\ Chapter 1+2 \

‘ Mechanical properties of materials ‘

By
| Laith Batarseh |

3/28/2014

\ Mechanical properties of materials | ﬁ

_ Ny 08

QIf a body is subjected to external loads, internal loads represented as
distributed load will be generated due to the interrelation between the
material crystals (or particles). This type of force is resistance to the
effect of the external loading.

QThe internal resistance for external loads is called the strength of the
material and the distribute load is called stress.

QThe effects of external loads are not the stress but there is the strain
effect. When the material is subjected to external loads, it will be
deformed (i.e. change in its shape and/or size). The percentage of

deformation is called strain

s
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QTo understand the concept of stress, we can start with a random body

subjected to system of external loads as shown in fig.a.

weclion
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QOMake a section as shown in the fig.b.
as you can see, we can assume that the
stress is a distributed load. However, -
the direction of the stress is in every X " k‘;
way. This assumption is because the .
infinite number of crystals in the
material and the its random

distribution.

Mechanical properties of materials

QIif we take an infinitesimal area

2

g

element as shown with AF force acting
on it. The force element AF can be -
resolved to its rectangular components: \ ‘k“_‘
AF,, AF, and AF,.

Olater on we will discuss the

equilibrium condition.
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QApply other section as shown in the
figure. At this stage, we can divide the

internal forces into normal forces

(tensile) and tangential forces (shear). i 7 ._,,*'-;‘,
Qin engineering, we give the normal v 4],

i A
stress the symbol (o) and the tangential y
stress the symbol (t). Further on, we \\r “—
will call the normal stress as tensile or ;\

compression stress according to the
direction and the tangential stress the x y

shear stress.
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QA final section can be performed as

shown in the figure. A three

dimensional section is the best way to z )+~L,
examine the stress concept. s L
-
—
~

QThe normal stresses can be in the \\] v{/
three dimensions (x, y and z) and the \\.f g
tangential (or shear) stresses are A <"
distributed on the surface of the cubic // ::\‘
element shown in the figure (two l

components for each surface) - ~—,

Mechanical properties of materials ﬁ

Qin general, if the loads are in the three dimensions, the internal loads
will be: 3 normal components (o) and 6 tangential (t).
QTo obtain an average numerical value for these stresses, the limits of

the load over the area is taken. Mathematically:

7, 7. =lim —

M40 AA M0 A4 A0 A4

= Y r, =1 r_=lim —=

y AIA]I—I>10 AA M0 A4 Y M0 A4
T, = 7., =lim —=

T M0 AA A0 A4 M0 A4
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QThe stress analysis can be reduced to single force — single moment
system (as you learn in Static course) at the centroid of the section as
shown in the figure.

/‘ ,
\ \\I kel \\/

¥
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OResolve Fy and Mg, to its rectangular components:

Tz

3 ; / \|
.‘_/ \?‘ L \‘. Y T 3 QAs you can see there are two force components : normal and shear
QAlso you can see there are two moment components : torsion and
bending
Mechanical properties of materials \ m Mechanical properties of materials \
' _

S’

Qin general, the internal loads (or stresses) generated inside a under
external load body are:

»Normal stresses: tensile or compression

»Shear stresses

»Torsion stresses

»Bending stresses

Qin the next chapters, we will discuses each one alone (i.e. pure

stress).

QIf the external loads are coplaner , the internal stresses generated

will be: normal, shear and bending as shown in the figure

Nerml
Force
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EXAMPLE [1.1

Determine the resultant internal loadings acting on the cross section
at € of the cantilevered beam shown in Fig. 1~4a.

N

‘[TH T,

SOLUTION

Support Reactions. The support reactions at A do not have to be
determined if scgment CB is considered.

Froa-Body Diagram. The free-body dingram of scgment CBis shown
in Fig. 1-4b. [t is important to keep the distributed loading on the .
scgment until after the scction is made. Only then should this loading

be replaced by a single resultant force. Notice that the intensity of the Ne
distributed loading at € is found by proportion, i.e., from Fig. 1-4a, vd_,

w/6m = (220N/m)/9m, w = 18 N/m. The magnitude of the dim A
resultant of the distributed load is equal to the arca under the ®)

loading curve (triangle) and acts through the centroid of this area.

Thus, F = 4{ 180 N/m)(6m) = 540N, which acts (6 m) = 2 m from

€ as shown in Fig. 1-4.

Copyiight © 2011 Pearson Education, Inc. publishing as Prontice Hall

EXAMPLE |1.1 CONTINUED

Equations of Equilibrium. Applying the equations of equil

LEIF =0 SNe =i
Ne=0 Ans.
+12F,=0; Ve - S40N =0
Ve = 540N Ans
(+IMc =0 Mc ~ 540 N(2m)
M = ~1080N-m Ans.

NOTE: The negative sign indicates that Me acts in the opposite
direction 1o that shown on the free-hody diagram. Try solving this
problem using segment AC, by first obtaining the support reactions at
A, which are given in Fig. 1-4c.

Copytight © 2011 Pearson Education, Inc. publishing as Prentice Hall

EXAMPLE |1

Determine the resultant internal loadings acting on the cross section at
C of the machine shaft shown in Fig. 1-5a. The shaft is supported by
journal bearings at A and B, which only exert vertical forces on the shaft.

25N (800 N /m)(0.150 m) = 120N
800N /m =3 | 25N
rtns = 1‘
|

0275 m

0.125m 0100 m'

®)
Fig.1-5

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

EXAMPLE |1.2 CONTINUED
SOLUTION
We will solve this problem using segment AC of the shaft
Support Reactions. The free-body diagram of the entire shaft is
shown in Fig. 1-5b. Since segment AC is io be considered, only the
reaction ai A has to be deicrmined. Why?

L+ EMp = 0 ~A,(0.400 m) + 120 N(0.125 m) - 225 N(0.100 m) = 0

Ay = ~1BTSN
1875N o The negative sign indicates that A, acts in the opposite sense to that
‘i_‘ shown on the frec-body diagram.

Free-Body Diagram. The frec-body diagram of scgment AC is
shown in Fig. 1-5¢.

Equations of Equilibrium.

LIF, =0 Ne Ans
© +1ZF, =0 ~1875N - 40N - V¢ = 0
Ve=-S88N Ans
(+XMc =0 Mc + 40 N(025 m) + 1875 N(0250 m) = 0
Mg = —569N-m Ans.

NOTE: ‘The negative signs for Vi and M indicate they act in the
opposiic directions on the free-body dingram. As an exercise,
cakulate the reaction at £ and try to obtain the same results using
segment CBD of the shaft.

Copynght © 2011 Pearson Educalion, Inc. publishing as Prentice Hall

AMPLE 1.3

The 500-kg engine is suspended from the crane boom in Fig. 1-6a.
Determine the resultant internal loadings acting on the cross section_
of the boom at point E.

15m
SOLUTION

Support Reactions. We will consider segment AE of the boom so
we must first determine the pin reactions at A, Notice that member
CD i a two-foree member. The free-body diagram of the boom is
shown in Fig. 1-6b. Applying the equations of equilibrium,

Fep(§)(2m) - [500(9.81) N|(3m) = 0

Fep=1226825N

A, - (122625 N)(

A, =9BION

+ (122625 N)(_;') ~ 500(981)N = 0

=M55N

Capyright © 2011 Pearsan Education, . publishing as Prentice Hal

EXAMPLE | 1.3 CONTINUED

Free-Body Diagram. The free-body diagram of segment AE is
shown in Fig. 1-6c.
Equations of Equilibrium.

HEF, =0 Np+9%I0N=0

Ng= -9810N = -9.81 kN Ans. ©
Fig. 1-6
+1ZF, =0; -Vg-U4S2SN=0
Vg=-24525 N = -245kN Ans.

L+EMg=0; Mg+ (24525 N)(1m) =0

Mg = -24525N-m = =245 kN'm Ans.

Copyright © 2011 Pearsan Education, Inc. publishing as Prentice Hal
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EXAMPLE |1

Determine the resultan
al G of the beam shot

internal loadings acting on the cross section
n Fig. 1-7a. Each joint is pin connected.

B 7

ic
an

L6 mya00inm) = 901

(a) L]

Fig. 1-7

‘Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

EXAMPLE |1.4 CONTINUED

SOLUTION
Support Reactions. Here we will consider segment AG. The
ﬁh—" S0 frec-body diagram of the entire structurc is shown in Fig. 1-7b. Verify

the calculated reactions at £ and C. In particular, note that BC is a
twa-farce member sinee only two forces act on it. For this reason the
Fu=TIOb o Lo force at C must act along BC, which is horizontal as shown.
Since HA and BD are also two-force members, the free-body
diagram of joint B is shown in Fig. 1-7c. Again, verify the magnitudes
of forces Fp4 and Fgp.

()

Free-Body Diagram.
diagram of segment A

Using the result for Fgy. the frec-body
is shown in Fig. 1-7d.

1500 71501

. No Equations of Equilibrium.
"
ey HIF,=0; 7750(3) + Ng=0 Ng= —6201b Ans,
& +1SF, =0 =15001b + T7501b(E) = Ve = 0

Vg=31501b Ans.

(+EMg = 00 Mg~ (TIS0Ib)()(2 fr) + 1500 b(2 ) = O

Mg = 6300 Ib- ft Ans.

Copyright © 2011 Pearson Educaton, Inc. publishing as Prentice Hal

EXAMPLE |1.5

Determine the resultant internal loadings acting on the cross section
at B of the pipe shown in Fig. 1-8a. The pipe has a mass of 2 kg/m and
is subjected to both a vertical force of 50 N and a couple moment of
70N -m at its end A. It is fixed to the wall at C.

SOLUTION

The problem can be solved by considering segment AB,so we do not
need to caleulate the support reactions at C.

Free-Body Diagram. The x, v, 7 axcs arc cstablished at B and the
free-body diagram of scgment AR is shown in Fig. 1-8b. The resultant
force and moment components at the section are assumed to act in
the positive coordinate directions and to pass through the centroid of
the cross-sectional area at B. The weight of each segment of pipe is
caleulated as follows:

Wgp = (2 kg/m)(0.5 m)(9.81 N/kg) = 9.81N
Wap = (2kg/m)(1.25 m)(9.81 N/kg) = 24.525N
These forces act through the center of gravity of each segment.

Copyright & 2011 Pearson Educalion, Inc. publishing as Prentice Hall

EXAMPLE | 1.5 CONTINUED

Equations of Equilibrium. Applying the six scalar cquations of

equilibrium, we haves

IF =0 (Fa)e =0 Ans

IF,=0; (Fg), = 0 Ans. z

EF; =0  (Fp); — 981N - 24525N - 50N =0 $0

(Fpg), = 843N Ans. o M o n
E(Mg), =0 (Mg), + TON-m — 50N (0.5m) ol doosm
24525N (0.5m) — 981N (025 m) = 0 (My) 05m
(Mg), = ~303N-m Ans Faloyr .
E(Mg), = 0 (Mg), + 24525 N (0625 m) + SON (1.25m) = 0 /‘““ 0 m Ny
(Mg), = ~TT8N-m Ans " sl
E(Mg), = 0; (Mp); =0 Ans m/‘ rnid
o
NOTE: What do the negative signs for (M), and (M), indicate?
Note that the normal force N = (Fp), = 0. whereas the shear force ®)
Ro oAl b

is Vg = V(0 + (343)" = 843N, Also, the torsional moment is Fig. 18
Ty = (Mg), BN'm and the bending moment is Mg =

VE03) + (0F = 303N-m.

*The magnitude of each moment about an axis s equal o the magnitude of cach
force times the perpendicular distance from the axis 10 the line of action of the: force.
The direction of each moment is determined using the right-hand rule, with positive
moments (thumb) directed along the positive coordinate axes.

Capyright © 2011 Pearson Educaion, Inc. publishing as Prentice Hall
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QIf we desire to find average stress (normal or shear), we reduce the

limits presented previously as shown below

Qin general: average stress = force / area: 0=P/A and t=V/A

EXAMPLE [1.6

The bar in Fig. 1-16a has a constant width of 35 mm and a thickness
of 10 mm. Determine the maximum average normal stress in the bar
when it s subjected to the loading shaw
B _okN C 4kN
N A ) 2 2kN
— - —
A A
S mm AN
@
12— — Fyp - 124N
9kN
Ll
12 kN i — P = kN
GkN
Pep = 22 kN i 2k
®
)
w0
g=—
(e}
[
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EXAMPLE | 1.6 CONTINUED

SOLUTION
Internal Loading. By inspection, the internal axial forces in regions
AB, BC,and CD are all yet have different i Using

the method of sections, these loadings are determined in Fig. 1-16:
and the normal force diagram which represents these results graphically
is shown in Fig. 1-16c. The largest loading is in region BC, where
Pgc = 3 kN. Since the cross-sectional area of the bar is consiant, the
largest average normal stress also occurs within this region of the bar

Average Normal Stress.  Applying Eq. 1-6, we have

10man,

Pac ___ 3(0)N
A 7 (0,035 m)(0.010 m)

o = =857MPa  Anms.

F 0EN

35 e — Cas7 upa NOTE: Thes nllc_ssdlsl!ltv\llmnwlmg on an arbitrary cross section of
l‘“ the b... wil 2 1-16d Gmplma]ly the volune

1o

{or “block™)
Fig. 1-16 the load of 30 kN that is, 3

e c&smm(u mm)(lnmm}

Copymght © 20%1 Pearson Ecsson, . publaning 3 Prentcs Hat

EXAMPLE

The 80-kg lamp is supported by two rods AB and BC as shown in
Fig. 1-17a. If AB has a diameter of 10 mm and BC has a diameter of
8 mm, determine the average normal stress in cach rod

B{O81) = 848N
(b}

Fig. 1-17

‘Copyeght £:2011 Faarson Edusation, k. publsrng 2s Prendcs Hal

EXAMPLE |1
SOLUTION
Internal Loading. We must first determine the a force in each

1od. A free-body diagram of the lamp is shown in Fig. 1-17h. Applying
the equations of force cquilibrium,

CONTINUED

BIF, =0 Fpe($) — Fpucos 607
+1XF, =0, Fgel}) + Fpysin60° - 7848N =0
Fpe = 352N,  Fpy = 6324N

By Newton's third law of action, equal but opposite reaction, these

forces subject the rods ta tension throughout their length.

Average Mormal Stress. Applying Eq. 1-6,

.05 MPa
= 786 MPa Ans s05MPa

F, 632.4N
orga =A== _ 805 MPa Ans
Ags (0.005m)

NOTE: The average normal stress distribution acting over a cross
section of rod AB is shown 1-17¢, and at a point on this cross 6324N
scction, an element of material is stressed as shown in Fig. 1-17d. id) (]

Copyeght © 2011 Peavson Eucasan, . publaring 35 Presscs Hat

The casting sho Fig. 1-18a is made of steel having a specific
of y,, = 490 Ib/ft’. Determine the average compressive stress
acting at points A and B.

Wa

-

0754

2751

936 psi
() )

()

Fig. 1-18
Copyrgh © 2011 Foarsan Eucaion nc. publssing as Freniica Hal

EXAMPLE |1.8 CONTINUED
SOLUTION
Internal Loading. A free-body diagram of the top segment of the
casting where the section passes through points A and H is shown in
Fig. 1-18b. The weight of this segment is determined from Wy, = 7,,Vic.
Thus the internal axial force P at the section is

+1EF =0 P-W,=0
P — (4901b/6%)(2.75 f1)[=(0.75 11)'] = ©
P =23811b
Average C Strass. The cross-sectional area at the sec-
tion is A = 7(0.75 )%, and so the average compressive stress becomes
P 28l
e 1347.5 Ib/ft®
@ = 1347.5 Ib/f% (1 #£3/144 in®) = 9.36 psi Ans,

NOTE: The stress shown on the volume element of material in
Fig. 1-18¢ is representative of the conditions at either point A or 8.
Natice that this stress acts upward on the bottom or shaded face of the
element since this face forms part of the bottom surface area of the
section, and on this surface, the resultant internal force P is pushing
upward.

Copymght © 2011 Peavson Esucason, . publaring 35 Presscs Hat

MIPLE |1.9

Member AC shown in Fig. 1-19a is subjected to a vertical force of
3 kN. Determine the position x of this force so that the average
compressive stress at the smooth support C is equal to the average
tensile stress in the tie rod Af. The rod has a cross-sectional area of
400 mm? and the contact area at C is 650 mm?.

Fig. 1-19
Copyrgh © 2011 Foarsan Eucaion, nc.publasing as Frenice Hal
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APLE |1
SOLUTION
Internal Loading. The forces at A and C can be related by considering
the free-body diagram for member AC, Fig. 1-19h, There are three
unknowns, namely, Fap. Fe. and x. To solve this problem we will
work in units of newtons and millimeters.

Determine the average shear stress in the 20-mm-diameter
pin at A and the 30-mm-diameter pin at B that support the
beam in Fig. 1-22a

+1ZF, = 0; Fan+ Fc = 3000N =0 m
L+HEM =00 3000 N(x) + F(200mm) =0 @) FNITON
‘ ‘ : Internal Loadings. The forces on the pins can be oby %
Average Normal Stress. A nceessary third equation can be written considering the equilibrium of the beam, Fig. 1-22b |- 2m -l am -l
that requires the tensile stress in the bar AB and the compressive
a -, " 4
stress at Cto be equivalent,ic., (FEM, =0 F,(‘){b m)-30kN(2m)=0 Fp=125kN i
o = Fag :
400 SIF, =0 (125 m(%) - A, =0 A, =750kN
Fo = 1625F 7
Substituting this into Eq. 1, solving for F 4y, then solving for F, we 0 A+ (125 lNJ(4) _30KN =0
obtain 5
Fag=1143N A, =20 kN
Fe = 185TN -
The position of the applied load is determined from Eq.2, Thus, the resullant force acting on pin A is
x = 124mm Ans, Fa= VAT + A7 = V(750kN) + (20kN)? = 2136 kN ®
NOTE: 0 < x < 200 mm, as required. [ ———

Copymg © 201 Pearson Exucason, . publaring 3 Prenscs Hat

= APLE |1.10 CONTINUED
The pin at A is supported by two fixed “leav
diagram of the center segment of the pin shown in Fi
sheasing susfaces between the beam and cach lcal. The fores of the 1f the wood joint in Fig. 1-23a has a width of 150 mm. determine the
beam (2 ting on the pin is therefore supported by shea 5 el x 4
foice 1t of these surfaces. This case is called double shear. Thus, HySeags Shest Mo crevsioneil alng heat planse ek ad OF Fe
cach plane. represent the state of stress on an element of the material.
F, 21.36
v, =Ta 2N _ g sen
In Fig. 1 note that pin A is subjected to single shear, which occurs - ¥
on the section between the cable and beam, Fig. 1-22d. For this pin 7"‘—_ .
segment, 5 S
S — GEN
Vg = Fg = 125kN jor
Avarage Shear Stress.
b)
v, 1068(10°)N
’-"‘ - d = 340 MPa Ans.
A 2
J(un: m) ()
vy 12510°)N Fig. 1-23
mrner s - = 177 MPa Ans o bt b iy P
(003 m)?
4
P ————————
33 3

EXAMPLE [1.11 CONTINUED
AMPLE [1.12

SOLUTION
Internal Loadings. Referring 0 the free-body diagram of the The inclined member in Fig. 1-24a is subjected to a compressive force
member, Fig. 1-23b, of 600 Ib. Determine the average compressive stress along the smooth
- arcas of contact defined by AB and BC. and the average shear stress
HIF =0 6KN-F-F=0 F=3kN along the horizontal plane defined by DB.

across shear planes a-a

o

N isider the of
and b-b, shown in Figs. 1-23¢ and 1-23d.

KN HIF, =0 V,-3kN=0 V,=3kN
+3F,

0. AN =V, =0 V,=3kN

Average Shear Stress.

{e)
i =t Ll 200 kP: A
S M Y I Ty R i
— 3kN s
— q L5in
| v 3(10°) N
e B - TN o 6D kD Ans, (2 Fig. 1-24
e _—_— (T = 4= {0135 m)(0.05 m) " "
[ The state of stress on elements located on sections a-a and b-b is

shown in Figs. 1-23c and 1-23d. respe

ely.

R TN ————

[T P —
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12 CON

EXAMPLE JUED
SOLUTION
Internal Loadi
is shown in Fi
conlact are

HEF, =0 Fap— 600I6(3) =0 Fap=3601b

gs. The free-body diagram of the inclined member
. 1-24b. The compressive forces acting on the areas of

+1ZF, = 0; Fue = 6001b() =0 Fge = 4801b
Also, from the free-body diagram of the top segment ABD of the
bottom member, Fig. 1-24c, the shear force acting on the sectioned
horizontal plane DB is
LIF, =0; V = 360 Ib
Average Stress. The average compressive siresses along the
horizontal and vertical planes of the inclined member are

J ) 1k

s 3
Ty = = = 240 psi Ans
4B A (Lin)(15in) :
Fie 480 Ib

« 160 psi Ans.
TBC " Ape | (Zin)(15in.) = :

These stress distributions are shown in Fig. 1-24d.

EXAMPLE |1.12 CONTINUED

The average shear stress acting on the horizontal plane defined by
DBis
360 Ib o
Tug = —— = 80 psi Ans.
n)(15in.)
This stress is shown uniformly distributed over the sectioned area in
Fig. 1-2de.

37
Mechanical properties of materials
3
control arm is subjected to the loading shown in Fig. 1-26a.
Determine 1o th Lin. the required diameter of the steel pin
QFactor of safety is a ratio between the failure load over the allowable at C if the allowable shear stress for the steel is Ty = 8 ksi
stress. i 2 o
QThe allowable stress is the stress theta you can not exceed through w "'|
the design process. r‘ Sin.
$in
QBecause stress depends on load and area and the load is something
o
enforced on us the area is the variable that we can use to design a \\é».jz“ Fn T
member can handle the applied load. Mathematically: l in. “\,\” i’ Skip
kip !
{a) Fig. 1-26
F S _ FF‘“[ P V GG F001 Pearan B T pSRNG  Tere
F normal =
Allow
o O atiow Tattow
a0

13 CONTINUED

SOLUTION
Internal Shear Force. A free-body diagram of the arm is shown in
Fig. 1-26b. For equilibrium we have

[+ZMc =0:  Fap(8in) - 3kip (3in.) — Skip ($)(5in) = 0
Fap=3kip
HEF, =0 3kip = C, + Skip(§) =0 C, = 1kip
+15F, =0 C, -3kip-5kip(i) =0 €, =6kip p
The pin at € resisls the resultant force al €, which is
Fe = V{1kip)® + (6 kip)® = 6.082 kip ?{4’\\;.;‘,‘.

f 3041 kip
ch supporting

Since the pin is subjected to double shear, a shear for
ower ils cross-sectional area between the arm and e

af for the pin. Fig. 1-26¢.

Required Area. We have

0
LD _ ) 3003 in?

i 2
Kip/in
-(’f) = 03802 in?
d = 06%in

Use a pin having a diameter of
Ans

d=1in
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The suspender rod is supported at its end by a fixed-connected circular
disk as shown in Fig. 1-27a. If the rod passes through a 40-mm-diameter
hole, determine the minimum required diameter of the rod and
the minimum thickness of the disk needed to ﬂmr\s\rl the 20-kN load.
The allowable normal stress for the rod is @, = 60 MPa, and the
allowable shear stress for the disk is T, = 35 3pa,

A0 mn ' — o mm

EXAMPLE |1.14 CONTINUED

SOLUTION
Diameter of Rod. By inspection, the axial force in the rod is 20 kN,
Thus the required cross-sectional area of the rod is

7w WO)N

4 HO(107) N/n

d = 00206 m = 20.6 mm Ans

Thickness of Disk. As shown on the free-body diagram in
Fig. 1-27b, the material at the sectioned area of the disk must resist
shear stress to prevent movement of the disk through the hole. If this
s assumed 1o be uniformly distributed
nce V' = 20 kN, we have

shear stres:
area, thel

v i (0N
T 02 m)(1) = S0 N

1 =455(107) m = 4.55 mm Ans

eI Tp———————

EXAMPLE |1.15

The shaft shown in Fig. 1-28a is supported by t at C, which is
attached to the shaft and located on the right side of the bearing at B.
Determine the largest value of P for the axial force: E and F so

that the bearing stress on the collar does not exceed an allowable
stress of (o) = 75 MPa and the average normal stress in the shaft
does not exceed an allowable stress of () = 55 MPa.

LT -

4 E
:vq—=‘#ﬂ'mm :,,-_,:;;‘,‘_:‘_.”.
F ol E ! Sl

LE |1.15 CONTINUED

SOLUTION
To solve the problem we will determine P for each possible failure
condition. Then we will choose the smallest value, Why

Normal Stress. Using the method of sections, the axial load within
jon FE of the shaft is 2P, whereas the largest axial force, 3P, occurs
within region EC, Fig, 1-28b. The variation of the intemal loading is
y shown on the normal-for nce the cross-
mal area of nm cnun: sha s <ummm [

Bearing Stress.  As shown on the free-body diagram in Fig, 128, i

& L the collar at € must res 2 c
Axial . area of A = [m{004 m)* — (0.03m)| o)
Foree B 3
A=—— 2199(107) m* = =
Faow 75(10°) N/m?
% P =550kN
Position By comparison, the largest load that can be applied to the shaft is
© P = SLEKN. since any load larger than this will cause the allowable
L normal stress in the shaft 1o be exceeded.
CpRpLRART] e i Pt Pt NOTE: Here we have not considered a possible shear failure of the
collar as in Example 1.14.
[ e ————————
a5 46
. Tmugm bar AB shown in Fig. 1-2a is supported by a st foy mul\kﬂucxm’wi"( d Fy interms of the applicd \mmimenuw
1 ing  diameter of 20 mm and an aluminum block having a cross- 1 | +EMg =0 P{125m) — Fuc{2m) = 0 m
&y «.\:1 I area of 1800 mm’. The 18-mm-diameter pins at A and C are B
subjected to single shear.1f the failure stress for the steel and aluminum 2 e -] \+EM, = Fyp(2m) = P(075m) = 0 2
5 (oot = 680 MPa o s e 'L We will now determine each value of P that creates the allowable
f 8 failure sh & ’ stress in the rod. block. and pins. respectively.
L075me Aluminm load P that can be applied to the bar. Apply a fac ) Rod AC. This requires
F 2m J SOLUTION Fig. 1-29 Fac = (0 )uion( Aac) = 340(10°) N/m? [(0.01 m)?] = 1068 kN
® Using Eqs. 1-9 and 1-10, the allowable stresses are Using Eq.1
(ou)a _ 680 MPa h _ (1068kN)2m) _
oy = et = ———— = 340 MPs = ]
(s oo = 5 MPa T =171kN
(Zuda _ 70 MPa Block B. In case,

(Tu)usow = 5. - 1 = 35MPa

= 450 MPa

_ 900 MPa
2

CoryTa 0 911 s et bl o Pt ok

Fy = (o) aiowAg = 35(10°) N/m? [1800 mm? (107%) m?/mm?] = 63.0 kN

Using Eq.2,

P i
SOV ——
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Mechanical properties of materials

QStrain is the ratio between the change in the dimension (normal or
1.16 CONTINUED

shear) and the original dimension.
PinAorC. Due o single shear,
Fac = V = 7y A = 450(10°) N/m? [m(0.009 m))] = 114.5 kN Qis the body is subjected to pure normal load, the strain (g) is
Fow Bl 1145KN (2 m) calculated as L-L,
- - - 183kN -
1.25m L
By comparison, as P reaches its smaflest value (168 kKN), the allowable ©
normal stress will first be developed in the aluminum block, Hence . . . L
i s QOWhere L is the instantaneous length and Lo is the initial length
eriahs ' Poatostiicclicy o pibRNgin PSR Qif the body was under pure shear,

the shear strain (y) is the found as

z .
Ywy=—=— lim &
2 BoAalongn
C—>Aalongt

\ Mechanical properties of materials |

EXAMPLE |2.1

d shown in Fig. 2-4 is subjected to an increase of

h creates a normal strain in the rod of
neters. Determine (a) the
he temperature increase

Qin most of engineering examples, the strain is in two dimensional

(coplanar forces system) and so € is found using the previous equation and (b) the average normal strain in the rod,
and y is calculated using the geometry of the problem. 1
Qe is unit less however in many references it is given mm/mm or m/m

or it is represented as percentage (%)

He=r
Qin the next chapter we are going to study the relation between
stress — strain and the classification of materials according to
something called stress — strain diagram. For this moment, the stress is :»:7
P/A or V/A and the strain is € =(L-Lo)/Lo and y is found from the P P RN e e

geometry of the problem

QSee the next examples

XAMPLE | 2.1 CONTINUI

SOLUTION

Part (a). Since the normal strain is reported at each point along the
rod, a differential segment dz. position z, Fig. 24, has a

deformed length that can be d 1:that is, EXAMELE

determined from Eq. 2
ds =dz + e dz Wi

dz' =1 + 40(10

force P is applied ta the

lever arm ABC in Fi
n A through an ang
strain developed in wire BD). g

sunterclockwise abo

Determine the norms

The sum of these segments along the axis yields the deformed length
of the rod, i.c SOLUTION |

Geometry. The orienta
point A is shawn in Fig. 2

of the lever arm after it rotates about
b. From the geometry of this figure.

(L]
@ = tan ‘(‘ "“") = 531301

300 mm

Then ®
The displacement of the end of the rod is therefore
=00 — o + 005" = 9° — 53.1301° + 0.05° =

Ag=020230m — 0.2m = 000239 m = 239 mm |  Ans

Part (b). The ¢ normal strain in the rod is determined from For triangle ABD the Pythagorean theorem gives
g, 2-1, which assumes that the rod or “line segment” has an original e
h of 200 mm and a change in length of 2.39 mm. Hence Lap = V(300 mm)* + (400 mm)* = 500 mm
As' — As  239mm gt 301 Pessen Bimsion. e ubsing ou oo ol
. = 0.0119 mm/mm Ans.
As 200 mm
3
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EXAMPLE |2.2 CONTINUED

EXAMPLE | 2.2 CONTINUED

ng this result and applying the law of cosines to triangle AR D, - S0 mm SOLUTION "
e fhe strain is s

S this same result can be obtained by approximating
- VIE A - the elongation of wire .wn as ALgp, shown in Fig. 2-5b. Here,
Lyp = VLap + Lag — 2Lap)(Lag)cos s g . v

= V(500 mm)® + (400 mm)? — 2(500 mm)(400 mm)cos 36.92° 0.05°

= 3003491 mm Algp = 60Lap = K s )(rrmnl]][vﬁll mm) = 0.3491 mm
Normal Strain. Therefore.

¢
AL 0.3491 mm
Lgp — Lgp _ 3003491 mm — 300 mm -k, = 000116 mm/i A

- . = 0.00116 / 5. €BD mm/mm Ans.

0 Iz 300 mm LU Cn Ein et o Lan 300 m

ot 307 Pearen Eiheaton i rbiing s P a1
L ———

AMPLE |2.3 CONTINUED

the plate is deformed into the dashed shape shown SOLUTION
e (a) the average normal sirain along the side ine A8, coincide ’ e Y I aliy
At ol it ol Part(a). Line A#.coincident with the y axis, becomes line AB' after

250 mm deformation, as shown in Fig. 2-6b. The length of AB' is
xandy axes i

AB = V(250 mm — 2mm)" +

mm)® = 248018 mm

- The average normal strain for AR is therefore
=‘mw (eahg = AB' — AB _ 248018 mm — 250 mm
& ¥ ARy AB 250 mm

,,,‘.,,. = ~7.93(10"") mm/mm Ans.
'ﬂlnﬂn "":"\,‘.”Lf e The negative sign indicates the strain causes a contraction of AB.
A T F
ol ,I..... ¥

Part (b).  As noted in Fig. 2-6c, the once %° angle BAC between the
Al 300 mn —1 < -\du of the plat to # due to the displacement of B 10
@ . then 7, is the angle shown in the figure

T'hm

Fig.2-6 =
T — e
250 mm —

L e ——

) = 00121 rad Ans.

EXAMPLE |2.4

The plate shown in Fig. 2-7a is fixed connecied along AB and held in
the horizontal guides at its top and botiom. AD and BC. If its right
side €D is given a uniform horizontal displacement of 2 mm.
determine (a) the average normal strain along the diagonal AC, and

EXAMPLE |2.4 CONT! ED
Part (b). To find the shear strain at £ rel
is first necessary to find the angle 8 a

tive to
ter deformation,

have
(b) the shear strain at E relative to the x, y axes.
(n') 76 mm
tan| — | = -
2 75 mm
SOLUTION .
Part (a). When the plate is deformed. the diagonal AC becomes FoTe0 man—1F-2 i § = 90750" = (_\m )(-)HJSU ) = 1.58404 rad
AC’, Fig. 2-7h. The length of diagonals AC and AC” can be found ()
SR ® luape: SEh Michicro e ha sy Applying Eq. 2-3, the shear strain at E s therefore
7 26 mm
AC = V{0.150m) + (0.150m) = 0.21213m

Yay = 1.58404 rad = —0.0132 rad Ans.

AC = V(D150 m)! + (0152m

Therefore the average normal st

_ The negative sign indi
along the diagonal is

s that the angle #° is greater than X,

NOTE: I the x and y axes were horizontal and vert p
gl between these axes would not change due fo
and s0 v, = 0 at point E.

AC' - AC _ 021355m - 021213 m
ac 021213m

(£achn =

= 0.00669 mm/mm Ans.
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