
Chapter 1

A Brief Survey of Data Compression

“Data compression is the art or science of representing information in a compact form”

(Introduction to Data 1). Data can take the form of numbers, text, recorded sound, images, and

movies. Even the notes that students take for a test or the charts and PowerPoint slides business

people use to give presentations are common forms of compressing data. In any case, these

“compact forms” are created by identifying unique repetition and other various patterns and

structures particular to each medium of data. Though informal compression, like taking notes,

has been around for a long time, mass storage of data and the need and ability to compress data

did not arrive until the advent of the computer. One reason for this is that “Data compression is

of interest in business data processing, both because of the cost savings it offers and because of

the large volume of data manipulated in many business applications” (Hirschberg). That is not to

say that no compression systems existed before computers, but computers make data

compression highly practical.

Two classic early forms of compression that most are familiar with are Morse Code and

Braille. Both were developed in the mid-nineteenth century and owe their compression to the

statistical structure of the English language. When Samuel Morse developed his system of

dashes and dots to send over telegraph wires, he noticed that several of the letters being sent

occurred more than others. In order to save time, Morse assigned the more frequent characters

such as ‘e’ and ‘a’ shorter codes, and less frequent characters such as ‘q’ and ‘j’ longer

sequences. This concept is the basis behind Huffman encoding, which will be discussed more in

depth in the next chapter. The other major compression technique of the time, Braille, not only

exploited the frequency of characters, but also took advantage of the frequencies of certain

 - 1 -

words. Braille coding uses 2 X 3 arrays of dots, two of which are raised (the others are left flat).

This results in 26 or 64 possible combinations. Twenty-six letters are used in grade one Braille,

leaving 38 combinations. In grade two Braille, the remaining combinations frequently represent

common words such as “and” and “for.” One combination is used to signal that the next set of

dots is a word and not a character, which allows for a larger number of words. “These

modifications, along with contractions of some of the words, result in an average reduction in

space, or compression, of about 20%” (qtd. in Introduction to Data 1). While frequency

characteristics play a major role in many modern text compression algorithms, limitations of

human perception are also often exploited in compression of sound and graphics.

Humans experience reality through the five senses with their respective interpretations

determined by the human brain. This ability to sense and interpret information, however, is not

without limitation. For example, high frequency sounds that dogs can hear are completely

imperceptible by the human hear. Thus, any frequencies in sound files or audio transmissions

that cannot be heard by the human ear can be omitted with little, if any, perceived loss of quality.

A similar case can be made for image information. The eye can distinguish a wide variety of

hues, or shades of color, but some colors are so similar that the eye simply cannot perceive the

difference. Thus one color could be used in place of two, which would be useful if the

compression routine used relied on repletion of pixels.

One may think with the advent of new technologies, such as fiber optics and DVDs, that

allow for increased transmission speeds and storage capacity, the need for compression may not

be as important as it once was. This assumption could not be further from the truth, for “It seems

that the need for mass storage and transmission increases at least twice as fast as storage and

transmission capacities improve” (Introduction to Data 3). Many of the technologies that we

 - 2 -

take for granted, such as the fax machine and modem, would be so slow that they would be

impractical in many cases without the use of compression. Another relatively new technology

that owes a great deal to compression is High Definition Television (HDTV). Without

compression, transmitters would need to transmit 884 Mbits per second, requiring a bandwidth

of 220 MHz, but with compression, transmitters only need to transmit less than 20 Mbits per

second, requiring only six MHz of bandwidth, the amount allocated for analogue television in the

United States (Introduction to Data 2). Modern technology requires compression to work

efficiently, which has given rise to several types and variations of data compression.

There are two major types of data compression, lossless and lossy. A, “compression

algorithm that takes an input χ and generates a representation χc that requires fewer bits, and

there is a reconstruction algorithm that operates on the compressed representation χc to generate

the reconstruction ϒ” (Introduction to Data 3). There is no difference between χ and ϒ in the

case of lossless compression. ϒ is similar to χ in the case of lossy compression and deviates

from χ in varying degrees depending upon the desired quality. Further discussion of lossless

compression will be reserved for later, but it is important to note that both types of compression

are often used together to achieve the highest compression ratios, and are sometimes “combined

with error correcting codes to provide both compression and data integrity…” (Hirschberg).

“Lossy compression, in contrast [to lossless compression], works on the assumption that

the data doesn’t have to be stored perfectly” (Goebel), nor restored exactly back to its original

state. Distortion is the term used to describe how similar the reconstructed data is to the original.

Why would someone want to leave out some information? One reason is that leaving

information out means there is less information to be stored. Another reason is simply that not

all the information is needed. Consider, again the example of frequencies that humans cannot

 - 3 -

hear being taken out of sources that contain sound information. Many frequencies and other bits

of information can be taken out, and when the information is reconstructed, the sound produced

is still intelligible to the human ear. The amount of distortion allowed is generally determined by

how much loss of quality can be tolerated. “If the quality of the reconstructed speech is to be

similar to that heard on the telephone, a significant loss of information can be tolerated.

However, if the reconstructed speech needs to be of the quality heard on a compact disc, the

amount of information loss that can be tolerated is relatively low” (Introduction to Data 5). The

same holds true for images as well; minor loss of quality for pictures and video often are barely

noticeable, so lossy compression is often used when compressing such data. However, as will be

seen in the discussion of lossless compression, many situations, including those involving sound

and video, cannot tolerate any distortion.

As previously stated, lossless compression involves no loss of data and is generally used

on discrete data. While the focus of modern compression was once on lossless compression,

“…a significant amount of discrete data in the form of text, graphics, images, video, and audio

that needs to be stored or transmitted, and display devices are of such quality that very little

distortion can be tolerated” (Lossless Compression). In the case of the text, small discrepancies

in the reconstructed text would at the very least be misleading, if not completely unintelligible.

If a battle commander were sent a compressed message that said, “Do not go to battle today,” but

when the message was reconstructed for soldiers in the field, the message said, “Do now go to

battle today,” heavy casualties could be suffered by the soldiers because a lossy compression

threw out information on a single letter. There are cases; however, where lossy compression

would yield a respectable replica of the original, but when the data is to be processed or

enhanced, the small, seemingly unnoticeable discrepancy becomes much larger. In a compressed

 - 4 -

radiological image, for example, the radiologist may want a certain area of the image enhanced

in order to better diagnose a problem. If the enhancement focused on the one of the previously

undetectable differences, the enhanced image would contain serious flaws and could seriously

mislead the radiologist, and put someone’s life in great jeopardy. This example illustrates the

importance of understanding the limitations of a compression algorithm.

In order to be able to appreciate an algorithm’s abilities, the abilities must first be

measured. There are several ways to measure the performance of a compression algorithm: “the

relative complexity of the algorithm, the memory required to implement the algorithm, how fast

the algorithm performs on a given machine, the amount of compression, and how closely the

reconstruction resembles the original”(Introduction to Data 5). One of these measurements,

distortion, has been mentioned previously. Other common terms for distortion include fidelity

and quality, and if the fidelity and quality are high, then the reconstructed version is very close to

the original. While many of these measurements are beyond the scope of this thesis, the amount

of compression is a measure that will be used extensively. One way to measure the amount of

compression is to compute the ratio of the number of bits in the original data to the number of

bits in the compressed data. “Lossless compression ratios are generally in the range of 2:1 to

8:1” (Hirschberg). For example, suppose that a file requires 95,934 bytes of storage, and after

compression, that file occupies only 15,989 bytes of storage. Then the ratio would be 6:1.

Another way to measure the amount of compression is the compression rate or, “the average

number of bits required to represent a singe sample” (Introduction to Data 5). Continuing with

the previous example, let one byte be a single sample, and let there be eight bits per byte. Since

the average number of bits per byte of the original is six then the correct terminology would be

that, “the rate is six bits per byte.”

 - 5 -

 “Compressing data to be stored or transmitted reduces storage and/or communication

costs” (Hirschberg). With its appealing reduction of cost and all around utility, compression has

helped create and in some ways made possible the highly technological world people enjoy

today. As a catalyst for the storage and transmission of data, compression is and will be an

important tool of the information age.

 - 6 -

Chapter 2

Huffman Coding

Huffman Coding “…was developed by David Huffman as part of a class assignment; the

class was the first ever in the area of information theory and was taught by Robert Fano at MIT”

(qtd. in Introduction to Data 27). Before Huffman’s new system, the majority of algorithms

relied on the fact that some data contained certain distributions or patterns of data that could be

exploited, such as the Golomb coding which assumes a geometric distribution (Lossless

Compression 27). In order to compress information one would have to use a permutation to

achieve the proper distribution necessary for the given algorithm. Since the distributions that are

produced from the permutations are unlikely to fit exactly, a certain level of inefficiency is

introduced. On top of that, the information of the permutation must also be stored. Huffman

presented a huge leap in compression and “was the first to give an exact, optimal algorithm to

code symbols from an arbitrary distribution” (qt. in Sayood Handbook 79). Proof of why

Huffman is the optimal algorithm for arbitrary distributed data requires several layers of proof

that are beyond the scope of this Thesis; however, a thorough explanation of how Huffman

coding weaves its compressing ways over arbitrarily distributed code will be included. First,

however, a few key definitions and concepts must be understood.

Huffman coding is a particular way of assigning, “binary sequences to elements of an

alphabet. The set of binary sequences is called a code and the individual members of the set are

called codewords. An alphabet is a collection of symbols called letters”(Introduction to Data 25).

As previously mentioned compression ratios and rates are good ways to see how well an

algorithm compresses. A good indicator of how much compression will occur is the average

 - 7 -

length of the code. In the chart and the equation below let a1, a2, a3, a4 be the letters of a four

letter alphabet with the probabilities
2
1)(1 =aP ,

4
1)(2 =aP , and

8
1)()(43 == aPaP .

Letters Code 1 Code 2 Code 3 Code 4

1a 0 0 0 0

2a 0 1 10 01

3a 1 00 110 011

4a 10 11 111 0111

Average length 1.125 1.25 1.75 1.875
(Table 2.1)

“The average length, l, for each code is given by

 (Equation 2.1) ∑
=

⋅=
4

1
)()(

i
ii anaPl

where n(ai) is the number of bits in the codeword for letter ai and the average length is in

bits/symbol.” (Introduction to Data 26). Multiplying the number of charaters in a particular

message will yield the approximate number of bits after compression.

Consider the four codes in the table above, and examine the properties of each code. The

first code yields the lowest average length, but proves not to be useful for coding because and

 have the same codeword, 0. When the reconstruction program goes to decode 0, it will have

no way to determine whether the letters

1a

2a

1a or 2a were intended. Unlike code 1, code 2 has

unique codewords for each of the letters, but it too has problems with ambiguity when it is

immersed among other codewords. For example, if the binary string 100 were found in

compressed text, the reconstructor could decode it as or . In other words, it

doesn’t have unique decodability and isn’t distinct. “A distinct code is uniquely decodable if

every codeword is identifiable when immersed in a sequence of codewords” (Hirschburg). If

2a 1a 1a 2a 3a

 - 8 -

tested Codes 3 and 4 would prove to be uniquely decodable. Code 3 has an additional property

called the prefix property. “A uniquely decodable code is a prefix code (or prefix-free code) if it

has the prefix property, which requires that no codeword is a proper prefix of any other

codeword. All uniquely decodable block-block and variable-block codes are prefix codes”

(Hirschburg). Now that it is clear what codewords are desirable, lets look at this problem from

the letter’s point of view.

Samples, blocks, letters, and symbols are different ways of describing sections of the

original data that is to be compressed. Samples are of no particular length but, at least in this

context, cannot be smaller than the smallest unit. In general, the smallest unit is called a letter.

Symbols or letters have the potential to be of variable length or of fixed length number of bits

depending upon the nature of the data. All the following examples and references to letters will

refer to those of fixed length. For example in standard ASCII code seven bits of information are

required to represent a character. The character A is coded as 1000001, and the comma is

0011010 just to name a few. The smallest unit of addressable memory is the byte, which is eight

bits, so an extra parity bit is often added to the end of the code for purposes of data integrity.

Well, if it all comes down to bits anyway; why not pick a letter of size four or five for purposes

of compression instead of the letter length (in this case eight)? It is possible to deal with four or

five bits at a time, but since every eight bits corresponds to an English letter, punctuation, or

symbol, patterns in the English language can be used to effectively compress the letters. While it

is unlikely that anything smaller than a letter could present its own unique pattern, it is possible

to combine letters together to achieve a better distribution of letters. “Codes that bunch

(combine) source element symbols are called block codes. Diagrams and trigrams are examples

of block codes. Shannon’s theorem allows for block codes to achieve the lowest possible cost. In

 - 9 -

most situations, block codes are required to achieve a desired cost” (Sacco 10). The term cost

refers to the average block (or word) length. Now that codewords and letters have been defined,

it is now time to figure how to match the two together.

Huffman coding uses an ingenious yet simple way to find the codeword for each letter

using binary trees. The best way to explain the technique is to illustrate it with an example, so

assume that a file has the letters below and that they occur according to the probabilities as

indicated. Arrange the probabilities in ascending order.

(figure 2.1)

Now combine the lowest two probabilities and give the result its own “node” connected to the to

the parent nodes “m” and “u.” The new node represents the probability that ‘m’ or ‘u’ will be

occur if a letter is selected of random from the file.

 (figure 2.2)

Then do the same with the next two smallest probabilities.

(figure 2.3)

Now note in the next step that it does not matter whether one of the original or one of the new

combined probabilities is chosen, so long as it is one of the smallest two probabilities.

(figure 2.4)

Continue the same process for the next two probabilities.

 - 10 -

(figure 2.4)

Now we have run into a slight problem. In the previous steps the two lowest probabilities have

been next to each other. Now for a computer this would be no problem, but conceptually and in

terms of drawing pictures it is simpler just to reorder the probabilities.

(figure 2.5)

The final three steps are illustrated below.

(figure 2.6)

(figure 2.7)

 - 11 -

(figure 2.8)

At the conclusion of this process, what remains is a tree with a trunk, or final node of 1.000,

whose upper most leaves are the letters from the file. Note that since the letters were rearranged

before step five there are no crossing lines. Note that starting from the trunk, the path to each leaf

is unique. Let ‘L’ denote a left branch and ‘R’ denote a right branch. The paths to each leaf are

listed in the table below.

(Table 2.2)

Now reading from top to bottom and putting a ‘1’ in place of an ‘L’ and ‘0’ for ‘R.’ the

following table can be constructed.

(Table 2.3)

Note that the codes formed from this process are prefix codes, and the codes’ lengths are directly

related to the letter’s probability. Since the process started with the lesser probabilities first the

 - 12 -

lesser probable letters got longer codes, which is part of the key to Huffman coding. Now with

these codes let’s run through an example of how Huffman would code a file.

Conceptually speaking, the nuts and bolts of how to do Huffman coding are fairly simple.

Once the codewords have been created it is a simple matter of replacing each letter with its

codeword. For example, if the word “quote” were found in a file containing the letters above in

their relative frequencies then it would become “110111100111000.” To see the compression

the letters are changed to the ASCII binary equivalents and put on top of each other (in the first

one spaces where put in to more easily see the letters).

Letter q u o t e
ASCII 01110001 01110101 01101111 01110100 01100101
Huffman 1101 1110 011 10 00
(Table 2.4)

Letter quote
ASCII 0111000101110101011011110111010001100101
Huffman 110111100111000
(Table 2.5)

In the original word there are forty bits and there are only fifteen in the Huffman compressed

file, a compression ratio of 8:3 at a rate of 3 bits per byte for this sample. The rest of the file

would follow the same pattern. A slight overhead exists because the conversion table must also

be stored so that the reconstruction program knows which letters go to which codes. Speaking of

reconstruction, the tree that was previously built to determine the codewords can be use to

quickly look up the letters.

 - 13 -

(figure 2.8)

First start at the 1.000 and read the first bit of the compressed file. The bit is ‘1’, so take a left to

.377. The next bit is ‘1’, so take a left to .241. The next two bits ‘0’ and ‘1’ will go to .128 and

finally to the letter ’q’. This saves valuable search time over searching a list in which one would

have to look at each element until they found the right one. The form of Huffman just described

was the original method developed by David Huffman, but since that time other variations of

Huffman coding have also been developed.

 The category of data compression that the aforementioned coding comes from is called a

static method. “A static method is one in which the mapping from the set of messages to the set

of codewords is fixed before transmission begins, so that a given message is represented by the

same codeword every time it appears in the message ensemble” (Hierschberg). In addition to the

classic Huffman method other static variations include Modified Huffman codes, Huffman

prefixed Codes, extended Huffman codes, and Length-Constrained Huffman Codes. Each

attempts to resolve different types of limitations of classic static Huffman. For example length-

constrained Huffman attempts to solve the problem of when the “situation arises when a

compression application is severely constrained in time, for example, in multimedia or

telecommunication applications, where timing is crucial”(Lossless Compression). As the name

implies this version limits the size of the codes that puts an upper bound on the number of steps

needed to decode a symbol and also make better use of computer memory. The end result is

 - 14 -

greater speed of execution. Several of the static methods mentioned also have modified versions,

which are dynamic.

 In many cases one cannot study the entire set of data, or even significant samples, to

make an optimized code set, so the code must be made dynamically. “A code is dynamic if the

mapping from the set of messages to the set of codewords changes over time. For example,

dynamic Huffman coding involves computing an approximation to the probabilities of

occurrence ‘on the fly’, as the ensemble is being transmitted” (Hierschberg). A dynamic code

usually starts off like a static code with a set of codewords, but as new information comes into be

coded, new frequencies for letters emerge and the code set is updated accordingly. Depending

on the source of data, different levels of “look-ahead” will exist which allow for varying levels

of optimization. The brute force adaptive Huffman coding updates the lookup tree every time a

new letter is encountered. While adaptive Huffman may achieve the best compression, the time

required to update the tree after every character can be prohibitive. Rather than updating the tree

consistently it could be done after every k characters. This divides the update cost by k, but will

reduce compression efficiency. Another possible technique would be to update the tree only

when the relative frequencies in the tree become severely out of balance, but again a balance

must be struck with execution time and compression.

 - 15 -

Chapter 3

Alternative to Huffman: Prefix Codes That Are Multiples of Three Backwards

Huffman code revolutionized data compression with its optimized prefix code. Huffman

coding uses trees to determine the codewords, but there are several other ways that a prefix code

can be created. The objective of this chapter is to investigate prefix codes that are multiples of

three backwards (with binary), and to discuss various observations and obstacles encountered in

the implementation of a Huffman like algorithm that uses these codewords.

One of the first logical steps in dealing with these codewords is first finding a way to

generate them. Unfortunately, deriving the codewords directly from binary trees is not very

practical as they were with Huffman codes. The easiest way to generate this new code is to try

each multiple of three backwards, and if any of the multiples that have already been checked are

prefixes of the current codeword being looked at leave the codeword out. Finding the first eight

codewords provides one with a good framework to find subsequent codewords. (A copy of the

first 29 codewords can be found in Appendix A.) The first multiple of three is three, or 11 in

binary. 11 backwards is 11, and since the list is empty 11 is added to the list.

 (Figure 3.1)

Codewords
11

The next multiple is 110 (6), which is 011 backwards. The first two digits of 011 is 01 and not

11, so 011 is added to the list.

 (Figure 3.2)

Codewords
11
011

The next multiple is 1001 (9) and is the same backwards and forwards. The first three digits of

1001 are not 011 and the first two are not 11, so 1001 is put into the list.

 - 16 -

 (Figure 3.3)

Codewords
11
011
1001

1100 (12) is the next multiple and is 0011 backwards. The first four digits of 0011 are clearly

not 1001. The first three are not 011 and the first two are not 11 so 0011 is the list.

 (Figure 3.4)

Codewords
11
011
1001
0011

The next multiple 1111 (15) will not be included in the list. The first two digits are 11, which are

the same as the first codeword in the list 11, which violates the prefix-free rule. The next three

multiples, 10010, 10101, and 11000, pass the test and are in the list.

 (Figure 3.5)

Codewords
11
011
1001
0011
01001
10101
00011

The next multiple 11011 (30) is left out for the same reason 1111 was; the first two digits are 11,

which is the same as the first codeword. The eighth item in the list is 100001 (33) and has no

prefix of anything in the list.

 - 17 -

 (Figure 3.6)

Codewords
11
011
1001
0011
01001
10101
00011
100001

This process effectively makes a prefix code, but one may be wondering why the choice was

made to reverse the multiples of three.

 The choice to reverse the numbers and read them backwards came after some trial and

error. The results of this experimentation showed that the size of the numbers of the prefix codes

of multiples of three forwards increased faster than the multiples of three backwards. This can

be seen in the charts in appendix A. The chart A.1 shows a side-by-side comparison of the

codewords and their decimal equivalents, the second is a graph of the decimal equivalents, and

the third is a graph of the sizes of the code words. From this chart one can see that not only do

the multiples of three backwards have more prefix codewords under a given multiple of three,

but the prefix codes for the multiples of three forwards appear to be a proper subset of the prefix

codes of the multiples of three backwards (a proof would be required to say that this is true for

all cases). An example of the first part of the previous statement would be the number 21, which

has five valid prefix codes before it for the backwards multiples, and only two for the forwards

multiples. Consequences of this are that more time is required to find codewords by using the

forward multiples of three, and, as mentioned before, forward codewords get larger faster than

the backwards codewords. The second part of the aforementioned statement is shown by the

bold-face numbers in the chart. The first ten codewords of the forwards multiples are clearly

elements of the set of codewords of the backwards multiples. The figure A.1 clearly shows that

 - 18 -

the decimal equivalents of the forward codewards increase at a much faster rate than the

backwards codewords. The magnitude of the decimal number has a direct relationship to the

number of digits in its binary equivalent, so it is not surprising that in the figure A.2 the length of

the codewords of the forwards multiples increase at a greater rate than the backwards multiples.

The fact that the backwards multiples produce smaller codewords and thereby achieve better

compression was the reason backwards multiples were chosen over the forwards multiples. In

addition to this, the first twenty-six codewords of the backwards multiples are all eight bits or

under, so there will always be some compression for text containing letters only from a twenty-

six letter alphabet. The forwards multiples have more than eight digits after the thirteenth

codeword, so for text containing only characters from a twenty six letter alphabet it would be

possible to “compress” the text and get a larger file than the original depending on the relative

frequency of the letters. Now that the method of finding the codewords and the reasons of why it

was chosen has been revealed, it is now time to discuss how this method was implemented.

 Almost any given algorithm has several different ways to be implemented. The program

written in C++ in appendix B reflects one such implementation. An equivalent Huffman version

of this program would be the same except the generation of the codewords section, so discussion

of the implementation shall be limited to the parts that deal with the codeword generation. The

heart of key generation of the codewords lies in the function “generatTempList” in the KeyList

class (lines 451 to 482). At first this function can be very confusing because of the way the

function (and the entire program) treats the numbers backwards from the way they were

described earlier in this chapter. The reasons for treating the codewords in this fashion were to

aid in the simplicity of the code. The multiple of three is stored in the variable “key” in its

forward form. For example, six would be stored as “110.” Rather than reversing the number in

 - 19 -

memory and storing it as “011” and checking to see if the “11” in the list is the same as the “01,”

the function checks to see if the “10” in “110” are the same as “11.” In a sense the computer has

generated a postfix code, but treats it backwards it becomes a prefix code. To see this more

clearly, the first three steps of the pervious example have been repeated along side a

representation of what the computer is actually doing.

Original Example Multiple Backwards Multiple Forwards Computer Example

Codewords
11

011 110 Codewords
11

Codewords
11
011

1001 1001 Codewords
11
011

Codewords
11
011
1001

0011 1100 Codewords
11
011
1001

(Chart 3.1)

This method can be inefficient when a large number of codewords are to be generated because

each item in a list, in this case the list is an array named tempKeyList (line 454), must be

checked to see if it is a prefix of the possible codeword. Another possible implementation could

use the concept of trees.

 Due to the nature of prefix codes, they lend themselves well to trees. As can be seen in

table 2.2 each leaf node has a unique path from the root, which can be used to determined it one

code is a prefix of another or not. The function “generateLetterSearchTree” (lines 580-624) uses

this fact to generate a search tree. In fact the search tree and the codeword generator could have

 - 20 -

been made at the same time, but due to the order in which the program was developed it was

easier to leave it separate. Below is picture of a tree with the first four codewords already added.

(Figure 3.7)

When the next backward multiple, “1111” (15), is checked to see if it is a valid codeword it

would only need to check two nodes to see that it was invalid rather than checking to see if the

four elements in the list were prefixes. Even though in this case the first element disqualified the

codeword, a considerable amount of work is involved in checking to see if one codeword is a

prefix of another. The function “isAaPostFixOfB” (lines 522-529) is responsible for checking to

see if one codeword is a prefix of another codeword. On the surface this function seems short

and simple, but on line 524 “isAaPostFixOfB” calls two functions, “getNumBits” (532-542) and

“getSubBitStringFrom1To” (544-552), that have about twenty lines of code between them.

“isAaPostFixOfB” is called once for each element in the list until a prefix is encountered or until

the end of the list is encountered. As more codewords are put into the list, this process can

become very inefficient. Returning to the example, the figures below show that only two nodes

need to be checked to see that “1111” is an invalid codeword.

 - 21 -

(Figure 3.8)

(Figure 3.9)

If another node were added (see figure 3.10) then the codeword “1111” would have the same

initial path as “11,” so “1111” cannot be a codeword because the computer would not know

whether or not to stop after the second “1.”

 - 22 -

(Figure 3.10)

The next codeword, however, clearly has a unique path.

(Figure 3.11)

Basically, the rule is nodes can be added to other nodes to accommodate any new codeword

unless the node is a leaf-node. If the node being added to is a leaf-node, leave out the codeword

and try to find the next one.

 - 23 -

Chapter 4

Huffman vs. Multiples of Three Backwards

 Comparing compression algorithms requires knowledge of several aspects, each requiring

its own test. These tests where mentioned in chapter one, and all are important in choosing the

correct algorithm for a particular type of data, but only two major ones will be compared. The

average codeword length and compression ratio are generally held to be good indicators of the

amount of compression, so those will be used to see how the multiples of three backwards fare

against Huffman code.

 The average codeword length holds importance because it is often a good indication of

how good the compression ratio is. This is often more useful in adaptive compression methods

that deal with streams of data where it may be impractical to calculate the actual compression

ratio on the entire set of data. Instead of indicating the compression ratio of the data as a whole,

it gives a good indication of the amount of compression occurring at that section of data. With

the static methods that are being compared here, the average codeword lengths are excellent

indicators when the entire set of data can be analyzed, such as in a file on a computer. The

average codeword length provides a good indication of the relative effectiveness of different

codeword sets because it possesses an inverse relationship with the compression ratio; the lower

the average code length, the higher and better the compression ratio. Using a formula similar to

equation 2.1 in chapter two, chart B.2 in appendix B was created. The third coulomb in each

table represents the multiplication of the percentage frequency of each text character and the

codeword length for that particular text character. Then the third columns where added up and

then divided by 100 since percentage frequencies need to be converted to relative frequencies.

Huffman Codes, Multiples of three forwards, and Multiples of three backwards had average code

 - 24 -

word lengths of 4.20502, 4.92234, and 6.32809 respectively. Clearly given any set of data the

Huffman codes would yield the best compression on a general set of text. The Huffman Code for

any given letter in a text it is more likely to result in a shorter codeword the resulting codeword

when multiples of three backwards or backwards is used. Over the course of compressing the

whole text the savings of each letter builds upon each other and yields an overall better

compression. As mentioned in chapter two the average codeword length can be used to

approximate the length of the compressed text. Simply multiplying average codeword length by

the number of letters in the text, yields the approximate length of the compressed text. The

reason why it is an approximate solution is because the relative frequencies of the letters are

often approximations or may only reflect a section of the data rather than the data as a whole. For

example the percentage frequencies in chart B.1 do not add up to exactly one hundred percent

since percentage frequencies were rounded to three decimal places. It is possible to have the

computer keep track of all the decimal places (as much as memory will allow), but this may be

prohibitive because it could have serious effects upon performance with regards to speed, and

memory usage. However, if the actual percentage frequencies can be calculated exactly without

round-off error, then the average codeword length and compressed files size differ by a factor

equal to the number of characters in the original file. This observation can be seen by comparing

charts B.2 and B.3. The average codeword lengths in B.2 and the compressed file sizes in B.3

differ by a factor of 100,000. The actual file size is 99999, but this discrepancy is due to round-

off error.

 The compression ratio is one of the simplest aspects of data compression and is one of the

easiest to calculate. Chart B.3 shows the compression ratios of the three sets of codewords on a

theoretical set of data. The theoretical data contains 99999 letters, and since each letter

 - 25 -

corresponds to 8 bits the data contains 799992 bits. By multiplying the frequency of occurrences

of particular letter, by the number of bits that letter uses in the compressed file results in the total

numbers of bits that perticular letter takes up in the compressed file. For example the letter ‘e’

occurs 12702 times in the uncompressed file, and each ‘e’ is represented by 3 bits with the

Huffman code. By multiplying the number of e’s by the number of bits it takes up one finds that

‘e’ takes up 38106 bits of the compressed file when the Huffman code is used. Doing this for

every letter in the alphabet and adding the respective number of bits will produce the total

number of bits in the compressed file. In the case of the theoretical file, Huffman codes compress

the file down to 420502 bits, backwards codewords, 492234 bits, and forwards codewords,

632809 bits. Taking these numbers and dividing them by the size of the original file yield the

compression ratios 1.90246, 1.62522, and 1.26419 respectively. Huffman’s compression ratio is

almost two, so that means that the original file is almost twice the size of the compressed file, or

the compressed file is about half the size of the original. The original file size is about one and a

half times the file compressed by multiples of three backwards codewords and about one and a

quarter times the file compressed by the multiples of three forwards codewords.

 Clearly Huffman has proven, in general, to be the best of the three prefix codes. The

others may prove to have purposes that suit them better than Huffman, but for now Huffman still

remains the best for general data. The multiples of three backwards code proved to be a worthy

endeavor and helped me to develop a better understanding of Huffman and data compression in

general. The study of data compression, including the methods studied here, will continue

converting long elements of the past into smaller elements of the future.

 - 26 -

Appendix A

Huffman Codes* Multiple of
Three Backwards

Prefix Codes

Decimal
Equivalent
(Forwards)

Multiple of
Three Forwards

Prefix Codes

Decimal
Equivalent

000 11 3 11 3
110 011 6 1001 9
0100 1001 9 10101 21
0110 0011 12 100001 33
0010 01001 18 101101 45
0011 10101 21 1000101 69
1000 00011 24 1010001 81
1001 100001 33 1011101 93
1010 001001 36 10000001 129
01010 010101 42 10001101 141
01011 101101 45 10100101 165
10110 000011 48 10110001 177
10111 0100001 66 10111101 189
11100 1010001 69 100000101 261
11101 0001001 72 100010001 273
11110 1000101 81 100011101 285
011100 0010101 84 101000001 321
011101 0101101 90 101001101 333
011110 1011101 93 101100101 357
011111 0000011 96 101110001 369
111110 10000001 129 101111101 381
1111110 00100001 132 1000000001 513
111111100 01010001 138 1000001101 525
111111101 10110001 141 1000100101 549
111111110 00001001 144 1000110001 561
111111111 01000101 162 1000111101 573
 10100101 165 1010000101 645
 00010101 168 1010010001 657
 10001101 177 1010011101 669

*Huffman Codes Come From Appendix B

(Chart A.1)

 - 27 -

Prefix Multiples of Three: Forwards Vs. Backwards

0

100

200

300

400

500

600

700

800

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

N th Codeword

D
ec

im
al

 E
qu

iv
al

en
t

Decimal Equivalent (Forwards) Decimal Equivalent

(Figure A.1)

Comparison of Codeword Lengths

0

2

4

6

8

10

12

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

N th Codeword

C
od

ew
or

d
Le

ng
th

 (n
um

be
r o

f b
its

)

Huffman Codes

Multiple of Three
Backwards Prefix
Codes

Multiple of Three
Forwards
Prefix Codes

(Figure A.2)

 - 28 -

Appendix B

Relative Frequencies of the Letters of the English Language

Letter Relative
Frequency (%)*

Huffman
Codes

Letter Relative
Frequency (%)*

Huffman
Codes

a 8.167 0100 e 12.702 000
b 1.492 011111 t 9.056 110
c 2.782 10110 a 8.167 0100
d 4.253 01010 o 7.507 0110
e 12.702 000 i 6.966 0010
f 2.228 11110 n 6.749 0011
g 2.015 011100 s 6.327 1000
h 6.094 1001 h 6.094 1001
i 6.966 0010 r 5.987 1010
j 0.153 111111100 d 4.253 01010
k 0.772 1111110 l 4.025 01011
l 4.025 01011 c 2.782 10110
m 2.406 11100 u 2.758 10111
n 6.749 0011 m 2.406 11100
o 7.507 0110 w 2.36 11101
p 1.929 011110 f 2.228 11110
q 0.095 111111110 g 2.015 011100
r 5.987 1010 y 1.974 011101
s 6.327 1000 p 1.929 011110
t 9.056 110 b 1.492 011111
u 2.758 10111 v 0.978 111110
v 0.978 111110 k 0.772 1111110
w 2.360 11101 j 0.153 111111100
x 0.150 111111101 x 0.15 111111101
y 1.974 011101 q 0.095 111111110
z 0.074 111111111 z 0.074 111111111

*0.001% round-off error

(Chart B.1)

 - 29 -

(Figure B.1)

 - 30 -

Average Codeword Lengths

Huffman Codes
Multiples of Three

Backwards Multiples of Three Forwards

Relative
Freq.

Codeword
Len. (bits)

Freq.∗
Length

Relative
Freq.

Codeword
Len. (bits)

Freq.∗
Length

Relative
Freq.

Codeword
Len. (bits)

Freq.∗
Length

12.702 3 38.106 12.702 2 25.404 12.702 2 25.404
9.056 3 27.168 9.056 3 27.168 9.056 4 36.224
8.167 4 32.668 8.167 4 32.668 8.167 5 40.835
7.507 4 30.028 7.507 4 30.028 7.507 6 45.042
6.966 4 27.864 6.966 5 34.83 6.966 6 41.796
6.749 4 26.996 6.749 5 33.745 6.749 7 47.243
6.327 4 25.308 6.327 5 31.635 6.327 7 44.289
6.094 4 24.376 6.094 6 36.564 6.094 7 42.658
5.987 4 23.948 5.987 6 35.922 5.987 8 47.896
4.253 5 21.265 4.253 6 25.518 4.253 8 34.024
4.025 5 20.125 4.025 6 24.15 4.025 8 32.2
2.782 5 13.91 2.782 6 16.692 2.782 8 22.256
2.758 5 13.79 2.758 7 19.306 2.758 8 22.064
2.406 5 12.03 2.406 7 16.842 2.406 9 21.654
2.36 5 11.8 2.36 7 16.52 2.36 9 21.24
2.228 5 11.14 2.228 7 15.596 2.228 9 20.052
2.015 6 12.09 2.015 7 14.105 2.015 9 18.135
1.974 6 11.844 1.974 7 13.818 1.974 9 17.766
1.929 6 11.574 1.929 7 13.503 1.929 9 17.361
1.492 6 8.952 1.492 7 10.444 1.492 9 13.428
0.978 6 5.868 0.978 8 7.824 0.978 9 8.802
0.772 7 5.404 0.772 8 6.176 0.772 10 7.72
0.153 9 1.377 0.153 8 1.224 0.153 10 1.53
0.15 9 1.35 0.15 8 1.2 0.15 10 1.5
0.095 9 0.855 0.095 8 0.76 0.095 10 0.95
0.074 9 0.666 0.074 8 0.592 0.074 10 0.74

Average Code
Length

4.20502

 Average Code
Length

4.92234

 Average Code
Length

6.32809

(Chart B.2)

 - 31 -

Expected Compression Size
(Of A File With 99,999 Characters)

Huffman Codes Multiples of Three Backwards Multiples of Three Forwards
Number of
Characters

Compress
Len.(bits)

Number ∗
Length

Number of
Characters

Compress
Len.(bits)

Number ∗
Length

Number of
Characters

Compress
Len.(bits)

Number ∗
Length

12702 3 38106 12702 2 25404 12702 2 25404
9056 3 27168 9056 3 27168 9056 4 36224
8167 4 32668 8167 4 32668 8167 5 40835
7507 4 30028 7507 4 30028 7507 6 45042
6966 4 27864 6966 5 34830 6966 6 41796
6749 4 26996 6749 5 33745 6749 7 47243
6327 4 25308 6327 5 31635 6327 7 44289
6094 4 24376 6094 6 36564 6094 7 42658
5987 4 23948 5987 6 35922 5987 8 47896
4253 5 21265 4253 6 25518 4253 8 34024
4025 5 20125 4025 6 24150 4025 8 32200
2782 5 13910 2782 6 16692 2782 8 22256
2758 5 13790 2758 7 19306 2758 8 22064
2406 5 12030 2406 7 16842 2406 9 21654
2360 5 11800 2360 7 16520 2360 9 21240
2228 5 11140 2228 7 15596 2228 9 20052
2015 6 12090 2015 7 14105 2015 9 18135
1974 6 11844 1974 7 13818 1974 9 17766
1929 6 11574 1929 7 13503 1929 9 17361
1492 6 8952 1492 7 10444 1492 9 13428
978 6 5868 978 8 7824 978 9 8802
772 7 5404 772 8 6176 772 10 7720
153 9 1377 153 8 1224 153 10 1530
150 9 1350 150 8 1200 150 10 1500
95 9 855 95 8 760 95 10 950
74 9 666 74 8 592 74 10 740

Average Code Length 420502 Average Code Length 492234 Average Code Length 632809
Compression Ratio 1.90246 Compression Ratio 1.62522 Compression Ratio 1.26419

(Chart B.3)

 - 32 -

Appendix C

An Implementation in C++ of a Huffman style algorithm with
codewords of prefix-free multiples of three backwards

1 //Runner of Three.cpp
2 /*
3 Huffman style compresion
4 Author: Jeremy Brown
5 Language: C++
6 Compiler: Microsoft Visual C++ 6.0 Compiler Introductory Edition
7 */
8
9 #include <iostream.h>
10 #include <conio.h>
11 #include "H3Compressor.h"
12
13 int main()
14 {
15 H3Compressor fileCompressor;
16 fileCompressor.compressFile();
17 fileCompressor.displayStatistics();
18 fileCompressor.decompressFile();
19 return 0;
20 }

 - 33 -

21 //H3Compressor.h
22 /*
23 Jeremy Brown
24 Thesis Poject
25 H3Compressor class
26 Last Updated: 2/15/04
27 */
28
29 #ifndef h3compressor_h_
30 #define h3compressor_h_
31
32 #include <iostream.h>
33 #include <fstream.h>
34 #include "KeyList.h"
35
36 /*
37 H3Compressor compresses or decompress a file with a variation of Huffman which

uses prefix codes of multiples of three backwards
38 */
39
40
41 class H3Compressor
42 {
43 private:
44
45 KeyList keyList;
46 bool mode; //true for compresstion. false for decomprestion
47
48 //statistics for compresstion
49 unsigned long int originalFileSizeBytes;
50 unsigned long int compressedFileSizeBits;
51
52 //File stuff
53 char* sourceFileName;
54 fstream sourceFile;
55 fstream outputFile;
56 void resetSourceFile();
57 char* getFileFrequency(int &charaterListSize);
58 public:
59 //general functions
60 H3Compressor();
61 char* getNameFromUser();
62 void prepareFiles(char* fileName);
63 void closeFiles();
64
65 //compress functions
66 void compressFile();
67 int findLetter(char letter,char* charaterList);
68 void displayStatistics();
69
70 //decompress functions
71 void decompressFile();
72 };
73
74 H3Compressor::H3Compressor()
75 {
76 mode = true;
77 originalFileSizeBytes = 0;
78 compressedFileSizeBits = 0;
79 }
80
81 void H3Compressor::compressFile()

 - 34 -

82 {
83 mode = true;
84 prepareFiles(getNameFromUser());
85 char* frequencyList = 0;
86 int frequListSize = 0;
87 frequencyList=getFileFrequency(frequListSize);
88 keyList.generateKeyList(frequListSize);
89 unsigned char* tempString = new unsigned char[2];
90 //output the size of the dictionary
91 tempString[0] = frequListSize;
92 outputFile.write(tempString,1);
93 //output the dictionary
94 for(int letterCount = 0;letterCount<frequListSize;letterCount++)
95 {
96
97 tempString[0] = frequencyList[letterCount];
98 outputFile.write(tempString,1);
99 }
100 char* byte = new char[1];
101 int shift = 0;
102 char* key = 0;
103 BitIndex keyLength;
104 tempString[0] = 0;tempString[1]=0;
105 sourceFile.read(byte,1);
106 while(sourceFile.gcount() !=0)
107 { //find the codeword for the letter
108 key = keyList.getKey(findLetter(byte[0],frequencyList)).key;
109 keyLength =

keyList.getKey(findLetter(byte[0],frequencyList)).keySize;
110 compressedFileSizeBits += (keyLength.getIndex() * 8) +

keyLength.getOffset();
111 char temp = 138;
112 //output all the complete bytes of the codeword
113 for(unsigned int index = 0;index<keyLength.getIndex();index++)
114 {
115 tempString[0] = (tempString[0] | (key[index] <<

shift));
116 tempString[1] = ~(((~((unsigned char)0))<<shift) |

(~(tempString[1] |
117 (key[index]>> (8 - shift)))));
118 outputFile.write(tempString,1);
119 tempString[0] = tempString[1];
120 tempString[1] = 0;
121 }
122 //output any remaining bits
123 if(keyLength.getOffset()!=0)
124 {
125 tempString[0] = tempString[0] | (key[keyLength.getIndex()]

<< shift);
126 tempString[1] = tempString[1] | (key[keyLength.getIndex()]

>> (8 - shift));
127 shift += keyLength.getOffset();
128 if(shift > 7)
129 {
130 outputFile.write(tempString,1);
131 tempString[0] = tempString[1];
132 tempString[1] = 0;
133 shift = shift%8;
134 }
135 }
136 //read the next charater out of the file
137 sourceFile.read(byte,1);
138 }

 - 35 -

139 //output any remainding bits
140 if(shift != 0)
141 {
142 outputFile.write(tempString,1);
143 }
144 delete tempString;
145 delete frequencyList;
146 closeFiles();
147 }
148
149 char* H3Compressor::getNameFromUser()
150 {
151 char* fileName = new char[20];
152 if(mode)
153 {
154 cout<<"Please input the file you wish to compress. ";
155 }
156 else
157 {
158 cout<<"Plaese input the file you wish to decompress. ";
159 }
160 cin.getline(fileName,20);
161 return fileName;
162 }
163
164 void H3Compressor::prepareFiles(char* fileName)
165 {
166 sourceFileName = fileName;
167 if(mode)
168 {//Open source in text mode if compressing
169 sourceFile.open(fileName,ios::in);
170 if(!sourceFile)
171 {
172 cout<<"Failed to open sourceFile"<<endl;
173 exit(0);
174 }
175 }
176 else
177 {//Open source in binary mode if decompressing
178 sourceFile.open(fileName,ios::in | ios::binary);
179 if(!sourceFile)
180 {
181 cout<<"Failed to open sourceFile"<<endl;
182 exit(0);
183 }
184 }
185 if(mode)
186 {//Open output in binary mode if compressing
187 const char* CompressedFile = "Compressed File";
188 outputFile.open(CompressedFile,ios::out | ios::trunc |

ios::binary);
189 if(!outputFile)
190 {
191 cout<<"Failed to open outputFile"<<endl;
192 exit(0);
193 }
194 }
195 else
196 {//Open output in text mode if decompressing
197 const char* DecompressedFile = "Decompressed File.txt";
198 outputFile.open(DecompressedFile,ios::out | ios::trunc);
199 if(!outputFile)
200 {

 - 36 -

201 cout<<"Failed to open outputFile"<<endl;
202 exit(0);
203 }
204 }
205 }
206
207 void H3Compressor::closeFiles()
208 {
209 sourceFile.close();
210 outputFile.close();
211 }
212
213 char* H3Compressor::getFileFrequency(int &charaterListSize)
214 {//the function retrun a list of letter in order of the most frequent (index 0)

to the least
215 //frequent
216 char* charaterList = 0;
217 charaterListSize = 0;
218 unsigned char* byte = new unsigned char[1];
219 unsigned long int tempFrequencyList[256];
220 for(unsigned long int i = 0;i<256;i++)
221 {
222 tempFrequencyList[i] = 0;
223 }
224 sourceFile.read(byte,1);
225 while(sourceFile.gcount() !=0)
226 {
227 if(tempFrequencyList[(int)byte[0]] == 0)
228 {
229 charaterListSize++;
230 }
231 tempFrequencyList[(int)byte[0]]++;
232 originalFileSizeBytes++;
233 sourceFile.read(byte,1);
234 }
235 resetSourceFile();
236 charaterList = new char[charaterListSize];
237 for(int t = 0; t < charaterListSize; t++)
238 {
239 charaterList[0] = 0;
240 }
241 unsigned long int tempNum = 0;
242 for(int k = 0; k < charaterListSize; k++)
243 {
244 tempNum = 0;
245 for(int j = 0;j<256;j++)
246 {
247 if(tempFrequencyList[j] > tempNum)
248 {
249 tempNum = tempFrequencyList[j];
250 charaterList[k] = j;
251 }
252 }
253 tempFrequencyList[(int)charaterList[k]] = 0;
254 }
255 return charaterList;
256 }
257
258 void H3Compressor::resetSourceFile()
259 {
260 sourceFile.close();
261 if(mode)
262 {//Open source in text mode if compressing

 - 37 -

263 sourceFile.open(sourceFileName,ios::in);
264 if(!sourceFile)
265 {
266 cout<<"Failed to open sourceFile"<<endl;
267 exit(0);
268 }
269 }
270 else
271 {//Open source in binary mode if decompressing
272 sourceFile.open(sourceFileName,ios::in | ios::binary);
273 if(!sourceFile)
274 {
275 cout<<"Failed to open sourceFile"<<endl;
276 exit(0);
277 }
278 }
279 }
280
281 int H3Compressor::findLetter(char letter,char* charaterList)
282 {
283 int count = 0;
284 while(1)
285 {
286 if(charaterList[count] == letter)
287 {
288 return count;
289 }
290 count++;
291 }
292 return 0;
293 }
294
295 void H3Compressor::decompressFile()
296 {
297 mode = false;
298 prepareFiles(getNameFromUser());
299 //get the number of letters different letters of the original
300 char* fileGetter = new char[1];
301 char* outToFile = new char[1];
302 sourceFile.read(fileGetter,1);
303 int letterListSize = fileGetter[0];
304 //get the letter list
305 char* letterList = new char[letterListSize];
306 sourceFile.read(letterList,letterListSize);
307 //getnerate the serch tree
308 KeyList searchTree;
309 searchTree.generateLetterSearchTree(letterListSize,letterList);
310 //translate charaters
311 sourceFile.read(fileGetter,1);
312 unsigned long int key = 0;
313 unsigned long int keyMarker = 1;
314 while(sourceFile.gcount() != 0)
315 {
316 int byteMaker = 1;
317 char letter;
318 for(int shift = 0;shift<8;shift++)
319 {
320 byteMaker = 1;
321 byteMaker = byteMaker << shift;
322 if((fileGetter[0] & byteMaker) != 0)
323 {
324 key = key | keyMarker;
325 }

 - 38 -

326 keyMarker = keyMarker << 1;
327 if(searchTree.findLetterInTree(key,letter))
328 {
329 outToFile[0] = letter;
330 outputFile.write(outToFile,1);
331 keyMarker = 1;
332 key = 0;
333 }
334 }
335 sourceFile.read(fileGetter,1);
336 }
337 }
338
339 void H3Compressor::displayStatistics(){
340 cout<<"The original file size is: "<<endl;
341 cout<<originalFileSizeBytes<<" bytes or"<<endl;
342 cout<<originalFileSizeBytes * 8<<" bits"<<endl<<endl;
343 unsigned long int compressedFileSizeBytes = 0;
344 compressedFileSizeBytes = compressedFileSizeBits / 8;
345 if((compressedFileSizeBits%8) != 0)
346 {
347 compressedFileSizeBytes++;
348 }
349 cout<<"The compressed file size is: "<<endl;
350 cout<<compressedFileSizeBytes<<" bytes"<<endl;
351 cout<<compressedFileSizeBits<<" bits "<<compressedFileSizeBytes * 8
352 <<" actual bits"<<endl<<endl;
353 cout<<"compresstion ratio: "<<(unsigned long

double)((double)originalFileSizeBytes/
354 (double)compressedFileSizeBytes);
355 cout<<" (bytes)"<<endl;
356 cout<<"compresstion ratio: "<<(unsigned long double)((unsigned long

double)
357 (originalFileSizeBytes * 8)/compressedFileSizeBits);
358 cout<<" (bits)"<<endl<<endl;
359 unsigned long double percentOfOriginalBytes = 0;
360 unsigned long double percentOfOriginalBits = 0;
361 percentOfOriginalBytes = (double)((double)compressedFileSizeBytes/
362 (double)originalFileSizeBytes) * 100;
363 cout<<"percent of original: "<<percentOfOriginalBytes<<"%

(bytes)"<<endl;
364 percentOfOriginalBits = (double)((double)compressedFileSizeBits /
365 (double)(originalFileSizeBytes * 8) * 100);
366 cout<<"percent of original: "<<percentOfOriginalBits<<"%

(bits)"<<endl<<endl;
367 cout<<"percent savings: "<<(double)(100 - percentOfOriginalBytes)<<"%

(bytes)"<<endl;
368 cout<<"percent savings: "<<(double)(100 - percentOfOriginalBits)<<"%

(bits)"<<endl;
369
370 }
371
372 #endif

 - 39 -

373 //KeyList.h
374 /*
375 Jeremy Brown
376 Thesis Poject
377 KeyList class
378 Last Updated: 2/15/04
379 */
380 #ifndef keyList_h_
381 #define keyList_h_
382
383 #include <math.h>
384 #include "BitIndex.h"
385
386 /*
387 KeyList generate prefix codes that are comprsed of multiples of three

backwards.
388 It will aslso genetate a decoding tree for decompression
389 */
390
391 struct KeyEntry
392 {
393 public:
394 char* key;
395 BitIndex keySize;
396 };
397
398 struct LetterTreeNode
399 {
400 LetterTreeNode* one;
401 char letter;
402 LetterTreeNode* zerro;
403 };
403
405 class KeyList
406 {
407 private:
408 KeyEntry* keysList;//list of prefix codes
409 int keysListSize;
410
411 LetterTreeNode* searchTree;
412
413 int getNumBits(unsigned long int number);//finds the numbers of bits in

a number
414 unsigned long int getSubBitStringFrom1To(int nthBit,unsigned long int

number);
415 bool isAaPostfixOfB(unsigned long int a,unsigned long int b);
416 unsigned long int* generateTempList(int& tempListSize,int &numKeys);
417
418 public:
419
420 KeyList();
421 ~KeyList();
422 KeyEntry getKey(int index);
423 void generateKeyList(int numKeys);
424 void displayListContents();
425 void generateLetterSearchTree(int numKeys,char* letterList);
426 bool findLetterInTree(unsigned long int key,char& letter);
427 };
428
429 KeyList::KeyList()
430 {
431 keysListSize = 0;

 - 40 -

432 keysList = 0;
433 searchTree = new LetterTreeNode;
434 (*searchTree).one=0;
435 (*searchTree).zerro=0;
436 }
437
438 KeyList::~KeyList()
439 {
440 for(int index = 0;index<keysListSize;index++)
441 {
442 //delete keysList[index].key;
443 }
444 if(keysList != 0)
445 {
446 delete keysList;
447 }
448 }
449
450
451 unsigned long int* KeyList::genrateTempList(int& tempListSize,int &numKeys)
452 {
453 unsigned long int key = 0;
454 unsigned long int* tempKeyList = new unsigned long int [numKeys];
455 tempListSize = 0;
456 bool keyNotInList = false;
457
458 while(tempListSize != numKeys)
459 {
460 key +=3;
461 keyNotInList = true;
462 //see if any of the keys in the list are a postfix of the new key
463 if(tempListSize != 0)
464 {
465 for(int i = 0;i<tempListSize;i++)
466 {
467 if(isAaPostfixOfB(tempKeyList[i],key))
468 {
469 keyNotInList = false;
470 }
471 }
472 }
473 //add the key to the list if it does not have a postfix in the

list
474 if(keyNotInList)
475 {
476 tempKeyList[tempListSize]=key;
477 tempListSize++;
478 }
479 }
480 return tempKeyList;
481
482 }
483
484 void KeyList::generateKeyList(int numKeys)
485 {//generates a key list of multiples of three that are not postfixes of each

other
486 //or prefixes backwards.
487 keysList = new KeyEntry[numKeys];
488 keysListSize = numKeys;
489 int tempListSize = 0;
490 unsigned long int* tempKeyList = generateTempList(tempListSize,numKeys);
491 for(int k = 0;k < tempListSize;k++)
492 {

 - 41 -

493 KeyEntry entry;
494 int numBits = getNumBits(tempKeyList[k]);
495 int numBytes = (int)ceil((double)(numBits/8));
496 entry.keySize+=numBits;
497 entry.key = new char[numBytes];
498 for(int p =0;p<=numBytes;p++)
499 {
500 entry.key[p] = 0;
501 }
502 unsigned int long intMarker = 1;
503 for(int index = 0;index <= numBytes;index++)
504 {
505 int charMarker = 1;
506 for(int i = 0;i<8;i++)
507 {
508 if(intMarker & tempKeyList[k])
509 {
510 entry.key[index] = entry.key[index] |

charMarker;
511 }
512 charMarker = charMarker << 1;
513 intMarker = intMarker << 1;
514 }
515 }
516 keysList[k]=entry;
517 }
518 delete tempKeyList;
519 }
520
521
522 bool KeyList::isAaPostfixOfB(unsigned long int a,unsigned long int b)
523 {//return true if a is a postfix of be otherswist it is false
524 if(getSubBitStringFrom1To(getNumBits(a),b) == a)
525 {
526 return true;
527 }
528 return false;
529 }
530
531
532 int KeyList::getNumBits(unsigned long int number)
533 {
534 unsigned long int marker = 2147483648;//10000000000000000000000000000000

in binary
535 int numbits = 32;
536 while((!(marker & number)) && (numbits>0))
537 {
538 numbits --;
539 marker = marker >> 1;
540 }
541 return numbits;
542 }
543
544 unsigned long int KeyList::getSubBitStringFrom1To(int nthBit,unsigned long int

number)
545 {//this funtion will return the number formed from the substirng of number from

the
546 //first bit to the nth bit
547
548 int shift = 32 - nthBit;
549 number = number << shift;
550 number = number >> shift;
551 return number;

 - 42 -

552 }
553
554 void KeyList::displayListContents()
555 {
556 for(int i = 0;i<keysListSize;i++)
557 {
558 cout<<"key size: ";keysList[i].keySize.displayPosition();cout<<"

Key:";
559 for(unsigned int j = 0;j<=keysList[i].keySize.getIndex();j++)
560 {
561 cout<<(int)keysList[i].key[j]<<" ";
562 }
563 cout<<endl;
564 }
565 }
566
567 KeyEntry KeyList::getKey(int index)
568 {
569 if(index < keysListSize)
570 {
571 return keysList[index];
572 }
573 else
574 {
575 cout<<"Error in KeyList.getKey: invalid index"<<endl;
576 exit(0);
577 }
578 }
579
580 void KeyList::generateLetterSearchTree(int numKeys,char* letterList)
581 {
582 LetterTreeNode* treeNode = searchTree;
583 int tempListSize = 0;
584 unsigned long int* tempKeyList = generateTempList(tempListSize,numKeys);
585 int keySize = 0;
586 unsigned long int key = 0;
587 //add each key to the list
588 for(int index = 0;index<tempListSize;index++)
589 {
590 treeNode = searchTree;
591 key = tempKeyList[index];
592 keySize = getNumBits(key);
593 unsigned long int marker = 1;
594 //add a letter to the list
595 for(int bitNum = 0;bitNum<keySize;bitNum++)
596 {
597 marker = 1;
598 marker = marker << bitNum;
599 if(marker & key)
600 {//if the bit is one add a node to the one's side
601 if((*treeNode).one == 0)
602 {
603 (*treeNode).one = new LetterTreeNode;
604 //set blank node
605 (*(*treeNode).one).one = 0;
606 (*(*treeNode).one).zerro = 0;
607 }
608 treeNode = (*treeNode).one;
609 }
610 else
611 {//if the bit is zerro add a node to the zerro's side
612 if((*treeNode).zerro == 0)
613 {

 - 43 -

614 (*treeNode).zerro = new LetterTreeNode;
615 //set blank node
616 (*(*treeNode).zerro).one = 0;
617 (*(*treeNode).zerro).zerro = 0;
618 }
619 treeNode = (*treeNode).zerro;
620 }
621 }
622 (*treeNode).letter = letterList[index];
623 }
624 }
625
626 bool KeyList::findLetterInTree(unsigned long int key,char& letter)
627 {
628 LetterTreeNode* treeNode = searchTree;
629 int keySize = 0;
630 keySize = getNumBits(key);
631 if(keySize != 0)
632 {
633 unsigned long int marker = 1;
634 //find key in list
635 for(int bitNum = 0;bitNum<keySize;bitNum++)
636 {
637 marker = 1;
638 marker = marker << bitNum;
639 if(marker & key)
640 {//if the bit is one go to the one node
641 if((*treeNode).one == 0)
642 {
643 return false;
644 }
645 treeNode = (*treeNode).one;
646 }
647 else
648 {//if the bit is zerro go to the zerro node
649 if((*treeNode).zerro == 0)
650 {
651 return false;
652 }
653 treeNode = (*treeNode).zerro;
654 }
655 }
656 if(((*treeNode).one == 0) && ((*treeNode).zerro == 0))
657 {
658 letter = (*treeNode).letter;
659 return true;
660 }
661 else
662 {
663 return false;
664 }
665 }
666 else
667 {
668 return false;
669 }
670 }
671
672 #endif

 - 44 -

673 //BitIndex.h
674 /*
675 Jeremy Brown
676 Thesis Poject
677 BitIndex class
678 Last Updated: 2/15/04
679 */
680 #ifndef bitindex_h_
681 #define bitindex_h_
682
683 #include <stdlib.h>
684 /*
685 This class stores a spot of a particular bit in an array
686 */
687
688 class BitIndex
689 {
690 private:
691 unsigned long int index;//index in the array of bytes
692 unsigned int offset;//offset (index of the bit in the byte)
693
694 public:
695 BitIndex();
696 BitIndex(unsigned long int newIndex,int newOffset);
697 void setIndexAndOffset(unsigned long int newIndex,int newOffset);
698 unsigned long int getIndex();
699 void setIndex(unsigned long int newIndex);
700 unsigned int getOffset();
701 void setOffset(unsigned long int newOffset);
702 void displayPosition();
703
704 void operator=(unsigned long int numBits);
705 void operator+=(unsigned long int numBits);
706 BitIndex operator+(unsigned long int numBits);
707 BitIndex operator-(unsigned long int num);
708 bool operator<(BitIndex compareIndex);
709 bool operator==(BitIndex compareIndex);
710 bool operator<=(BitIndex compareIndex);
711 unsigned int operator-(BitIndex compareIndex);
712 };
713
714 BitIndex::BitIndex()
715 {
716 index = 0;
717 offset = 0;
718 }
719
720
721 BitIndex::BitIndex(unsigned long int newIndex,int newOffset)
722 {
723 index = newIndex;
724 offset = newOffset;
725 }
726
727 void BitIndex::setIndexAndOffset(unsigned long int newIndex,int newOffset)
728 {
729 index = newIndex;
730 offset = newOffset;
731 }
732
733 unsigned long int BitIndex::getIndex()
734 {

 - 45 -

735 return index;
736 }
737
738 void BitIndex::setIndex(unsigned long int newIndex)
739 {
740 index = newIndex;
741 }
742
743 unsigned int BitIndex::getOffset()
744 {
745 return offset;
746 }
747
748 void BitIndex::setOffset(unsigned long int newOffset)
749 {
750 offset = newOffset;
751 }
752
753 void BitIndex::displayPosition()
754 {
755 cout<<"BitIndex: Index: "<<index<<" Offset Index: "<<offset<<endl;

756 }
757
758 void BitIndex::operator=(unsigned long int numBits)
759 {
760 offset = numBits%8;
761 index = (numBits - offset)/8;
762 }
763
764 void BitIndex::operator+=(unsigned long int numBits)
765 {
766 int leftover = numBits%8;
767 numBits = numBits - leftover;
768 if((leftover + offset) >= 8)
769 {
770 index++;
771 offset = leftover + offset - 8;
772 }
773 else
774 {
775 offset = leftover + offset;
776 }
777 index = index + (numBits/8);
778 }
779
780 BitIndex BitIndex::operator+(unsigned long int numBits)
781 {
782 int leftover = numBits%8;
783 numBits = numBits - leftover;
784 unsigned long int tempIndex = index;
785 unsigned int tempOffset = offset;
786 if((leftover + tempOffset) >= 8)
787 {
788 tempIndex++;
789 tempOffset = leftover + tempOffset - 8;
790 }
791 else
792 {
793 tempOffset = leftover + tempOffset;
794 }
795 tempIndex = tempIndex + (numBits/8);
796 BitIndex newIndex(tempIndex,tempOffset);

 - 46 -

797 return newIndex;
798 }
799
800 BitIndex BitIndex::operator-(unsigned long int num)
801 {
802 unsigned long int tempIndex = index;
803 unsigned int tempOffset = offset;
804
805 if((tempIndex != 0) || (tempOffset != 0))
806 {
807 if(tempOffset != 0)
808 {
809 tempOffset--;
810 }
811 else
812 {
813 tempIndex--;
814 tempOffset = 7;
815 }
816
817 }
818 else
819 {
820 cout<<"Error in BitIndex.operator-: cannot have negative

index"<<endl;
821 exit(0);
822 }
823 BitIndex newIndex(tempIndex,tempOffset);
824 return newIndex;
825 }
826
827
828
829 bool BitIndex::operator<(BitIndex compareIndex)
830 {
831 if(index < compareIndex.getIndex())
832 {
833 return true;
834 }
835 if((index == compareIndex.getIndex()) && (offset <

compareIndex.getOffset()))
836 {
837 return true;
838 }
839 return false;
840 }
841
842 bool BitIndex::operator==(BitIndex compareIndex)
843 {
844 if((index == compareIndex.getIndex()) && (offset ==

compareIndex.getOffset()))
845 {
846 return true;
847 }
848 return false;
849 }
850
851 bool BitIndex::operator<=(BitIndex compareIndex)
852 {
853 return ((*this) < compareIndex) || ((*this) == compareIndex);
854 }
855
856 unsigned int BitIndex::operator-(BitIndex compareIndex)

 - 47 -

857 {
858 unsigned int tempIndex = index;
859 unsigned int tempOffset = offset;
860 if(compareIndex<(*this))
861 {
862
863 tempIndex = tempIndex - compareIndex.getIndex();
864 if(tempOffset>=compareIndex.getOffset())
865 {
866 tempOffset = tempOffset - compareIndex.getOffset();
867 }
868 else
869 {
870 tempIndex--;
871 tempOffset = (tempOffset - compareIndex.getOffset())%8;
872 }
873 }
874 else
875 {
876 cout<<"Error in BitIndex: cannot have a negative index"<<endl;
877 exit(0);
878 }
879 return 8*tempIndex+tempOffset;
880 }
881
882 #endif

 - 48 -

Appendix D

Bibliography

Works Cited

Goebel, Greg. “Introduction / Lossless Data Compression.” 1 May 2003. 9 Nov. 2004

http://www.vectorsite.net/ttdcmp1.html .

Hirshberg, Daniel S., and Debra A. Lelewer. “Data Compression.” 8 Nov. 2004

http//www.ics.uci.edu/~dan/pubs/DataCompression.html .

LewLand, Robert Edward. Cryptological Mathematics. The Mathematical Association of

America, 2000.

Sacco, William, et al. Information Theory: Saving Bits. Providence: Janson Pub. Inc., 1988.

Sayhood, Khalid. Introduction to Data Compression. San Francisco: Morgan Kaufmann

Publishers, Inc., 1996.

Sayood, Khalid, ed. Lossless Compression Handbook. San Francisco: Academic Press, 2003.

 - 49 -

http://www.vectorsite.net/ttdcmp1.html
http://www.ics.uci.edu/~dan/pubs/DataCompression.html

Works Consulted

Schildt, Herbert. C/C++ Programmer’s Reference. 3rd ed. New York: McGraw – Hill/Osborne,

2003.

 - 50 -

	Alternative to Huffman: Prefix Codes That Are Multiples of T
	Huffman vs. Multiples of Three Backwards

