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Chapter 06 

 

Fluid Mechanics 

_____________________________________________ 
 

6.0 Introduction 
 

Fluid mechanics is a branch of applied mechanics concerned with the static and 

dynamics of fluid - both liquids and gases. The analysis of the behavior of fluids 

is based on the fundamental laws of mechanics, which relate continuity of mass 

and conservation of energy with force and momentum. 

 

There are two aspects of fluid mechanics, which make it different to solid 

mechanics namely; the nature of a fluid is much different as compared with 

solid and in fluids it deals with continuous streams of fluid without a beginning 

or ending. Fluid is a substance, which deforms continuously, or flows, when 

subjected to shearing forces. If a fluid is at rest there is no shearing force acting. 

 

6.1 Archimedes’ Principle  
 

Archimedes’ principle states that a system submerged or floating in a fluid has 

buoyant force Fbuoy acting on it whose magnitude is equal to that of the weight 

of the fluid displaced by the system. Buoyancy arises from the increase of fluid 

pressure with depth and the increase pressure exerted in all directions as stated 

by Pascal's law. Thus, there is an unbalanced upward force on the bottom of a 

submerged or floating object. An illustration is shown in Fig. 6.1. Since the 

"water ball" at left is exactly supported by the difference in pressure and the 

solid object at right experiences exactly the same pressure environment, it 

follows that the buoyancy force Fbuoy on the solid object upward is equal to the 

weight of the water displaced according to Archimedes' principle. 

 

 
Figure 6.1: Illustration of buoyancy follows Archimedes’ principle 
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Supposing that the volume of the water equivalent is V m
3
, the buoyancy force 

Fbuoy is equal to Vwaterg. If the object has mass m, the apparent weight of the 

solid object shall be mg - Vwaterg. 

 

Let’s consider the general case where an object has density  and volume 

V. Its weight W is equal to Vg. When the object submerged in the fluid of 

density fluid and displaced a volume V’ then the buoyant force Fbuoy is Fbuoy = 

fluidV’g. If the volume V is equal to V’ and the object sinks to the bottom, this 

shall be mean W > Fbuoy and also implies that the density  of the object is 

larger than the density fluid of fluid. Likewise, the object floats. It implies that 

the density of object is smaller than the density of fluid. 

 

If the object is neither sink nor float like a fish swimming in the sea, 

fluidV’g = Vg. For ship that float on water, the condition fluidV’g = Vg is 

also satisfies. However, the volume is V’ < V because only a small portion of 

volume of ship is submerged in water. This implies that the density of ship is 

less than density of water. 

 

Example 6.1 

A rock is suspended from a spring scale in air and found to be weight of 

magnitude w. The rock is then submerged completely in water while attached to 

the scale. The new reading of scale is wsub. Find the expression for the density 

rock of rock in terms of the scale readings and density of water water. 

 

Solution 

The weight of rock in air is W = rockVg. The buoyant force is Fbuoy = waterVg. 

The submerged weight is wsub = rockVg - waterVg. Thus, the ratio of submerged 

weight and weight in air is 
Vg

VgVg

w

w

rock

waterrocksub




 . This implies that the density 

of rock rock = 
sub

water

ww

w




. 

 

6.1.1 Center of Buoyancy 
 

The center of buoyancy for floating and submerged object would determine the 

stability of the system. For stability or equilibrium, everybody knows that the 

net force and net torque should be zero, which are Fnet = 0 and net = 0. 

Therefore, for an equilibrium system, the center of mass COM and center of 

buoyancy COB should lie in same vertical line. 
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For a total submerged system such as a submarine, the center of mass COM 

should lie below center of buoyancy COB since the submarine is designed such 

that it is heavier at the bottom. If the submarine is tilted toward right, the COB 

is shifted toward right. The torque out of the page with respect to COM is 

restoring the tilt to equilibrium position. The illustration is shown in Fig. 6.2. 

 

 
Figure 6.2: Center of buoyancy for a total submerged system 

 

For the floating system such as the aircraft carrier, the COB is below the COM 

as shown in Fig. 6.3. If there is a tilt, the COB is move toward right align the 

metacenter. A restoring torque will move the aircraft carrier back to equilibrium. 

 
 

Figure 6.3: Center of buoyancy for a floating system 
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6.2 Newton’s Law of Viscosity 
 

Liquid and gas are both fluids cannot resist deformation force. As it flows, it is 

under the action of the force. Its shape will change continuously as long as the 

force is applied. The deformation is caused by shearing forces, which act 

tangentially to a surface as shown in Fig. 6.4. The force F acting tangentially on 

a rectangular (solid lined) element ABDC causes deformation that produces the 

dashed lined rhombus element a'b'c’d’. 

 
Figure 6.4: Shearing force acts on liquid 

 

When a fluid is in motion shear stresses are developed if the particles of the 

fluid move relative to one another. When this happens adjacent particles have 

different velocities. If velocity of fluid is the same at every point then there is no 

shear stress produced and particles have zero relative velocity. An example is 

the flow of water in the pipe where at the wall of the pipe, the velocity of the 

water is zero. The velocity increases toward the centre of the pipe as its profile 

is shown in Fig. 6.5. 
 

 
Figure 6.5: The velocity profile of water flow in the pipe 
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The shearing force F acts on the area on the top of the element. This area is 

given by A = zx. The shear stress  is equal to force per unit area i.e. 
A

F
 . 

The tan  is the shear strain , which is defined as x/y. The rate of shear strain 

shall be equal to d/dt, which is also equal to 

 

 
y

u

ydt

)x(d

dt

d



 (6.1) 

 

where u is the velocity of the fluid particle at point E and u/y shall be the 

velocity gradient. In the differential for u/y shall be written as du/dy. 

 

The result of experiment has shown that the shear stress  is proportional to 

the rate of change of shear strain. 

 

 
dy

du
  (6.2) 

 

The constant of proportionality is known as coefficient of dynamic viscosity . 

This is also known as Newton’s law of viscosity. The coefficient of dynamic 

viscosity  is defined as the shear force per unit area or shear stress , required 

dragging one layer of fluid with unit velocity past another layer a unit distance 

away. For fluid that has constant viscosity shall be called Newtonian fluid, 

otherwise it is a non-Newtonian fluid. Figure 6.6 shows the typical viscosity of 

some fluids. 

 

 
Figure 6.6: Viscosity of some fluids 
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From the results show in Fig. 6.6, the viscosity  generally follows equation 

(6.3). 

 

 

n

dy

du
BA 








  (6.3) 

 

where A, B and n are constants. For Newtonian fluids A = 0, B = m and n = 1. 

 

The coefficient of dynamic viscosity of water is 1.14x10
-3

kgm
-1

s
-1

, air is 

1.78x10
-5

kgm
-1

s
-1

, mercury is 1.55kgm
-1

s
-1

, and paraffin oil is 1.9kgm-
1
s

-1
. 

 

6.2.1 Viscosity and Temperature 
 

There is some molecules interchange between adjacent layers in liquids. But the 

molecules are much closer than in gas that their cohesive forces hold them in 

place much more rigidly. Thus, it reduces the molecules exchange. This 

cohesion plays an important role in the viscosity of liquid. 

As the temperature of a fluid increases, it reduces the cohesive force and 

increases the molecular interchange. Reducing cohesive forces reduces shear 

stress, while increasing molecules interchange increases shear stress. Thus, one 

can see there is a complex relationship between molecules exchange and 

cohesive force on viscosity. In general the reduction of cohesive force is more 

than increase of molecules exchange. Thus, the viscosity of liquid is decreased 

as temperature increases. 

High pressure can also change the viscosity of a liquid. As pressure 

increases the relative movement of molecules requires more energy hence 

viscosity increases. 

The molecules of gas are only weakly bounded by cohesive force between 

molecules, as they are far apart. Between adjacent layers, there is a continuous 

exchange of molecules. Molecules of a slower layer move to faster layers 

causing a drag, while molecules moving the other way exert an acceleration 

force. Mathematical considerations of this momentum exchange can lead to 

Newton law of viscosity. 

If temperature of a gas increases, the momentum exchange between layers 

will increase thus increasing viscosity. It can be viewed as the temperature 

increases, it reduces the cohesive force further increase more molecules 

exchange that increases the viscosity. 
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Viscosity will also change with pressure - but under normal condition this 

change is negligible in gasses. 

Kinematics viscosity  is defined as the ratio of dynamic viscosity to mass 

density, which is 

 

 



  (6.4) 

 

The unit for kinematics viscosity is Stoke, whereby 1 stokes ST = 1.0x10
-4

m
2
s

-1
. 

 

Example 6.2 

The density of oil is 850kg/m
3
. Find its relative density and Kinematics 

viscosity if the dynamic viscosity is 5.0x10
-3

kg/ms. 

 

Solution 

The relative density of fluid is defined as the rate of its density to the density of 

water. Thus, the relative density of oil is 850/1000 = 0.85. 

 

Kinematics viscosity is defined as the ratio of dynamic viscosity to mass density, 

which is 5.0x10
-3

/0.85 = 5.88x10
-3

 m
2
/s = 58.8 ST. 

 

6.3 Pressure Measurement by Manometer 
 

In this section, various types of manometers for pressure measurement shall be 

discussed and analyzed. 

 

Pressure is the ratio of perpendicular force exerted to an area. Thus, 

pressure has dimension of Nm
-2

, in which 1.0Nm
-2

 is also termed as one pascal. 

i.e. 1.0Nm
-2

 = 1.0Pa. One atmospheric pressure 1.00atm is equal to 1.013x10
5
Pa. 

Another commonly use scale for measuring the pressure is bar in which 1.0 bar 

is equal to 1.0x10
5
Nm

-2
. 

 

The simplest manometer is a tube, open at the top attached to the top of a 

vessel containing liquid at a pressure (higher than atmospheric pressure) to be 

measured. An example can be seen in Fig. 6.7. This simple device is known as a 

piezometer tube. As the tube is open to the atmosphere, the pressure measured is 

relative to atmospheric pressure is called gauge pressure. 

 



06 Fluid Mechanics 

 

- 108 - 

The pressure at point A is gh1 + P0, where P0 is the atmospheric pressure. 

Similarly, the pressure at point B is P0 + gh2. Pressure gh1 and gh2 are 

termed as gauge pressure. 

 

 
 

Figure 6.7: A piezometer tube manometer 

 

"U"-tube manometer enables the pressure of both liquids and gases to be 

measured with the same instrument. The "U" tube manometer is shown in Fig. 

6.8 filled with a fluid called the manometric fluid. The fluid whose pressure is 

being measured should have a density less than the density of the manometric 

fluid and the two fluids should be immiscible, which does not mix readily. 

 

Pressure at point B and C are the same. Pressure PB at point B is equal to 

pressure PA at point A plus gh1 i.e. PB = PA + gh1. The pressure at point C is 

equal to atmospheric pressure Patm plus mangh2 i.e. PC = Patm + mangh2. 

Equating the pressure at point A and C should yield expression PA + gh1= Patm 

+ mangh2. If the density of fluid to be measured is much lesser than density of 

manometric fluid than pressure at point A is approximately equal to PA = Patm + 

mangh2. 
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Figure 6.8: A “U” tube manometer 

 

Pressure difference can be measured using a "U"-Tube manometer. The "U"-

tube manometer is connected to a pressurized vessel at two points the pressure 

difference between these two points can be measured as shown in Fig. 6.9. 

 
 

Figure 6.9: Pressure difference measurement by the "U"-Tube manometer 

 

Point C and D have same pressure. The pressure at point A is PA = PC - h2g. 

Pressure point B is PB = PD - manh1g - (hb-h1)g. This shall mean that pressure 
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difference between point A and point B is PA - PB = PC - h2g - PD + manh1g + 

(hb-h1)g = g(hb – h2) + h1g(man - ). 

 

The advanced “U” tube manometer is used to measure the pressure 

difference (P1 – P2) that has the manometer shown in Fig. 6.10. 

 
 

Figure 6.10: An advanced “U” tube manometer 

 

When there is no pressure difference, the level of the manometric fluid shall be 

stayed at datum line. The volume of level decrease in the left hand side shall be 

equal to the volume of level raised in right hand-side. This implies that 

1

2

h
2

D








 = 

2

2

h
2

d








  and h1 = 2

2

h
D

d








, Thus, the pressure difference (P1 – P2) 

shall be h1mang +h2mang = 2

2

h
D

d








mang + h2mang = h2mang






















2

D

d
1 . 

 

6.4 Static Fluid 
 

Fluid is said to be static if there is no shearing force acting on it. Any force 

between the fluid and the boundary must be acting at right angle to the 

boundary. Figure 6.11 shows the condition for fluid being static. 

 

This definition is also true for curved surfaces as long as the force is acting 

perpendicular to the surface. In this case the force acting at any point is normal 

to the surface at that point as shown in Fig. 6.11. The definition is also true for 

any imaginary plane in a static fluid. 

 

For any particle of fluid at rest, the particle will be in equilibrium - the sum 

of the components of forces in any direction will be zero i.e. net force = 0. The 
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sum of the moments of forces on any particle about any point must also be zero. 

i.e. net torque = 0. 

 
Figure 6.11: An illustration to show static fluid 

 

Since at static condition, the force is acting perpendicular to the surface of 

contact, which can be different for different contact area, thus, it is convenient 

to use force per unit area, which is termed as pressure. 

 

6.4.1 Pascal's Law for Pressure at a Point 
 

Pascal’s law of pressure states that at a particular point P, pressure acts on it 

equal in all directions. Let’s take a point P in the fluid be denoted by a small 

element of fluid in the form of a triangular prism shown in Fig. 6.12. 

 

 
 

Figure 6.12: Pressure component acting on a point in the fluid 

 

The pressures are pressure px in the x direction, py in the y direction, and ps in 

the direction normal to the sloping face.  Since the net force is equal to zero at 

static condition, the net force acting on both x and y directions should be zero. 
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For force acting in x-direction, pxyz = psszsin  = pzsz
s

y




= pzyz. This 

result implies that px = ps. For force acting on y-direction, the force relationship 

is pszscos  + 
2

1
zxyg = pyzx = pszs

s

x



  + 
2

1
zxyg, where 

2

1
zxyg 

is the weight of prism. The pressure ps is equal to py since ps = py since 

2

1
zxyg is approximately equal to zero. Combining the result above, pressure 

acting on a point P is equal in all directions since px = py = ps. 

 

6.4.2 Variation of Pressure Vertically in Fluid under Gravity 
 

There is pressure variation when fluid under gravity, which shall mean that the 

pressure at different height is different. Let’s use Fig. 6.13 to derive the 

equation of pressure of different height of fluid under gravity. 
 

 
 

Figure 6.13: Pressure at different height in static fluid 

 

The force F1 acting upward at the bottom is F1 = p1A. The F2 acting down from 

the top is F2 = p2A. The weight of cylindrical volume of fluid is also acting 

downward, which is gA(z2- z1). At static equilibrium, the net force is equal to 

zero. Therefore F2 + gA(z2- z1) = F1, which shall mean 

 

 p2 + g (z2- z1) = p1 (6.5) 
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6.4.3 Equality of Pressure at Same Level in Static Fluid 
 

Pressure at the same level in static fluid is the same. Let’s use Fig. 6.14 to prove 

the point. 

 
Figure 6.14: Pressure at same level in static fluid 

 

The net horizontal force is equal to zero. This shall mean that p1A = p2A. This 

implies that pressure at same level is the same. This result is the same for any 

continuous fluid such as the case where two connected tanks, which appear not 

to have all directions connected. 

 

6.4.4 General Equation for Variation of Pressure in Static Fluid 

 

Based on the above two cases mentioned in Section 6.4.2 and 6.4.3, the 

variation of pressure in static fluid can be derived based the situation shown in 

Fig. 6.15. 

  
Figure 6.15: The variation of pressure in fluid 

 

The weight of the cylindrical fluid along center axis is gAscos . The force 

by pressure p1 perpendicular to area A is p1A and the force acting by pressure p2 

is p2 perpendicular to area A is p2A.  At static equilibrium, 



06 Fluid Mechanics 

 

- 114 - 

 gAscos  = p1A - p2A (6.6) 

 

where s = (z2 - z1)/cos . For the same level case,  = 90
0
, then gAscos  = 0,  

implying p1 = p2. For different level vertically,  = 0
0
, cos  = 1, gAscos  = 

gA(z2 – z1) implies that gAscos  = p1 =  g(z2 – z1) + p2, the different 

level case. 

 

Example 6.3 

Find the height of column of water exerted by pressure of 500x10
3
Nm

-2
 giving 

that the density of water is 1,000kgm
-3

. 

 

Solution 

The height of the column is h = p/(g) = 500x10
3
/(1000x9.8) = 50.95m. 

 

6.5 Fluid Dynamics 
 

There is motion in fluid, which shall mean the shearing force is not zero. The 

motion of fluid can be studied in the same way as the motion of solids using the 

fundamental laws of physics together with the physical properties of the fluid. 

In study of fluid dynamic, the term uniform, non-uniform, steady, and unsteady 

flows are used. Uniform flow shall mean the velocity is same at every point in 

the stream. Steady flow means the conditions such as pressure, velocity, and 

cross section area of flow may differ from point to point but do not change with 

time. Based on the definition, the flow of fluid can be classified into four 

categories, which are 

1. Steady uniform flow. Conditions such as velocity, pressure, and cross-section 

of flow do not change with time. An example is the flow of water in a pipe 

of constant diameter at constant velocity. 

2. Steady non-uniform flow. Conditions such as velocity, pressure, and cross 

section of flow change from point to point in the stream but do not change 

with time. An example is flow in a tapering pipe with constant velocity at the 

inlet - velocity will change as you move along the length of the pipe toward 

the exit. 

3. Unsteady uniform flow. At a given instant in time the conditions at every 

point are the same, but will change with time. An example is a pipe of 

constant diameter connected to a pump pumping at a constant rate, which is 

then switched off. 

4. Unsteady non-uniform flow. Every condition of the flow may change from 

point to point and with time at every point. For example waves in a channel. 
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In our study of fluid dynamic, we shall restrict ourselves for the steady uniform 

flow case. 

 

6.5.1 Equation of Flow Continuity 
 

Mass rate flow of the fluid is a measure of fluid out of the outlet per unit time. 

For example an empty bucket weighs 5.0kg. After 10 seconds of collecting 

water, the bucket weighs 9.5kg, the mass flow rate is 






 

10

55.9
 = 0.45kgs

-1
. 

 

Volume flow rate Q is defined as the volume fluid discharge per unit time 

or discharge rate. Using the example above, the volume flow rate shall be 

0.45/1,000 = 0.45x10
-3

ms
-1

. If the cross sectional area A of a pipe and the mean 

velocity um are known, then the volume rate flow Q is 

 

 Q = Au (6.7) 

 

The principle of conservation of mass shall be applied for non-compressible and 

compressible fluid. This shall mean the mass rate Q1 enter into tube is equal to 

mass rate Q2 out of the tube. i.e. Q1 = Q2. Applying this principle to the case of a 

streamline flow shown in Fig. 6.16, equation (6.8) is obtained 

 

 1A1u1 = 2A2u2 = constant (6.8) 

 

Equation (6.8) is also termed as continuity equation. For incompressible fluid, it 

has same density then 1 = 2 = . Equation (6.8) becomes A1u1 = A2u2. 

 

 
Figure 6.16: Streamline flow showing volume rate is same at entrance and outlet 
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Example 6.4 

An uncompressible fluid flows into pipe 1 and distributes via pipe 2 and pipe 3 

as shown in figure below. Pipe 1 has diameter 50mm and mean velocity 2.0m/s. 

Pipe 2 has diameter 40mm and it takes 30% of total discharge per sec. Pipe 3 

has diameter 60mm. What are the values of discharge and mean velocity for 

pipe 2 and pipe 3? 

 
 

Solution 

Using the conservation of mass, the discharge rate Q1 entering pipe 1 shall be 

equal to sum of mass rate in pipe 2 and pipe 3. i.e. Q1 = Q2 + Q3. The discharge 

rate of pipe 1 shall be 







 1

2

4

d
u  2

2

10x50 3
2













= 3.93x10
-3

m
3
/s. 

 

The discharge rate of pipe 2 shall be 1.18x10
-3

 m
3
/s and discharge rate of pipe 3 

shall be 2.75x10
-3

m
3
/s. 

 

The mean velocity of pipe 2 shall be 1.18x10
-3

/
 


















4

10x40
23

= 0.939m/s. 

The mean velocity of pipe 3 shall be 2.75x10
-3

/
 


















4

10x60
23

= 0.973m/s. 

 

6.5.2 Work Done and Energy 
 

From the law of conservation of energy, it states that sum of kinetic energy KE 

and gravitational potential energy PE is constant. i.e. KE + PE = constant. If the 

fluid drop is falling from rest at the height h above the ground, its initial KE is 

zero and its PE is equal to mgh. The KE and PE when it touches the ground is 

2mV
2

1
and zero respectively. Thus, by conversation of energy mgh = 2mV

2

1
. 

From Kinetic energy-work done theorem, KE net work done. This should 

mean that sum of the change of kinetic energy and net work done Wnet is a 
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constant. i.e. ∆KE + Wnet = constant. For the case of fluid, the net work done 

can be treated as volume multiplies by change of pressure ∆P, which is Wnet = 

V∆P. This shall mean 

 

 ∆P + ∆KE/Volume = constant (6.9) 

 

Equation (6.9) is known as Bernoulli’s principle, which states that, an increase 

of pressure in the flowing fluid always resulting in decreasing of speed of fluid 

and vice versa. The principle has been demonstrated in our daily activity like 

the shower curtain get suck inwards when the water is first turned-on. 

Squeezing the bulb of a perfume bottle creating high speed of the perfume fluid 

reducing the pressure of the air subsequently draws the fluid-up. The window of 

the house tends to explode during the hurricane because the high-speed 

hurricane creates low pressure surrounding the house. The high pressure in the 

house pushes the window outward. The foil of the aircraft wing lifts the aircraft 

because the high speed airflow on top of the wing. 

 

Let’s derive the equation for water jet as shown in Fig. 6.17 using equation 

(6.8). The change in kinetic energy is 

 

 2

1

2

2
2

1

2

1
uu  + z2g – z1g = 0 (6.10) 

 

 
 

Figure 6.17: Water jet 

 

The flow from reservoir as shown in Fig. 6.18, the initial kinetic energy is zero. 

Using the conversation energy, the final velocity of the water jet shall be 

 

 )zz(g2 212 u  (6.11) 
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Figure 6.18: Flow from a reservoir 

 

The examples considered above have condition of constant pressure with 

different velocity. Let’s consider the case where there is variation of pressure 

and constant velocity such as the case shown in Fig. 6.19. 

 
 

Figure 6.19: Fluid flow at different pressure 

 

Pressure at point P2 is equal to pressure at point P1 plus the pressure difference 

which is (z1 – z2)g. Therefore, the expression of pressure P2 is P2 = P1 + (z1 – 

z2)g. Rearrange this equation shall yield, 

 

 2
2

1
1 gz

P
gz

P






 (6.12) 

 

For the case where there is variation of pressure and velocity, then combining 

equation (6.10) and (6.12) would yield the Bernoulli’s equation (6.13). 
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 2

2

22
1

2

11 z
g2g

P
z

g2g

P







uu
 (6.13) 

 

6.6 Bernoulli’s Equation 
 

In this section, we shall begin with the derivation of Bernoulli’s equation. 

Subsequently, the application using the Bernoulli’s equation shall be discussed. 

The assumptions underlying the derivation of Bernoulli’s equation are steady 

flow, density is constant, friction losses are negligible, and the streamline single 

type, which mean constant velocity. 

 

In deriving the Bernoulli’s equation, the principle of conservation of 

energy shall be used. This shall mean that at a point in fluid, the sum of work 

done by pressure P, kinetic energy KE of the fluid, and the potential energy PE 

shall be constant. 

 

Let’s consider a small element of the fluid of weight mg and cross sectional 

area a flows from section AB to section A’B’ with velocity u and is situated at 

the height z from the reference line shown in Fig. 6.20. 

 

 
 

Figure 6.20: Derivation of Bernoulli’s equation 

 

The potential energy of the fluid element is mgz. The potential energy per unit 

weight shall be z, which is also named as potential head. 

 

The kinetic energy of the element is 2m
2

1
u . The kinetic energy per unit 

weight shall be 
g2

2u
, which is also named as velocity head. 
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The force at section AB shall be Pa. When the element of weight mg 

moves from section AB to A’B’, the volume that shall be 





m

g

mg
 and the 

distance traveled shall AA’ or BB’ which is equal to 
a

m


. 

 

The work done by the element of fluid moves from AB to A’B’ shall be the 

force multiplies by the distance AA’. This shall mean work done is equal to 

Pa
a

m


 = 



Pm
. The work done per unit weight shall be 

g

P


, which is also named 

as pressure head. 

 

From conservation of energy, Bernoulli’s equation shall be 

 

 
g

P


 + 

g2

2u
 + z = constant = H (6.14) 

 

where H is the total head. 

 

Example 6.5 

A fluid of constant density 960kgm
-3

 is flowing steadily through a tube as 

shown in the figure. The diameters at the section 1 and section 2 are d1 = 

100mm and d2 = 80mm respectively. The pressure gauge and velocity at section 

1 are 200x10
3
Nm

-2
 and 5.0ms

-1
 respectively. Determine the velocity and 

pressure gauge value at section 2. 

 
 

Solution 

Since the tube is horizontally placed z1= z2 and Bernoulli’s equation shall be 

g2g

P

g2g

P 2

22

2

11 uu






. To know the speed at section 2, the continuity shall be used 

to determine it, which is u1A1 = u2A2. This implies that 1

2

1

2
2

d

d
uu 








  = 
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5.0(80/100)
2
 = 3.2ms

-1
. The pressure at section 2 shall be 















22

P
P

2

2

2

11
2

uu
. 

This shall mean that the pressure P2 is 207.0x10
3
Nm

-2
. 

 

Let’s do an analysis for various types of Bernoulli’s heads by considering a 

reservoir that feeds water to the households through a pipe that has different 

diameter and rising over hill and going down the hill, and finally reaching the 

household level as shown in Fig. 6.21. The pressure at various point 1 to 4 has 

the relative magnitude order P4 > P2 > P3 > P1. 

 
Figure 6.21: Analysis of Bernoulli’s heads 

 

The analysis shall be based on conservation of energy whereby the total head H 

is a constant, which is also Bernoulli’s equation. At point 1, the total head H is 

consist of the potential head z1, since the gauge pressure is zero and the velocity 

of water on the surface of dam is zero because the movement of water is 

practical at still. 

 

If the tap at the household end is shut, then the velocity head at point 2, 3, 

and 4 shall be zero since the water in the pipe is in static condition. The total 

head H2 at point 2 shall be equal to the sum of potential head z2, pressure head 

g

P '

2


. i.e. H2 = z2 + 

g

P '

2


. The total head H3 at point 3 shall be H3 = z3 + 

g

P '

3


 and the 

total head at point 4 shall be H4 = z4 + 
g

P '

4


. By Bernoulli’s equation H1 = H2 = 

H3 = H4. 

 

If the tap is open at the household, then the velocity will not be zero. The 

magnitude of pressure at point 2, 3, and 4 shall be lower based Bernoulli’s 
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principle. The total head at point 2 shall be H2 = z2 + 
g

P

g2

2

2

2




u
, at point 3 shall be 

H3 = z3 + 
g

P

g2

3

2

3




u
, and at point 4 shall be H4 = z4 + 

g

P

g2

4

2

4




u
. 

 

Take note that according to continuity equation, velocity head should be 

equal if the diameter of the pipe is the same. The velocity head shall be smaller 

like the case at point 3 if the diameter of the pipe is large than that at other 

points. 

 

If there is friction, which true in real case, the total head H shall not be the 

same at the reservoir point 1 and household end point. The total head at 

household end shall be H4 = H1 – Hf, where Hf is the head due to friction. 

 

A number of applications of Bernoulli’s equation and continuity equation 

such as pitot tube, venturi meter, flow through orifice, and etc. shall be 

discussed here. 

 

6.6.1 Pitot Tube 
 

A pitot tube has a streamline flow into a blunt body as shown in Fig. 6.22. Point 

1 and point 2 has same level. This implies that the potential head of both points 

are the same. 

 

 
 

Figure 6.22: A pitot tube 
 

The velocity head at point 1 shall be 
g2

2

1u
, whilst the velocity head at point 2 is 

zero since the velocity at point 2 is zero. The pressure head at point 1 and 2 

shall be 
g

P1


 and 

g

P2


 respectively. From Bernoulli’s equation, this shall mean 

g2

2

1u
+

g

P1


= 

g

P2


. This implies that the pressure at point P2 is equal to P1 + 2

1
2

1
u . 
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Note that the increase of pressure to bring the fluid to rest is termed dynamic 

pressure. The increase of pressure is 2

1
2

1
u  is dynamic pressure. The total 

pressure P2 is termed stagnation pressure. 

 

6.6.2 Venturi Meter 
 

Venturi meter is a device used for measuring discharge in a pipe. It consists of a 

rapidly converging section, which increases the velocity of flow and hence 

reduces the pressure. It then returns to the original dimension of the pipe by a 

gently diverging 'diffuser' section. By measuring the pressure difference, the 

discharge rate can be calculated. This method is a particularly accurate for flow 

measurement because the energy loss is very small. The meter is shown in Fig. 

6.23. 

 
Figure 6.23: The Venturi meter 

 

Applying Bernoulli’s equation for point 1 and 2, it yields z1 + 
g

P

g2

1

2

1




u
 = z2 + 

g

P

g2

2

2

2




u
. Using continuity equation (6.8), the volume rate Q = u1A2 = u2A2. This 

shall mean u2 = 
2

11

A

Au
. Substituting this equation into the earlier equation shall 

yield 



























1

A

A

g2
zz

g

PP
2

2

1

2

1
21

21 u
. Rearrange this equation for velocity u1 
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shall be 

1
A

A

zz
g

PP
g2

2

2

1

21
21

1
























u . From manometer reading at datum line, P1 

+z1g = P2 +(z2 – h)g + hmang. This implies that 

















1hzz

g

PP man

21
21 . 

Substituting this equation into u1 velocity equation, 

1
A

A

1gh2

2

2

1

man

1
























u . Since 

the volume rate Q is equal to u1A1, therefore, Q = 

1
A

A

1gh2

A
2

2

1

man

1
























. If there is 

loss due to friction, then the coefficient of volume rate Cd can be added. The 

volume rate, which is also the discharge rate Q shall be 

 

 Q = 
2

2

2

1

man

21d
AA

1gh2

AAC
















 (6.15) 

 

Note equation (6.15) is independent of height z1 and z2. 

 

6.6.3 Flow through a Small Orifice 
 

Let’s now consider the flow through a small orifice, where the flow of fluid 

through a hole at the side closed to the base of the tank as shown in Fig. 6.24. 

 
Figure 6.24: Flow through a small orifice 
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The shape of the hole edge is sharp to minimize the frictional loss. The fluid 

contracts after the orifice to a minimum value such that it becomes parallel, 

which streamline flow. At this point, the velocity and pressure are uniform 

across the jet. This convergence is called the vena contracta meaning contracted 

vein. In order to accurate calculate the flow, is necessary to know the amount of 

contraction. 

 

Using Bernoulli’s equation, at point 1 the velocity u1 is zero, the pressure 

P1 is equal to zero, whist the potential head is equal to h1. 

 

At the orifice, the jet is open to the air. Thus, the pressure P2 is equal to 

zero. The potential head is equal to zero. Thus, equating the total head yields h 

= 
g2

2

2u
. This shall mean the velocity u2 at orifice is u2 = 

1gh2 . 

 

The volume discharge rate Q at point 2 shall be A2u2. To include the 

frictional force, the coefficient of velocity Cv shall be used such the uact = Cvu2. 

The cross sectional area Aact shall be CAAorifice after taking vena contraction into 

consideration, where CA is the coefficient of contraction. The actual volume rate 

Q shall then equal to 

 

 Q = Cvu2 CAAorifice (6.16) 

 

The time taken for the tank to drop from height h1 to h2 through the flow of fluid 

via the orifice can be calculated based on the continuity equation. 

 

The volume rate is equal to Q = AV, where A is the cross sectional area of 

the tank and V is the velocity of the flow. The velocity V is also equal to dh/dt. 

Thus, the volume rate is Q = 
2

1

h

h
dt

dh
A . Negative sign denotes that the level is 

decreasing. Substituting equation (6.16) into this equation, the time t taken for 

the height of tank to fall from h1 to h2 shall be 

 

 t =  
1

2

h

h orificeAv gh2

dh

ACC

A
 (6.17) 

 =  12

orificeAv

hh
g2ACC

A2
  
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6.6.4 Flow through Submerged Orifice 
 

If there are two tanks next to each other and are connected by an orifice as 

shown in Fig. 6.25, then the orifice is considered as submerged orifice. 

 

 
Figure 6.25: Two tanks joined by an orifice 

 

At point one, the total head is h1. At point 2, the total head is consist of pressure 

head 
g

P2


, where P2 is equal to gh2, and velocity head 

g2

2

2u
. This shall mean that 

the velocity u2 at point 2 is 

 

 )hh(g2 212 u  (6.18) 

 

The rate of discharge Q shall be Q = CAAorifice )hh(g2 21  . 

 

The time taken for two tanks of different height to be equalized shall be 

calculated based on continuity equation. The volume rate is Q = 

dt

dh
A

dt

dh
A 2

2
1

1  . Rewrite this equation as Qdt = -A1dh1 = A2dh2. Letting dh = 

dh2-dh1, -A1dh1 = A2d(h + h1), this implies that 
21

2
1

AA

dhA
dh


 . Since volume Qdt 

= -A1dh1 and discharge rate is Q = CAAorifice )hh(g2 21  , the volume is also 

equal to CAAoriffice )hh(g2 21  dt = 
21

21

AA

dhAA


. For equalizing the tank, the height 

shall be from (h1 – h2) to zero. The time taken for not equalizing the thank shall 

be 

 

 t = 
 

3

21

h

hh orificed21

21

gh2AC)AA(

dhAA
 (6.19) 
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 =  321

orificed21

21 hhh
g2AC)AA(

dhAA2



 

 

where h3 is any value greater than 0 and less than (h1– h2). For equalization the 

time taken shall be t =  21

orificed21

21 hh
g2AC)AA(

dhAA2



 by setting h3 equals to 

zero. 

 

6.6.5 Flow through Weir 
 

A notch, a device for measuring the discharge of fluid, is an opening in the side 

of a tank or reservoir, which extends above the surface of the liquid. A weir is a 

large version of a notch usually found in river. It can be a sharp crested type 

with a substantial width in the direction of flow, which used both as a flow 

measuring device and water level control. 

 

In deriving the equation for weir, the velocity of the fluid approaching the 

weir is said to be small so that kinetic energy is assumed to be zero. However, 

for fast moving river, it is not true. The velocity through any elemental strip of 

fluid is dependent on the depth below the free surface. The assumptions are 

acceptable for tank with notch or reservoir with weir. Consider a horizontal strip 

of width b and depth h below the free surface, as shown in the Fig. 6.26. 

 

 
 

Figure 6.26: Elemental strip of fluid through the notch 

 

The velocity u through the strip is gh2u and the discharge rate through the 

strip is dQ = uA = b gh2 dh. The discharge rate Q shall be the integration of the 

equation for height limit from 0 to H. Thus, 

 

 Q = 
H

0

dhgh2b  (6.20) 
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Equation (6.20) shall be the general equation for the flow rate or discharge rate 

via the notch or weir. 

 

For rectangular tank, the width of the strip shall be constant said B, the 

flow rate shall be equal to Q = 
H

0

dhgh2B = 2/3Hg2B
3

2
. 

 

For the “V” shaped notch, which is shown in Fig. 6.27, the width b of the 

strip is not a constant. 

 

 
 

Figure 6.27: “V” shaped notch 

 

From the figure, tan (/2) = 
)hH(

2/b


, implying that b is equal to b = 








 


2
tan)hh(2 . The discharge rate Q shall be Q =  







 


H

0

dhgh2
2

tan)hH(2 = 

2/5Hg2
2

tan
15

8







 
. 

 

6.7 The Momentum Equation and Its Applications 
 

As it has been mentioned earlier, the analysis of fluid motion is performed in the 

same way as in solid mechanics by using Newton's laws of motion with account 

for the special properties of fluids when in motion. 

 

In fluid mechanic, the mass of moving fluid is not clear like the case of 

solid. Thus, net force net Fnet = ma for Newton’s second law may not be suitable 

to describe the motion of fluid. Instead, the rate change of momentum equals to 

the resultant force acting on the fluid in the direction of force is a more 

appropriate way to describe the motion of fluid. 

 

A steady and non-uniform flow of fluid flowed in the same direction is 

shown in Fig. 6.28. The entrance inlet and exit have the parameters as shown in 
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the figure. In time t the volume of fluid that enters the entrance is u1A1t. The 

mass of fluid in this time interval is u1A11t. The momentum of fluid at this 

inlet shall be 2

1u A11t. Similarly, the momentum of fluid leaving the exit is 
2

2u A22t. From Newton’s second law, the net force Fnet is equal to 

 

 Fnet = 
t

tAtA 11

2

122

2

2



 uu
= Q(2u2- 1u1) (6.21) 

 

 
 

Figure 6.28: A steady and non-uniform one-direction flow of fluid 

For fluid that has uniform density , then 1 = 2. Equation (6.21) will also be 

equal to Fnet = 
t

tAtA 11

2

122

2

2



 uu
= 

dt

dm
(u2- u1). 

 

Let’s extend the analysis to the case where the direction of the flow is not 

the same for the entrance and exit points as shown in Fig. 6.29. 

 

 
Figure 6.29: A steady and non-uniform two directions flow of fluid 
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Let’s begin the analysis by resolving the force in x direction. The x-direction 

velocity component at entrance is u1cos 1, whilst at exit point is u2cos 2. The 

net force in x-direction shall be 

 

 Fnet-x = Q(u2cos 2- u1cos 1) (6.22) 

 

Similar analysis goes for the net force acting on y-direction is 

 

 Fnet-y = Q(u2sin 2- u1sin 1) (6.23) 

 

The resultant net force Fnet-resultant shall be equal to Fnet-resultant = 2

xnet

2

ynet FF   . The 

force at a bend is equal to – Fnet-resultant. The angle  that the force acts with 

respect to x-axis is  = tan
-1 















xnet

ynet

F

F

. 

 

From conservation of energy standpoint, the total force FTotal = Fnet-resultant of 

the fluid system is made of the force FR exerted by the fluid at the bend, the 

force exerted by weight of fluid FB, and the force exerted by the pressure 

outside the control volume FP, which is 

 

 FTotal = FR + FB + FP (6.23) 

 

6.7.1 Force around the Pipe Bend 
 

Let’s study the force acting on a bend as it is shown in Fig. 6.30, when fluid 

changes its direction of flow. If the bend is not fixed, eventually it breaks due to 

large force. Owing to this one need to know how much force a support or thrust 

block would withstand. 

 
Figure 6.30: Flow around a pipe bend of constant cross-section 
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Along the x-direction, the total force FT-x is FT-x = Q(u2cos - u1cos 0) = Q(u2 

cos - u1) and the force FT-y at y-direction shall be FT-y = Q(u2sin - u1sin 0) = 

Qu2sin . 

 

Along x-direction, the force due to pressure at different at inlet 1 and exit 2 

is Fp-x = A1P1cos 0 – A2P2cos  = A1P1 – A2P2cos  and along y-direction is Fp-y 

= A1P1sin 0 – A2p2sin  = - A2P2sin . 

 

There are no body forces in the x or y directions. The only body force is 

that exerted by gravity is acted perpendicular to the page. 

 

Based on the above results, the x-direction force acts the bend is FR-x = 

Q(u2cos  - u1) – (A1P1 – A2P2cos ), whilst the force acting in y-direction is 

FR-y = Qu2sin  + A2P2cos . 

 

The resultant force shall be FR = 2

yR

2

xR FF    and the force acting on the 

bend shall be – FR. The angle of acting shall be  = tan
-1



















xR

yR

F

F
. 

 

6.7.2 Force on a Pipe Nozzle 
 

Owing to the fluid is contracted at the nozzle; forces are induced in the nozzle. 

Anything holding the nozzle like a fireman must be strong enough to withstand 

these forces. Let’ analyze these forces from the Fig. 6.31. 

 
Figure 6.31: Force on pipe nozzle 
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The total force FT is acting along x-direction is equal to FT = FT-x = Q(u2- u1). 

After considering the continuity equation, the total force is FT = FT-x = 

Q
2
 










12 A

1

A

1
. 

 

The force due to pressure FP is P1A1 – P2A2. The opening of the nozzle is at 

atmospheric pressure. Thus, the gauge pressure is zero. The force due to 

pressure shall be P1A1. The pressure P1 can be calculated based on Bernoulli’s 

equation z1 + 
g

P

g2

1

2

1




u
 = z2 + 

g

P

g2

2

2

2




u
 for condition z1 = z2, P2 = 0. The pressure 

P1 shall be  2

1

2

21
2

P uu 


  = 












2

1

2

2

2

A

1

A

1

2

Q
. The force due pressure FP = FP-x = 

















2

a

2

2

1

2

A

1

A

1

2

AQ
. The force due to weight is zero because it is acting in y-

direction. The resultant for FR = FR-x shall be FR-x = 

Q
2
 










12 A

1

A

1


















2

a

2

2

1

2

A

1

A

1

2

AQ
. 

6.7.3 Impact of Fluid Jet on a Plane 
 

Consider the case where fluid is ejected horizontally on a vertical plane as 

shown in Fig, 6.32. 

 
Figure 6.32: Jet impact on vertical plane 
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The total force acting in x-direction is FT = FT-x = Q(u2x – u1) = - Qu1. The 

total force in y- direction FT-y = 0 since there are two streams of same velocity 

on opposite direction. 

 

The force due to pressure is zero since at point 1 and point 2 are at 

atmospheric pressure. 

 

The weight is considered negligible. Thus, it is zero. The resultant FR = FR-x 

is then equal to - Qu1. 

 

6.8 Real Fluid 
 

The flow of real fluids exhibits viscous effect due to shearing force that follows 

equation (6.8), 
dy

du
 . The flow of fluid can be classified into laminar and 

turbulent flow. In laminar flow, the motion of the particles of fluid flows orderly 

in straight lines parallel to the pipe wall. For turbulent flow, the flow of particles 

is not in straight line. In 1880, Osborne Reynolds did many experiments with 

the set-up shown in Fig. 6.33 to determine the type of flow. He found an 

expression named after Re = 


 du
, where u is the mean velocity, d is the 

diameter that determine the type of flow. 

 
Figure 6.33: Experiment of Osbourne Reynold 

 

He found that Reynolds number Re < 2000 the flow is laminar. Re number in 

between 2,000 and 4,000 is transitional flow, and Re > 4,000 is turbulent flow. 
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In the real fluid there is friction. Thus, the pressure upstream is usually 

higher than downstream even though it may be placed parallel as shown in Fig. 

6.34. If the pressure at the upstream end is P, and at the downstream end the 

pressure has fallen by P to (p - P), then the driving force due to pressure, 

which is F = Pressure x Area, can then be written as driving force is equal to 

pressure force at upstream minus pressure force at downstream. 

 
Figure 6.34: Pressure difference between upstream and downstream 

 

Thus, the force is PA = P
4

d 2

 . This force is balanced by the shearing force at 

the wall of the pipe, which is  L
2

d
2 = dL. P is also equal to P = hfg, 

where hf is the lost height due to friction. From the above equations, the 

shearing force shall be 
L4

Pd
 . Since the flow is laminar type, therefore, the 

shearing force can be generalized as equal to 
L2

Pr
  for any cylindrical flow of 

radius r as it is shown in Fig. 6.35. 

 
Figure 6.35: Cylindrical laminar flow of radius r 
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Shearing force 
L2

Pr
  is also equal to 

dr

du
 . Negative shall mean the 

reference is from the center of pipe instead of at the wall of the pipe. From the 

equation 
dr

d

L2

Pr u



 , the distribution of velocity of laminar flow across the 

pipe can be calculated by integrating for u = umax when r = 0 and u = 0 for r = R. 

This shall mean that  


uddr
L2

Pr
. The result of the integration shall be 






L4

Pr 2

u + C, where C = 




L4

PR 2

. Thus, the distribution of velocity of laminar 

flow across the pipe of radius R is 

 

 





L4

)rR(P 22

u  (6.25) 

 

The equation has the parabolic result, which is what have been shown in Fig. 

6.5. 

 

The mean velocity um is dr
L4

Pr
R

0

 


mu = 





L8

PR 2

. The flow rate Q shall be 

equal to 

 

 Q = Aum = 





L8

PR 4

=





L128

Pd 4

 (6.26) 

 

Equation (6.25) is also called Hagen-Poiseuille equation for laminar flow in a 

pipe. 

 

As it has been mentioned earlier, P is also equal to P = hfg, where hf is 

the loss of pressure head caused by friction, therefore the discharge rate is Q 

=





L128

dgh 4

f
 and the mean velocity um = 





L8

gRh 2

f
. 

 

Tutorials 
 

6.1. Explain why the viscosity of a liquid decreases while for a gas increases 

with a temperature rise. 
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6.2. The following is a table of measurement for a fluid at constant 

temperature. Determine the dynamic viscosity of the fluid. 

 

du/dy (s
-1

) 0.00  0.20 0.40 0.60 0.80 

 (N m
-2

) 0.00 0.01 1.90 3.10 4.00 

 

du/dy (s
-1

) 0.00  0.20 0.40 0.60 0.80 

 (N m
-2

) 0.00 0.01 1.90 3.10 4.00 

Gradient 0.00 0.05 4.75 5.17 5.00 

 

6.3. The velocity distribution of a viscous liquid (dynamic viscosity  = 

0.9Ns/m
2
) flowing over a fixed plate is given by u = 0.68y - y

2
 (u is 

velocity in m/s and y is the distance from the plate in m). What are the 

shear stresses at the plate surface and at y = 0.34m? 

 

6.4. Derive an expression for the total force acting on the wall of dam that has 

water height H and width W. 

 

6.5. Air is a compressible fluid and assuming that the pressure p is direction 

proportional to the density  of air. Derive an expression for pressure of 

air at altitude H above sea level. 

 

6.6. In a fluid the velocity measured at a distance of 75mm from the boundary 

is 1.125m/s. The fluid has absolute viscosity 0.048 Pa-s. What is the 

velocity gradient and shear stress at the boundary assuming a linear 

velocity distribution? 

 

6.7. A concrete dam has the cross-sectional profile and width b as shown in 

the figure. Calculate the magnitude, direction and position of action of the 

resultant force exerted by the water per unit width of dam? 
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6.8. A design for a dam has the cross-sectional profile composed of a vertical 

face with a circular curved section at the base as shown in figure. 

Calculate the resultant force and its direction of application per unit width 

of this dam. 

 
 

6.9. At the end of a channel is a sharp edged rectangular weir with a width of 

400mm and a coefficient of discharge of 0.65. The water is flowing at a 

depth 0.16m above the base of the weir. If this weir is replaced by a 90
o
 

V-notch weir with the same coefficient of discharge, what will be the 

necessary upstream depth of water to achieve the same discharge as the 

rectangular weir? 

 

6.10. A venturi meter with an entrance diameter of 0.3m and a throat diameter 

of 0.2m is used to measure the volume of gas flowing through a pipe. The 

discharge coefficient of the meter is 0.96. Assuming the specific weight 

of the gas to be constant at 19.62N/m
3
, calculate the volume flowing 

when the pressure difference between the entrance and the throat is 

measured as 0.06m on a water U-tube manometer. 

 

6.11. Water flows along a circular pipe and is turned vertically through 180° by 

a bend as shown in the figure. The rate of flow in the pipe is 20 litres/s, 

the pressure measured at the entrance to the bend is 120kN/m
2
 and the 

volume of fluid in the bend is 0.1m
3
. What is the magnitude and direction 

of the force exerted by the fluid on the bend? Ignore any friction losses. 
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