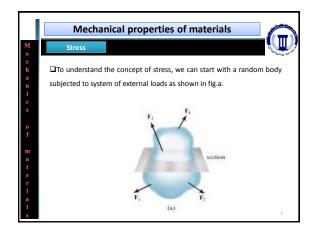
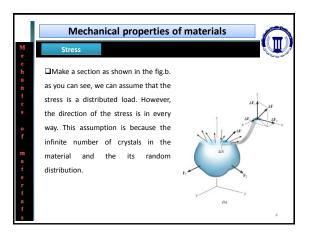
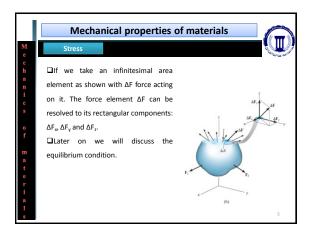
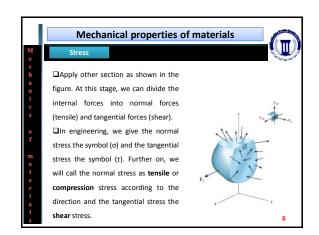


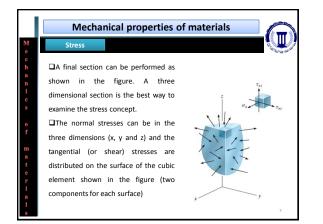
	Mechanical properties of materials
M e	Stress and strain
c h a n	□If a body is subjected to external loads, internal loads represented as distributed load will be generated due to the interrelation between the
c s	material crystals (or particles). This type of force is resistance to the effect of the external loading.
o f	The internal resistance for external loads is called the strength of the material and the distribute load is called stress.
m a t e	□The effects of external loads are not the stress but there is the strain effect. When the material is subjected to external loads, it will be
r i a	deformed (i.e. change in its shape and/or size). The percentage of deformation is called strain
s	2



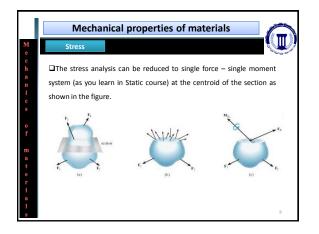


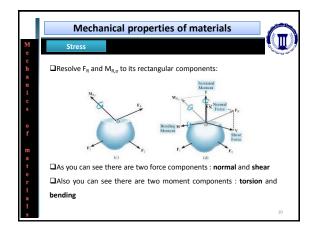


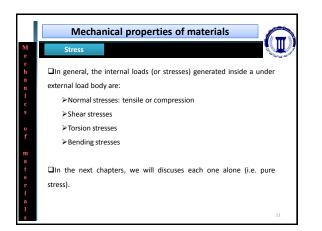


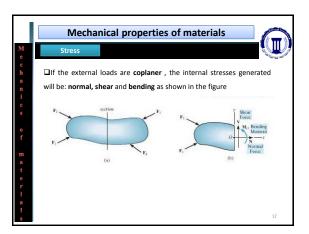


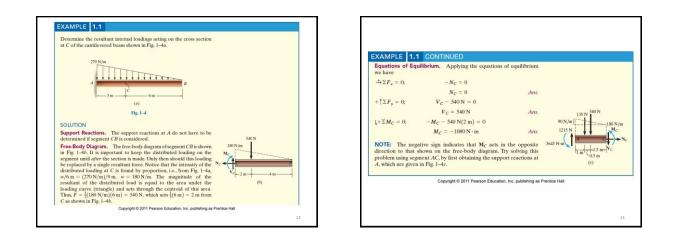
Mechanical properties of materials		
Stress		
□In general, if the loads are in the three dimensions, the internal loads		
will be: 3 normal components (σ) and 6 tangential (τ).		
To obtain an average numerical value for these stresses, the limits of the load over the area is taken. Mathematically:		
$\sigma_{x} = \lim_{\Delta A \to 0} \frac{\Delta F_{x}}{\Delta A} \qquad \qquad \tau_{xy} = \lim_{\Delta A \to 0} \frac{\Delta F_{y}}{\Delta A} \tau_{xz} = \lim_{\Delta A \to 0} \frac{\Delta F_{z}}{\Delta A}$		
$\sigma_{y} = \lim_{\Delta t \to 0} \frac{\Delta F_{y}}{\Delta A} \qquad \tau_{yx} = \lim_{\Delta t \to 0} \frac{\Delta F_{x}}{\Delta A} \tau_{yz} = \lim_{\Delta t \to 0} \frac{\Delta F_{z}}{\Delta A}$		
$\sigma_{z} = \lim_{\Delta t \to 0} \frac{\Delta F_{z}}{\Delta A} \qquad \qquad \tau_{zx} = \lim_{\Delta t \to 0} \frac{\Delta F_{x}}{\Delta A} \tau_{zy} = \lim_{\Delta t \to 0} \frac{\Delta F_{y}}{\Delta A}$		

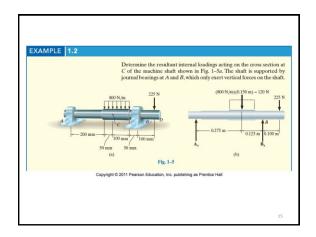


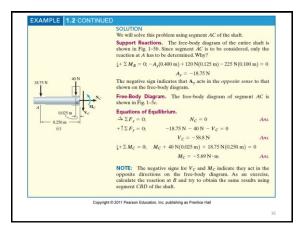


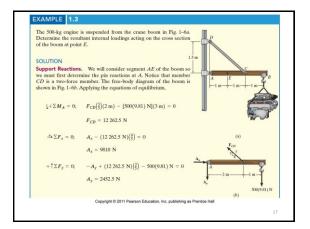


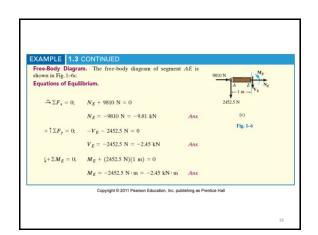


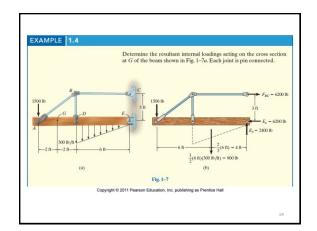


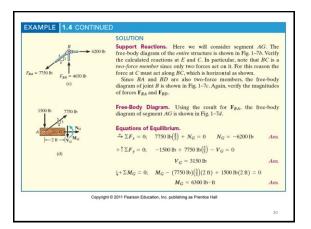


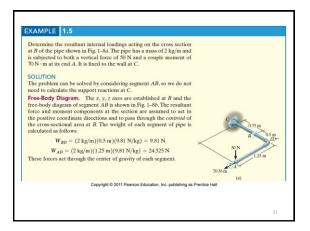


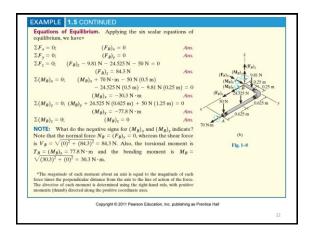




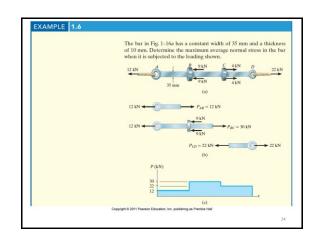


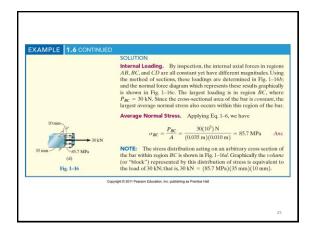


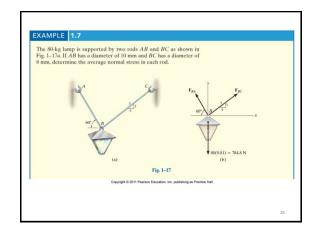


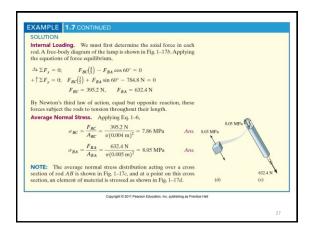


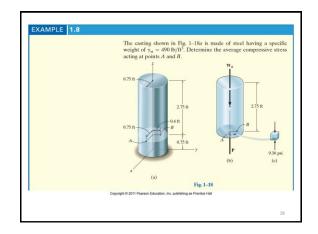


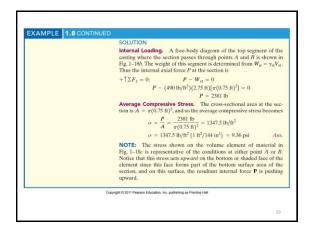


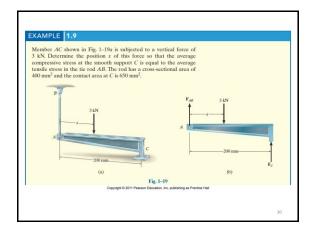


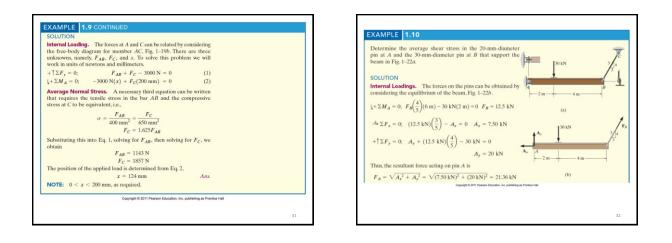


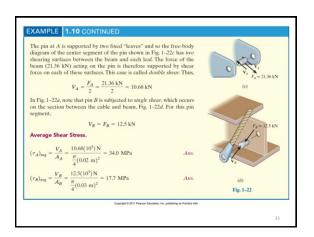


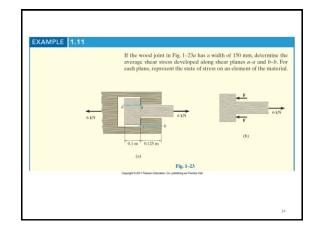


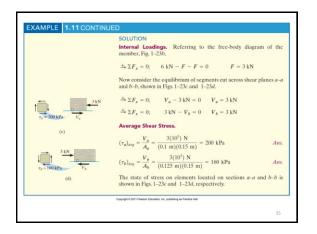


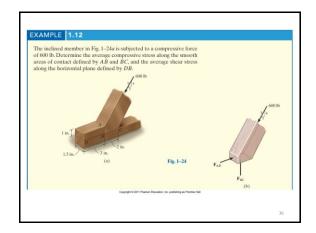


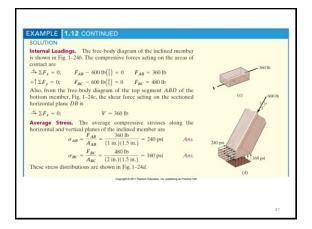


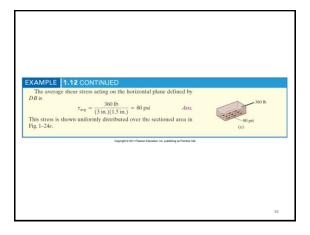


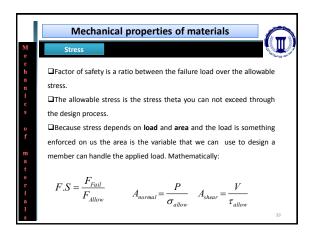


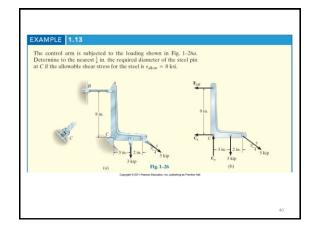


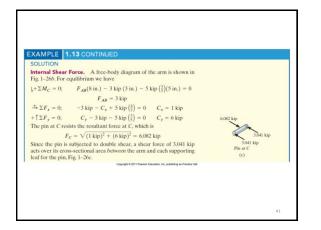


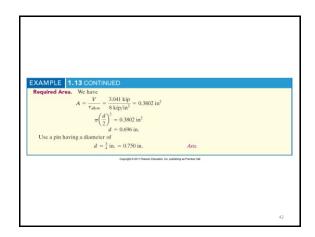


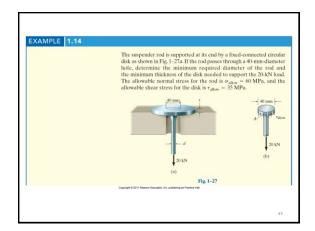












SOLUTION
Diameter of Rod. By inspection, the axial force in the rod is 20 kN. Thus the required cross-sectional area of the rod is
$A = \frac{P}{\sigma_{\text{allow}}}; \qquad \qquad \frac{\pi}{4}d^2 = \frac{20(10^3) \text{ N}}{60(10^6) \text{ N/m}^2}$
so that
d = 0.0206 m = 20.6 mm Ans.
Thickness of Disk. As shown on the free-body diagram in Fig. 1-27b, the material at the sectioned area of the disk must resist shear stress to prevent movement of the disk through the hole. If this shear stress is assumed to be uniformly distributed over the sectioned area, then, since $V = 20$ kN, we have
$A = \frac{V}{\tau_{\rm allow}}, \qquad 2\pi (0.02~{\rm m})(t) = \frac{20(10^3)~{\rm N}}{35(10^6)~{\rm N/m^2}}$
$t = 4.55(10^{-3}) \text{ m} = 4.55 \text{ mm}$ Ans.
Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

