:54:02 GMT

Content-type: text/html

Title: www.oreilly.com -- Welcome to O'Reilly & Associates!

http://www.oreilly.com/
http://www.oreilly.com/
http://www.oreilly.com/
http://www.oreilly.com/

 Chapter 04 Networking in Java

- 30 - Advanced Java Programming

-- computer books, software, online publishing

Link: <mailto:webmaster@oreilly.com>; rev="Made"

Besides Date, Last-modified, and Content-type headers, this server also

provides Server, Title, and Link headers. Other servers may have different sets
of headers.

public long getHeaderFieldDate(String name, long default)

This method first retrieves the header field specified by the name

argument and tries to convert the string to a long that specifies

the milliseconds since midnight, January 1, 1970, GMT. getHeaderFieldDate()
can be used to retrieve a header field that represents a date: for

example, the Expires, Date, or Last-modified headers. To convert the
string to an integer, getHeaderFieldDate() uses the parseDate() method

of java.util.Date. The parseDate() method does a decent job of understanding
and converting most common date formats, but it can be stumped—for

instance, if we ask for a header field that contains something other than a
date. If parseDate() doesn't understand the date or if getHeaderFieldDate() is

unable to find the requested header field, getHeaderFieldDate() returns the
default argument. For example:

Date expires = new Date(uc.getHeaderFieldDate("expires", 0));

long lastModified = uc.getHeaderFieldDate("last-modified", 0);

Date now = new Date(uc.getHeaderFieldDate("date", 0));

We can use the methods of the java.util.Date class to convert the long to

a String.

public int getHeaderFieldInt(String name, int default)

This method retrieves the value of the header field name and tries

to convert it to an int. If it fails, either because it can't find the requested
header field or because that field does not contain a recognizable

integer, getHeaderFieldInt() returns the default argument. This method is often
used to retrieve the Content-length field. For example, to get the content length

from a URLConnection uc, you would write:

int contentLength = uc.getHeaderFieldInt("content-length", -1);

In this code fragment, getHeaderFieldInt() returns -1 if the

Content- length header isn't present.

mailto:mailto:webmaster@oreilly.com

 Chapter 04 Networking in Java

- 31 - Advanced Java Programming

Configuring the Connection

The URLConnection class has seven protected instance fields that define

exactly how the client makes the request to the server. These are:

protected URL url;

protected boolean doInput = true;

protected boolean doOutput = false;

protected boolean allowUserInteraction =

defaultAllowUserInteraction;

protected boolean useCaches = defaultUseCaches;

protected long ifModifiedSince = 0;

protected boolean connected = false;

For instance, if doOutput is true, we'll be able to write data to the server

over this URLConnection as well as read data from it. If useCaches is false, the
connection bypasses any local caching and downloads the file from the server

afresh.
Since these fields are all protected, their values are accessed and

modified via obviously named setter and getter methods:

public URL getURL()

public void setDoInput(boolean doInput)

public boolean getDoInput()

public void setDoOutput(boolean doOutput)

public boolean getDoOutput()

public void setAllowUserInteraction(boolean allow)

public boolean getAllowUserInteraction()

public void setIfModifiedSince(long since)

public long getIfModifiedSince()

User Datagram Protocol (UDP)

The User Datagram Protocol (UDP) is an alternative protocol for sending

data over IP that is very quick, but not reliable. That is, when you send UDP

data, you have no way of knowing whether it arrived, much less
whether different pieces of data arrived in the order in which you sent them.

However, the pieces that do arrive generally arrive quickly.
The difference between TCP and UDP is often explained by analogy with

the phone system and the post office. TCP is like the phone system. When we
dial a number, the phone is answered and a connection is established between

the two parties. As we talk, we know that the other party hears our words in the
order in which we say them. If the phone is busy or no one answers, we find

out right away. UDP, by contrast, is like the postal system. We send
packets of mail to an address. Most of the letters arrive, but some may be lost

on the way. The letters probably arrive in the order in which we sent them, but

 Chapter 04 Networking in Java

- 32 - Advanced Java Programming

that's not guaranteed. The farther away we are from our recipient, the more

likely it is that mail will be lost on the way or arrive out of order. If this is a
problem, we can write sequential numbers on the envelopes, then ask

the recipients to arrange them in the correct order and send us mail

telling us which letters arrived so that we can resend any that didn't get there
the first time. However, we and our correspondent need to agree on this

protocol in advance. The post office will not do it for us.
Both the phone system and the post office have their uses.

Although either one could be used for almost any communication, in some cases
one is definitely superior to the other. The same is true of UDP and TCP.

Comparing TCP and UDP

No. TCP UDP

1 This is connection oriented protocol This is connection-less protocol

2
The TCP connection is byte stream The UDP connection is a

message stream

3
It does not support multicasting

and broadcasting

4
It provides error control and

flow control

5
TCP supports full duplex
transmission

6
It is reliable service of data
transmission

7
The TCP packet is called as
segment

It supports broadcasting

The error control and flow

control is not provided

UDP does not support

full duplex transmission

This is an unreliable service

of data transmission

The UDP packet is called as user

datagram.

 Chapter 04 Networking in Java

- 33 - Advanced Java Programming

Java's implementation of UDP is split into two classes: DatagramPacket

and DatagramSocket. The DatagramPacket class stuffs bytes of data into UDP
packets called datagrams and lets us unstuff datagrams that we receive.

A DatagramSocket sends as well as receives UDP datagrams. To send data, we
put the data in a DatagramPacket and send the packet using a

DatagramSocket. To receive data, we receive a DatagramPacket object from a

DatagramSocket and then read the contents of the packet. The sockets
themselves are very simple creatures. In UDP, everything about a datagram,

including the address to which it is directed, is included in the packet itself; the
socket only needs to know the local port on which to listen or send.

Datagrams

For most of our internetworking needs, we will be happy with

TCP/IP- style networking. It provides a serialized, predictable, reliable stream of

packet data. This is not without its cost, however. TCP includes many
complicated algorithms for dealing with congestion control on crowded

networks, as well as pessimistic expectations about packet loss. This leads to a
somewhat inefficient way to transport data. Datagrams provide an alternative.

Datagrams are bundles of information passed between machines.

They are somewhat like a hard throw from a well-trained but blindfolded catcher
to the third baseman. Once the datagram has been released to its intended

target, there is no assurance that it will arrive or even that someone will be
there to catch it. Likewise, when the datagram is received, there is no

assurance that it hasn‟t been damaged in transit or that whoever sent it is still
there to receive a response.

Java implements datagrams on top of the UDP protocol by using
two classes: The DatagramPacket object is the data container, while

the DatagramSocket is the mechanism used to send or receive
the DatagramPackets.

DatagramPacket

DatagramPacket uses different constructors depending on whether

the packet will be used to send data or to receive data. This is a little
unusual. Normally, constructors are overloaded to let us provide different

kinds of information when we create an object, not to create objects of the
same class that will be used in different contexts. In this case, all

constructors take as arguments a byte array that holds the datagram's
data and the number of bytes in that array to use for the datagram's data.

When we want to receive a datagram, these are the only arguments we
provide; in addition, the array should be empty. When the socket receives a

datagram from the network, it stores the datagram's data in the
DatagramPacket object's buffer array, up to the length we specified.

 Chapter 04 Networking in Java

- 34 - Advanced Java Programming

Constructors for receiving datagrams

These two constructors create new DatagramPacket objects for receiving

data from the network:

public DatagramPacket(byte[] buffer, int length)

public DatagramPacket(byte[] buffer, int offset, int length)

When a socket receives a datagram, it stores the datagram's data part in

buffer beginning at buffer[0] and continuing until the packet is
completely stored or until length bytes have been written into the buffer.

If the second constructor is used, storage begins at buffer[offset] instead.
Otherwise, these two constructors are identical. length must be less

than or equal to buffer.length-offset. If we try to construct a
DatagramPacket with a length that will overflow the buffer, the constructor

throws an IllegalArgumentException. This is a RuntimeException, so our code
is not required to catch it. It is okay to construct a DatagramPacket with a

length less than buffer.length-offset. In this case, at most the first length bytes
of buffer will be filled when the datagram is received. For example, this code

fragment creates a new DatagramPacket for receiving a datagram of up to
8,192 bytes:

byte[] buffer = new byte[8192];

DatagramPacket dp = new DatagramPacket(buffer, buffer.length);

The constructor doesn't care how large the buffer is and would happily let

us create a DatagramPacket with megabytes of data. However, the underlying

native network software is less forgiving, and most native UDP implementations
don't support more than 8,192 bytes of data per datagram.

Constructors for sending datagrams [Ref. 1]

These two constructors create new DatagramPacket objects for sending

data across the network:

public DatagramPacket(byte[] data, int length,

InetAddress destination, int port)

public DatagramPacket(byte[] data, int offset, int length,

InetAddress destination, int port)

Each constructor creates a new DatagramPacket to be sent to

another host. The packet is filled with length bytes of the data array starting at
offset or
0 if offset is not used. If we try to construct a DatagramPacket with a length
that is greater than data.length, the constructor throws
an IllegalArgumentException. It's okay to construct a DatagramPacket object
with an offset and a length that will leave extra, unused space at the end of the

 Chapter 04 Networking in Java

- 35 - Advanced Java Programming

data array. In this case, only length bytes of data will be sent over the network.
The InetAddress object destination points to the host we want the packet
delivered to; the int argument port is the port on that host.

For instance, this code fragment creates a new DatagramPacket
filled with the data "This is a test" in ASCII. The packet is directed at port 7 (the
echo port) of the host www.ibiblio.org:

String s = "This is a test";

byte[] data = s.getBytes("ASCII");

try {

InetAddress ia = InetAddress.getByName("www.ibiblio.org");

int port = 7;

DatagramPacket dp = new

DatagramPacket(data, data.length, ia, port);

// send the packet...

}

catch (IOException ex){ }

The get Methods

DatagramPacket has six methods that retrieve different parts of a

datagram: the actual data plus several fields from its header. These methods

are mostly used for datagrams received from the network.

public InetAddress getAddress()

The getAddress() method returns an InetAddress object containing the

address of the remote host. If the datagram was received from the Internet, the
address returned is the address of the machine that sent it (the source

address). On the other hand, if the datagram was created locally to be sent to a
remote machine, this method returns the address of the host to which

the datagram is addressed (the destination address).

public int getPort()

The getPort() method returns an integer specifying the remote port. If

this datagram was received from the Internet, this is the port on the host that
sent the packet. If the datagram was created locally to be sent to a

remote host, this is the port to which the packet is addressed on the remote
machine.

public SocketAddress getSocketAddress()

The getSocketAddress() method returns a SocketAddress object

containing the IP address and port of the remote host. As is the case

for getInetAddress(), if the datagram was received from the Internet, the
address returned is the address of the machine that sent it (the source

address).

http://www.ibiblio.org/
http://www.ibiblio.org/

 Chapter 04 Networking in Java

- 36 - Advanced Java Programming

public byte[] getData()

The getData() method returns a byte array containing the data from the

datagram. It's often necessary to convert the bytes into some other
form of data before they'll be useful to our program. One way to do this is to

change the byte array into a String using the following String constructor:

public String(byte[] buffer, String encoding)

If the datagram does not contain text, converting it to Java data is more

difficult. One approach is to convert the byte array returned by getData() into a

ByteArrayInputStream using this constructor:

public ByteArrayInputStream(byte[] buffer, int offset, int length)

‘buffer’ is the byte array to be used as an InputStream. It's important to specify

the portion of the buffer that we want to use as an InputStream using
the offset and length arguments.

public int getLength()

The getLength() method returns the number of bytes of data in

the datagram. This is not necessarily the same as the length of the array

returned by getData(), i.e., getData().length. The int returned by getLength()
may be less than the length of the array returned by getData().

public int getOffset()

This method simply returns the point in the array returned by getData()

where the data from the datagram begins.
Following program uses all the methods covered above to print the

information in the DatagramPacket. This example is a little artificial; because
the program creates a DatagramPacket, it already knows what's in it.

More often, we'll use these methods on a DatagramPacket received from
the network, but that will have to wait for the introduction of the

DatagramSocket class in the next section.

//Construct a DatagramPacket to receive data [Ref. 1]

import java.net.*;

public class DatagramExample1

{

public static void main(String[] args)

{

String s = "This is a test.";

byte[] data = s.getBytes();

try

{

InetAddress ia = InetAddress.getByName("www.ibiblio.org");

http://www.ibiblio.org/

 Chapter 04 Networking in Java

- 37 - Advanced Java Programming

int port = 7;

DatagramPacket dp

= new DatagramPacket(data, data.length, ia, port);

System.out.println("This packet is addressed to "

+ dp.getAddress() + " on port " + dp.getPort());

System.out.println("There are " + dp.getLength()

+ " bytes of data in the packet");

System.out.println(

new String(dp.getData(), dp.getOffset(), dp.getLength()));

}

catch (UnknownHostException e)

{

System.err.println(e);

}

}

}

Output:
This packet is addressed to www.ibiblio.org/154.2.254.81 on port 7

There are 15 bytes of data in the packet

This is a test.

The Set methods

public void setData(byte[] data)

The setData() method changes the payload of the UDP datagram.
We might use this method if we are sending a large file (where large is defined
as "bigger than can comfortably fit in one datagram") to a remote host. We
could repeatedly send the same DatagramPacket object, just changing the data
each time.

public void setAddress(InetAddress remote)

The setAddress() method changes the address a datagram packet is sent
to. This might allow us to send the same datagram to many different recipients.

public void setPort(int port)

The setPort() method changes the port a datagram is addressed to.

public void setLength(int length)

The setLength() method changes the number of bytes of data in
the internal buffer that are considered to be part of the datagram's data as
opposed to merely unfilled space.

DatagramSocket [Ref. 1]

For sending or receiving a DatagramPacket, we must open a

datagram socket. In Java, a datagram socket is created and accessed

through the DatagramSocket class. The constructors are listed below:

public DatagramSocket() throws SocketException

http://www.ibiblio.org/152.2.254.81

 Chapter 04 Networking in Java

- 38 - Advanced Java Programming

public DatagramSocket(int port) throws SocketException

public DatagramSocket(int port, InetAddress interface)

throws SocketException

The first constructor creates a socket that is bound to an

anonymous port. Second constructor creates a socket that listens for incoming

datagrams on a particular port, specified by the port argument. Third
constructor is primarily used on multihomed hosts; it creates a socket

that listens for incoming datagrams on a specific port and network
interface. The port argument is the port on which this socket listens for

datagrams. As with TCP sockets, we need to be root on a Unix system to create
a DatagramSocket on a
port below 1,024. The address argument is an InetAddress object matching one

of the host's network addresses.

//The UDP Port Scanner [Ref. 1].
import java.net.*;

public class UDPPortScanner

{

public static void main(String[] args)

{

for (int port = 0; port <= 2000; port++)

{

try

{

// the next line will fail and drop into the catch block if

// there is already a server running on port i

DatagramSocket server = new DatagramSocket(port);

server.close();

}

catch (SocketException ex)

{

System.out.println("There is a server on port " +

port + ".");

} // end try

} // end for

}

}

Sample output:
There is a server on port 123.

There is a server on port 445.

There is a server on port 500.

There is a server on port 1900.

 Chapter 04 Networking in Java

- 39 - Advanced Java Programming

Sending and Receiving Datagrams

The primary task of the DatagramSocket class is to send and receive UDP

datagrams. One socket can both send and receive. Indeed, it can send

and receive to and from multiple hosts at the same time.

public void send(DatagramPacket dp) throws IOException

Once a DatagramPacket is created and a DatagramSocket is constructed,

send the packet by passing it to the socket's send() method. For example, if

theSocket is a DatagramSocket object and theOutput is a
DatagramPacket object, send theOutput using theSocket like this:

theSocket.send(theOutput);

If there's a problem sending the data, an IOException may be

thrown. However, this is less common with DatagramSocket than
Socket or ServerSocket, since the unreliable nature of UDP means we

won't get an exception just because the packet doesn't arrive at its
destination. We may get an IOException if we are trying to send a larger

datagram than the host's native networking software supports, but then again

we may not. This method may also throw a SecurityException if the
SecurityManager won't let you communicate with the host to which the packet

is addressed.

public void receive(DatagramPacket dp) throws IOException

This method receives a single UDP datagram from the network and stores

it in the preexisting DatagramPacket object dp. Like the accept() method in the
ServerSocket class, this method blocks the calling thread until a

datagram arrives. If our program does anything besides wait for datagrams, we
should call receive() in a separate thread.

The datagram's buffer should be large enough to hold the data received.
If not, receive() places as much data in the buffer as it can hold; the rest is
lost. It may be useful to remember that the maximum size of the data portion
of a UDP datagram is 65,507 bytes. (That's the 65,536-byte maximum size of
an IP datagram minus the 20-byte size of the IP header and the 8-byte size of
the UDP header.) Some application protocols that use UDP further restrict the
maximum number of bytes in a packet; for instance, NFS uses a
maximum packet size of 8,192 bytes.

If there's a problem receiving the data, an IOException may be thrown. In
practice, this is rare. Unlike send(), this method does not throw a
SecurityException if an applet receives a datagram from other than the applet
host. However, it will silently discard all such packets.

 Chapter 04 Networking in Java

- 40 - Advanced Java Programming

Example: UDP Client
import java.net.*;

import java.io.*;

public class UDPDiscardClient

{

public static void main(String[] args)

{

String hostname = "localhost";

int port = 9;

try

{

InetAddress server = InetAddress.getByName(hostname);

BufferedReader userInput

= new BufferedReader(new InputStreamReader(System.in));

DatagramSocket theSocket = new DatagramSocket();

while (true)

{

String theLine = userInput.readLine();

if (theLine.equals(".")) break;

byte[] data = theLine.getBytes();

DatagramPacket theOutput

= new DatagramPacket(data, data.length, server, port);

theSocket.send(theOutput);

} // end while

} // end try

catch (UnknownHostException uhex) {

System.err.println(uhex);

}

catch (SocketException se) {

System.err.println(se);

}

catch (IOException ioex) {

System.err.println(ioex);

}

} // end main

}

//UDP Server

import java.net.*;

import java.io.*;

public class UDPDiscardServer

{

public static void main(String[] args)

{

int port = 9;

byte[] buffer = new byte[65507];

try

{

 Chapter 04 Networking in Java

- 41 - Advanced Java Programming

DatagramSocket server = new DatagramSocket(port);

DatagramPacket packet = new

DatagramPacket(buffer, buffer.length);

while (true)

{

try

{

server.receive(packet);

String s = new String(packet.getData(),

0, packet.getLength());

System.out.println(packet.getAddress() + " at port "

+ packet.getPort() + " says " + s);

// reset the length for the next packet

packet.setLength(buffer.length);

}

catch (IOException ex) {

System.err.println(ex);

}

} // end while

} // end try

catch (SocketException ex)

{

System.err.println(ex);

} // end catch

} // end main

}

Sample outputs:
java UDPDiscardClient

Hi

How

are

You?

Fine?

java UDPDiscardServer

/127.0.0.1 at port 1027 says Hi

/127.0.0.1 at port 1027 says How

/127.0.0.1 at port 1027 says are

/127.0.0.1 at port 1027 says You?

/127.0.0.1 at port 1027 says Fine?

public void close()

Calling a DatagramSocket object's close() method frees the port

occupied by that socket. For example:

try {

 Chapter 04 Networking in Java

- 42 - Advanced Java Programming

DatagramSocket server = new DatagramSocket();

server.close();

}

catch (SocketException ex) {

System.err.println(ex);

}

It's never a bad idea to close a DatagramSocket when we're through with

it; it's particularly important to close an unneeded socket if the program will
continue to run for a significant amount of time.

public InetAddress getLocalAddress()

A DatagramSocket's getLocalAddress() method returns an
InetAddress object that represents the local address to which the socket is

bound. It's rarely needed in practice. Normally, you either know or don't care
which address a socket is listening to.

public void connect(InetAddress host, int port)

The connect() method doesn't really establish a connection in the TCP

sense. However, it does specify that the DatagramSocket will send packets to

and receive packets from only the specified remote host on the specified
remote port. Attempts to send packets to a different host or port will throw an

IllegalArgumentException. Packets received from a different host or a different
port will be discarded without an exception or other notification.

public void disconnect()

The disconnect() method breaks the "connection" of a connected

DatagramSocket so that it can once again send packets to and receive packets
from any host and port.

public int getPort()

If and only if a DatagramSocket is connected, the getPort()

method returns the remote port to which it is connected. Otherwise, it returns -

1.

public InetAddress getInetAddress()

If and only if a DatagramSocket is connected, the getInetAddress(

) method returns the address of the remote host to which it is

connected. Otherwise, it returns null.
