
Chapter 1 

A Brief Survey of Data Compression 

“Data compression is the art or science of representing information in a compact form” 

(Introduction to Data 1).  Data can take the form of numbers, text, recorded sound, images, and 

movies. Even the notes that students take for a test or the charts and PowerPoint slides business 

people use to give presentations are common forms of compressing data.  In any case, these 

“compact forms” are created by identifying unique repetition and other various patterns and 

structures particular to each medium of data.  Though informal compression, like taking notes, 

has been around for a long time, mass storage of data and the need and ability to compress data 

did not arrive until the advent of the computer.  One reason for this is that “Data compression is 

of interest in business data processing, both because of the cost savings it offers and because of 

the large volume of data manipulated in many business applications” (Hirschberg).  That is not to 

say that no compression systems existed before computers, but computers make data 

compression highly practical.  

Two classic early forms of compression that most are familiar with are Morse Code and 

Braille. Both were developed in the mid-nineteenth century and owe their compression to the 

statistical structure of the English language.  When Samuel Morse developed his system of 

dashes and dots to send over telegraph wires, he noticed that several of the letters being sent 

occurred more than others. In order to save time, Morse assigned the more frequent characters 

such as ‘e’ and ‘a’ shorter codes, and less frequent characters such as ‘q’ and ‘j’ longer 

sequences.  This concept is the basis behind Huffman encoding, which will be discussed more in 

depth in the next chapter.  The other major compression technique of the time, Braille, not only 

exploited the frequency of characters, but also took advantage of the frequencies of certain 
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words. Braille coding uses 2 X 3 arrays of dots, two of which are raised (the others are left flat).  

This results in 26 or 64 possible combinations.  Twenty-six letters are used in grade one Braille, 

leaving 38 combinations. In grade two Braille, the remaining combinations frequently represent 

common words such as “and” and “for.”  One combination is used to signal that the next set of 

dots is a word and not a character, which allows for a larger number of words.  “These 

modifications, along with contractions of some of the words, result in an average reduction in 

space, or compression, of about 20%” (qtd. in Introduction to Data 1).  While frequency 

characteristics play a major role in many modern text compression algorithms, limitations of 

human perception are also often exploited in compression of sound and graphics.  

Humans experience reality through the five senses with their respective interpretations 

determined by the human brain.  This ability to sense and interpret information, however, is not 

without limitation. For example, high frequency sounds that dogs can hear are completely 

imperceptible by the human hear.  Thus, any frequencies in sound files or audio transmissions 

that cannot be heard by the human ear can be omitted with little, if any, perceived loss of quality.  

A similar case can be made for image information.  The eye can distinguish a wide variety of 

hues, or shades of color, but some colors are so similar that the eye simply cannot perceive the 

difference.  Thus one color could be used in place of two, which would be useful if the 

compression routine used relied on repletion of pixels.  

One may think with the advent of new technologies, such as fiber optics and DVDs, that 

allow for increased transmission speeds and storage capacity, the need for compression may not 

be as important as it once was.  This assumption could not be further from the truth, for “It seems 

that the need for mass storage and transmission increases at least twice as fast as storage and 

transmission capacities improve” (Introduction to Data 3).  Many of the technologies that we 
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take for granted, such as the fax machine and modem, would be so slow that they would be 

impractical in many cases without the use of compression.  Another relatively new technology 

that owes a great deal to compression is High Definition Television (HDTV).  Without 

compression, transmitters would need to transmit 884 Mbits per second, requiring a bandwidth 

of 220 MHz, but with compression, transmitters only need to transmit less than 20 Mbits per 

second, requiring only six MHz of bandwidth, the amount allocated for analogue television in the 

United States (Introduction to Data 2).  Modern technology requires compression to work 

efficiently, which has given rise to several types and variations of data compression. 

There are two major types of data compression, lossless and lossy. A, “compression 

algorithm that takes an input χ and generates a representation χc that requires fewer bits, and 

there is a reconstruction algorithm that operates on the compressed representation χc  to generate 

the reconstruction ϒ” (Introduction to Data 3).  There is no difference between χ and ϒ in the 

case of lossless compression.  ϒ is similar to χ in the case of lossy compression and deviates 

from χ in varying degrees depending upon the desired quality.  Further discussion of lossless 

compression will be reserved for later, but it is important to note that both types of compression 

are often used together to achieve the highest compression ratios, and are sometimes “combined 

with error correcting codes to provide both compression and data integrity…” (Hirschberg).   

“Lossy compression, in contrast [to lossless compression], works on the assumption that 

the data doesn’t have to be stored perfectly” (Goebel), nor restored exactly back to its original 

state.  Distortion is the term used to describe how similar the reconstructed data is to the original.  

Why would someone want to leave out some information?  One reason is that leaving 

information out means there is less information to be stored.  Another reason is simply that not 

all the information is needed. Consider, again the example of frequencies that humans cannot 
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hear being taken out of sources that contain sound information.  Many frequencies and other bits 

of information can be taken out, and when the information is reconstructed, the sound produced 

is still intelligible to the human ear.  The amount of distortion allowed is generally determined by 

how much loss of quality can be tolerated.  “If the quality of the reconstructed speech is to be 

similar to that heard on the telephone, a significant loss of information can be tolerated.  

However, if the reconstructed speech needs to be of the quality heard on a compact disc, the 

amount of information loss that can be tolerated is relatively low” (Introduction to Data 5).  The 

same holds true for images as well; minor loss of quality for pictures and video often are barely 

noticeable, so lossy compression is often used when compressing such data.  However, as will be 

seen in the discussion of lossless compression, many situations, including those involving sound 

and video, cannot tolerate any distortion.   

As previously stated, lossless compression involves no loss of data and is generally used 

on discrete data.  While the focus of modern compression was once on lossless compression, 

“…a significant amount of discrete data in the form of text, graphics, images, video, and audio 

that needs to be stored or transmitted, and display devices are of such quality that very little 

distortion can be tolerated”  (Lossless Compression).  In the case of the text, small discrepancies 

in the reconstructed text would at the very least be misleading, if not completely unintelligible.  

If a battle commander were sent a compressed message that said, “Do not go to battle today,” but 

when the message was reconstructed for soldiers in the field, the message said, “Do now go to 

battle today,” heavy casualties could be suffered by the soldiers because a lossy compression 

threw out information on a single letter.  There are cases; however, where lossy compression 

would yield a respectable replica of the original, but when the data is to be processed or 

enhanced, the small, seemingly unnoticeable discrepancy becomes much larger.  In a compressed 
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radiological image, for example, the radiologist may want a certain area of the image enhanced 

in order to better diagnose a problem.  If the enhancement focused on the one of the previously 

undetectable differences, the enhanced image would contain serious flaws and could seriously 

mislead the radiologist, and put someone’s life in great jeopardy.  This example illustrates the 

importance of understanding the limitations of a compression algorithm.  

In order to be able to appreciate an algorithm’s abilities, the abilities must first be 

measured.  There are several ways to measure the performance of a compression algorithm: “the 

relative complexity of the algorithm, the memory required to implement the algorithm, how fast 

the algorithm performs on a given machine, the amount of compression, and how closely the 

reconstruction resembles the original”(Introduction to Data 5).  One of these measurements, 

distortion, has been mentioned previously.  Other common terms for distortion include fidelity 

and quality, and if the fidelity and quality are high, then the reconstructed version is very close to 

the original.  While many of these measurements are beyond the scope of this thesis, the amount 

of compression is a measure that will be used extensively.  One way to measure the amount of 

compression is to compute the ratio of the number of bits in the original data to the number of 

bits in the compressed data.  “Lossless compression ratios are generally in the range of 2:1 to 

8:1” (Hirschberg).  For example, suppose that a file requires 95,934 bytes of storage, and after 

compression, that file occupies only 15,989 bytes of storage.  Then the ratio would be 6:1.  

Another way to measure the amount of compression is the compression rate or, “the average 

number of bits required to represent a singe sample” (Introduction to Data 5).  Continuing with 

the previous example, let one byte be a single sample, and let there be eight bits per byte.  Since 

the average number of bits per byte of the original is six then the correct terminology would be 

that, “the rate is six bits per byte.”  
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 “Compressing data to be stored or transmitted reduces storage and/or communication 

costs” (Hirschberg).  With its appealing reduction of cost and all around utility, compression has 

helped create and in some ways made possible the highly technological world people enjoy 

today. As a catalyst for the storage and transmission of data, compression is and will be an 

important tool of the information age.  
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Chapter 2 

Huffman Coding 

Huffman Coding “…was developed by David Huffman as part of a class assignment; the 

class was the first ever in the area of information theory and was taught by Robert Fano at MIT” 

(qtd. in Introduction to Data 27). Before Huffman’s new system, the majority of algorithms 

relied on the fact that some data contained certain distributions or patterns of data that could be 

exploited, such as the Golomb coding which assumes a geometric distribution (Lossless 

Compression 27).  In order to compress information one would have to use a permutation to 

achieve the proper distribution necessary for the given algorithm.  Since the distributions that are 

produced from the permutations are unlikely to fit exactly, a certain level of inefficiency is 

introduced.  On top of that, the information of the permutation must also be stored.  Huffman 

presented a huge leap in compression and “was the first to give an exact, optimal algorithm to 

code symbols from an arbitrary distribution” (qt. in Sayood Handbook 79).  Proof of why 

Huffman is the optimal algorithm for arbitrary distributed data requires several layers of proof 

that are beyond the scope of this Thesis; however, a thorough explanation of how Huffman 

coding weaves its compressing ways over arbitrarily distributed code will be included.  First, 

however, a few key definitions and concepts must be understood. 

Huffman coding is a particular way of assigning, “binary sequences to elements of an 

alphabet. The set of binary sequences is called a code and the individual members of the set are 

called codewords. An alphabet is a collection of symbols called letters”(Introduction to Data 25). 

As previously mentioned compression ratios and rates are good ways to see how well an 

algorithm compresses. A good indicator of how much compression will occur is the average 
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length of the code. In the chart and the equation below let a1, a2, a3, a4 be the letters of a four 

letter alphabet with the probabilities
2
1)( 1 =aP ,

4
1)( 2 =aP , and 

8
1)()( 43 == aPaP .   

Letters Code 1 Code 2 Code 3 Code 4 

1a   0  0  0  0 

2a   0  1  10  01 

3a   1  00  110  011 

4a   10  11  111  0111 

Average length 1.125 1.25 1.75 1.875 
(Table 2.1) 
 
“The average length, l, for each code is given by 

     (Equation 2.1) ∑
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where n(ai) is the number of bits in the codeword for letter ai and the average length is in 

bits/symbol.” (Introduction to Data 26).  Multiplying the number of charaters in a particular 

message will yield the approximate number of bits after compression.   

Consider the four codes in the table above, and examine the properties of each code. The 

first code yields the lowest average length, but proves not to be useful for coding because  and 

 have the same codeword, 0.  When the reconstruction program goes to decode 0, it will have 

no way to determine whether the letters 

1a

2a

1a  or 2a  were intended.  Unlike code 1, code 2 has 

unique codewords for each of the letters, but it too has problems with ambiguity when it is 

immersed among other codewords.  For example, if the binary string 100 were found in 

compressed text, the reconstructor could decode it as    or  .  In other words, it 

doesn’t have unique decodability and isn’t distinct.  “A distinct code is uniquely decodable if 

every codeword is identifiable when immersed in a sequence of codewords” (Hirschburg).  If 

2a 1a 1a 2a 3a
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tested Codes 3 and 4 would prove to be uniquely decodable.  Code 3 has an additional property 

called the prefix property.  “A uniquely decodable code is a prefix code (or prefix-free code) if it 

has the prefix property, which requires that no codeword is a proper prefix of any other 

codeword.  All uniquely decodable block-block and variable-block codes are prefix codes” 

(Hirschburg).  Now that it is clear what codewords are desirable, lets look at this problem from 

the letter’s point of view.  

Samples, blocks, letters, and symbols are different ways of describing sections of the 

original data that is to be compressed.  Samples are of no particular length but, at least in this 

context, cannot be smaller than the smallest unit.  In general, the smallest unit is called a letter. 

Symbols or letters have the potential to be of variable length or of fixed length number of bits 

depending upon the nature of the data.  All the following examples and references to letters will 

refer to those of fixed length.  For example in standard ASCII code seven bits of information are 

required to represent a character.  The character A is coded as 1000001, and the comma is 

0011010 just to name a few.  The smallest unit of addressable memory is the byte, which is eight 

bits, so an extra parity bit is often added to the end of the code for purposes of data integrity.  

Well, if it all comes down to bits anyway; why not pick a letter of size four or five for purposes 

of compression instead of the letter length (in this case eight)?  It is possible to deal with four or 

five bits at a time, but since every eight bits corresponds to an English letter, punctuation, or 

symbol, patterns in the English language can be used to effectively compress the letters.  While it 

is unlikely that anything smaller than a letter could present its own unique pattern, it is possible 

to combine letters together to achieve a better distribution of letters.  “Codes that bunch 

(combine) source element symbols are called block codes.  Diagrams and trigrams are examples 

of block codes. Shannon’s theorem allows for block codes to achieve the lowest possible cost.  In 
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most situations, block codes are required to achieve a desired cost” (Sacco 10).  The term cost 

refers to the average block (or word) length.  Now that codewords and letters have been defined, 

it is now time to figure how to match the two together.  

Huffman coding uses an ingenious yet simple way to find the codeword for each letter 

using binary trees.  The best way to explain the technique is to illustrate it with an example, so 

assume that a file has the letters below and that they occur according to the probabilities as 

indicated. Arrange the probabilities in ascending order. 

(figure 2.1) 

Now combine the lowest two probabilities and give the result its own “node” connected to the to 

the parent nodes “m” and “u.”  The new node represents the probability that ‘m’ or ‘u’ will be 

occur if a letter is selected of random from the file. 

 (figure 2.2) 

Then do the same with the next two smallest probabilities. 

(figure 2.3) 

Now note in the next step that it does not matter whether one of the original or one of the new 

combined probabilities is chosen, so long as it is one of the smallest two probabilities.  

(figure 2.4) 

Continue the same process for the next two probabilities.  
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(figure 2.4) 

Now we have run into a slight problem. In the previous steps the two lowest probabilities have 

been next to each other.  Now for a computer this would be no problem, but conceptually and in 

terms of drawing pictures it is simpler just to reorder the probabilities. 

(figure 2.5) 

The final three steps are illustrated below. 

(figure 2.6) 

(figure 2.7) 
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(figure 2.8) 

At the conclusion of this process, what remains is a tree with a trunk, or final node of 1.000, 

whose upper most leaves are the letters from the file.  Note that since the letters were rearranged 

before step five there are no crossing lines. Note that starting from the trunk, the path to each leaf 

is unique. Let ‘L’ denote a left branch and ‘R’ denote a right branch.  The paths to each leaf are 

listed in the table below.  

(Table 2.2) 

Now reading from top to bottom and putting a ‘1’ in place of an ‘L’ and ‘0’ for ‘R.’ the 

following table can be constructed. 

(Table 2.3) 

Note that the codes formed from this process are prefix codes, and the codes’ lengths are directly 

related to the letter’s probability.  Since the process started with the lesser probabilities first the 
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lesser probable letters got longer codes, which is part of the key to Huffman coding.  Now with 

these codes let’s run through an example of how Huffman would code a file.  

Conceptually speaking, the nuts and bolts of how to do Huffman coding are fairly simple. 

Once the codewords have been created it is a simple matter of replacing each letter with its 

codeword.  For example, if the word “quote” were found in a file containing the letters above in 

their relative frequencies then it would become “110111100111000.”  To see the compression 

the letters are changed to the ASCII binary equivalents and put on top of each other (in the first 

one spaces where put in to more easily see the letters).  

 

Letter q u o t e 
ASCII 01110001 01110101 01101111 01110100 01100101 
Huffman 1101 1110 011 10 00 
(Table 2.4) 

Letter quote 
ASCII 0111000101110101011011110111010001100101 
Huffman 110111100111000 
(Table 2.5) 

In the original word there are forty bits and there are only fifteen in the Huffman compressed 

file, a compression ratio of 8:3 at a rate of 3 bits per byte for this sample.  The rest of the file 

would follow the same pattern.  A slight overhead exists because the conversion table must also 

be stored so that the reconstruction program knows which letters go to which codes.  Speaking of 

reconstruction, the tree that was previously built to determine the codewords can be use to 

quickly look up the letters.  
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(figure 2.8) 

First start at the 1.000 and read the first bit of the compressed file. The bit is ‘1’, so take a left to 

.377. The next bit is ‘1’, so take a left to .241.  The next two bits ‘0’ and ‘1’ will go to .128 and 

finally to the letter ’q’.  This saves valuable search time over searching a list in which one would 

have to look at each element until they found the right one.  The form of Huffman just described 

was the original method developed by David Huffman, but since that time other variations of 

Huffman coding have also been developed.  

 The category of data compression that the aforementioned coding comes from is called a 

static method.  “A static method is one in which the mapping from the set of messages to the set 

of codewords is fixed before transmission begins, so that a given message is represented by the 

same codeword every time it appears in the message ensemble” (Hierschberg).  In addition to the 

classic Huffman method other static variations include Modified Huffman codes, Huffman 

prefixed Codes, extended Huffman codes, and Length-Constrained Huffman Codes.  Each 

attempts to resolve different types of limitations of classic static Huffman.  For example length-

constrained Huffman attempts to solve the problem of when the “situation arises when a 

compression application is severely constrained in time, for example, in multimedia or 

telecommunication applications, where timing is crucial”(Lossless Compression).  As the name 

implies this version limits the size of the codes that puts an upper bound on the number of steps 

needed to decode a symbol and also make better use of computer memory.  The end result is 
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greater speed of execution.  Several of the static methods mentioned also have modified versions, 

which are dynamic.   

 In many cases one cannot study the entire set of data, or even significant samples, to 

make an optimized code set, so the code must be made dynamically.  “A code is dynamic if the 

mapping from the set of messages to the set of codewords changes over time.  For example, 

dynamic Huffman coding involves computing an approximation to the probabilities of 

occurrence ‘on the fly’, as the ensemble is being transmitted” (Hierschberg).  A dynamic code 

usually starts off like a static code with a set of codewords, but as new information comes into be 

coded, new frequencies for letters emerge and the code set is updated accordingly.  Depending 

on the source of data, different levels of “look-ahead” will exist which allow for varying levels 

of optimization.  The brute force adaptive Huffman coding updates the lookup tree every time a 

new letter is encountered.  While adaptive Huffman may achieve the best compression, the time 

required to update the tree after every character can be prohibitive.  Rather than updating the tree 

consistently it could be done after every k characters.  This divides the update cost by k, but will 

reduce compression efficiency.  Another possible technique would be to update the tree only 

when the relative frequencies in the tree become severely out of balance, but again a balance 

must be struck with execution time and compression.  
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Chapter 3 

Alternative to Huffman: Prefix Codes That Are Multiples of Three Backwards 

Huffman code revolutionized data compression with its optimized prefix code.  Huffman 

coding uses trees to determine the codewords, but there are several other ways that a prefix code 

can be created.  The objective of this chapter is to investigate prefix codes that are multiples of 

three backwards (with binary), and to discuss various observations and obstacles encountered in 

the implementation of a Huffman like algorithm that uses these codewords.  

One of the first logical steps in dealing with these codewords is first finding a way to 

generate them.  Unfortunately, deriving the codewords directly from binary trees is not very 

practical as they were with Huffman codes.  The easiest way to generate this new code is to try 

each multiple of three backwards, and if any of the multiples that have already been checked are 

prefixes of the current codeword being looked at leave the codeword out.  Finding the first eight 

codewords provides one with a good framework to find subsequent codewords. (A copy of the 

first 29 codewords can be found in Appendix A.)  The first multiple of three is three, or 11 in 

binary.  11 backwards is 11, and since the list is empty 11 is added to the list.   

 

 (Figure 3.1) 

Codewords 
11 

The next multiple is 110 (6), which is 011 backwards.  The first two digits of 011 is  01 and not 

11, so 011 is added to the list.  

 

 (Figure 3.2) 

Codewords 
11 
011 

The next multiple is 1001 (9) and is the same backwards and forwards.  The first three digits of 

1001 are not 011 and the first two are not 11, so 1001 is put into the list. 
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 (Figure 3.3) 

Codewords 
11 
011 
1001 

1100 (12) is the next multiple and is 0011 backwards.  The first four digits of 0011 are clearly 

not 1001. The first three are not 011 and the first two are not 11 so 0011 is the list. 

 

 

 (Figure 3.4) 

Codewords 
11 
011 
1001 
0011 

The next multiple 1111 (15) will not be included in the list. The first two digits are 11, which are 

the same as the first codeword in the list 11, which violates the prefix-free rule. The next three 

multiples, 10010, 10101, and 11000, pass the test and are in the list. 

 

 

 

 

 (Figure 3.5) 

Codewords 
11 
011 
1001 
0011 
01001 
10101 
00011 

The next multiple 11011 (30) is left out for the same reason 1111 was; the first two digits are 11, 

which is the same as the first codeword.  The eighth item in the list is 100001 (33) and has no 

prefix of anything in the list. 
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 (Figure 3.6) 

Codewords 
11 
011 
1001 
0011 
01001 
10101 
00011 
100001 

This process effectively makes a prefix code, but one may be wondering why the choice was 

made to reverse the multiples of three.  

 The choice to reverse the numbers and read them backwards came after some trial and 

error.  The results of this experimentation showed that the size of the numbers of the prefix codes 

of multiples of three forwards increased faster than the multiples of three backwards.  This can 

be seen in the charts in appendix A.  The chart A.1 shows a side-by-side comparison of the 

codewords and their decimal equivalents, the second is a graph of the decimal equivalents, and 

the third is a graph of the sizes of the code words.  From this chart one can see that not only do 

the multiples of three backwards have more prefix codewords under a given multiple of three, 

but the prefix codes for the multiples of three forwards appear to be a proper subset of the prefix 

codes of the multiples of three backwards (a proof would be required to say that this is true for 

all cases). An example of the first part of the previous statement would be the number 21, which 

has five valid prefix codes before it for the backwards multiples, and only two for the forwards 

multiples.  Consequences of this are that more time is required to find codewords by using the 

forward multiples of three, and, as mentioned before, forward codewords get larger faster than 

the backwards codewords. The second part of the aforementioned statement is shown by the 

bold-face numbers in the chart.  The first ten codewords of the forwards multiples are clearly 

elements of the set of codewords of the backwards multiples.  The figure A.1 clearly shows that 
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the decimal equivalents of the forward codewards increase at a much faster rate than the 

backwards codewords.  The magnitude of the decimal number has a direct relationship to the 

number of digits in its binary equivalent, so it is not surprising that in the figure A.2 the length of 

the codewords of the forwards multiples increase at a greater rate than the backwards multiples.  

The fact that the backwards multiples produce smaller codewords and thereby achieve better 

compression was the reason backwards multiples were chosen over the forwards multiples.  In 

addition to this, the first twenty-six codewords of the backwards multiples are all eight bits or 

under, so there will always be some compression for text containing letters only from a twenty-

six letter alphabet.  The forwards multiples have more than eight digits after the thirteenth 

codeword, so for text containing only characters from a twenty six letter alphabet it would be 

possible to “compress” the text and get a larger file than the original depending on the relative 

frequency of the letters.  Now that the method of finding the codewords and the reasons of why it 

was chosen has been revealed, it is now time to discuss how this method was implemented.  

 Almost any given algorithm has several different ways to be implemented.  The program 

written in C++ in appendix B reflects one such implementation.  An equivalent Huffman version 

of this program would be the same except the generation of the codewords section, so discussion 

of the implementation shall be limited to the parts that deal with the codeword generation.  The 

heart of key generation of the codewords lies in the function “generatTempList” in the KeyList 

class (lines 451 to 482). At first this function can be very confusing because of the way the 

function (and the entire program) treats the numbers backwards from the way they were 

described earlier in this chapter.  The reasons for treating the codewords in this fashion were to 

aid in the simplicity of the code.  The multiple of three is stored in the variable “key” in its 

forward form. For example, six would be stored as “110.”  Rather than reversing the number in 
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memory and storing it as “011” and checking to see if the “11” in the list is the same as the “01,” 

the function checks to see if the “10” in “110” are the same as “11.”  In a sense the computer has 

generated a postfix code, but treats it backwards it becomes a prefix code.  To see this more 

clearly, the first three steps of the pervious example have been repeated along side a 

representation of what the computer is actually doing. 

Original Example Multiple Backwards       Multiple Forwards Computer Example

Codewords 
11  

011 110 Codewords 
11  

Codewords 
11 
011  

1001 1001 Codewords 
11 
011  

Codewords 
11 
011 
1001  

0011 1100 Codewords 
11 
011 
1001  

(Chart 3.1) 

This method can be inefficient when a large number of codewords are to be generated because 

each item in a list, in this case the list is an array named tempKeyList (line 454), must be 

checked to see if it is a prefix of the possible codeword. Another possible implementation could 

use the concept of trees. 

 Due to the nature of prefix codes, they lend themselves well to trees.  As can be seen in 

table 2.2 each leaf node has a unique path from the root, which can be used to determined it one 

code is a prefix of another or not.  The function “generateLetterSearchTree” (lines 580-624) uses 

this fact to generate a search tree.  In fact the search tree and the codeword generator could have 
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been made at the same time, but due to the order in which the program was developed it was 

easier to leave it separate.  Below is picture of a tree with the first four codewords already added.   

(Figure 3.7) 

When the next backward multiple, “1111” (15), is checked to see if it is a valid codeword it 

would only need to check two nodes to see that it was invalid rather than checking to see if the 

four elements in the list were prefixes.  Even though in this case the first element disqualified the 

codeword, a considerable amount of work is involved in checking to see if one codeword is a 

prefix of another.  The function “isAaPostFixOfB” (lines 522-529) is responsible for checking to 

see if one codeword is a prefix of another codeword.  On the surface this function seems short 

and simple, but on line 524 “isAaPostFixOfB” calls two functions, “getNumBits” (532-542) and 

“getSubBitStringFrom1To” (544-552), that have about twenty lines of code between them.  

“isAaPostFixOfB” is called once for each element in the list until a prefix is encountered or until 

the end of the list is encountered.  As more codewords are put into the list, this process can 

become very inefficient.  Returning to the example, the figures below show that only two nodes 

need to be checked to see that “1111” is an invalid codeword.  
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(Figure 3.8) 

(Figure 3.9) 

If another node were added (see figure 3.10) then the codeword “1111” would have the same 

initial path as “11,” so “1111” cannot be a codeword because the computer would not know 

whether or not to stop after the second “1.” 
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(Figure 3.10) 

The next codeword, however, clearly has a unique path. 

(Figure 3.11) 

Basically, the rule is nodes can be added to other nodes to accommodate any new codeword 

unless the node is a leaf-node. If the node being added to is a leaf-node, leave out the codeword 

and try to find the next one.  

 - 23 -



Chapter 4 

Huffman vs. Multiples of Three Backwards 

 Comparing compression algorithms requires knowledge of several aspects, each requiring 

its own test. These tests where mentioned in chapter one, and all are important in choosing the 

correct algorithm for a particular type of data, but only two major ones will be compared. The 

average codeword length and compression ratio are generally held to be good indicators of the 

amount of compression, so those will be used to see how the multiples of three backwards fare 

against Huffman code.  

 The average codeword length holds importance because it is often a good indication of 

how good the compression ratio is.  This is often more useful in adaptive compression methods 

that deal with streams of data where it may be impractical to calculate the actual compression 

ratio on the entire set of data. Instead of indicating the compression ratio of the data as a whole, 

it gives a good indication of the amount of compression occurring at that section of data. With 

the static methods that are being compared here, the average codeword lengths are excellent 

indicators when the entire set of data can be analyzed, such as in a file on a computer.  The 

average codeword length provides a good indication of the relative effectiveness of different 

codeword sets because it possesses an inverse relationship with the compression ratio; the lower 

the average code length, the higher and better the compression ratio. Using a formula similar to 

equation 2.1 in chapter two, chart B.2 in appendix B was created. The third coulomb in each 

table represents the multiplication of the percentage frequency of each text character and the 

codeword length for that particular text character. Then the third columns where added up and 

then divided by 100 since percentage frequencies need to be converted to relative frequencies. 

Huffman Codes, Multiples of three forwards, and Multiples of three backwards had average code 
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word lengths of 4.20502, 4.92234, and 6.32809 respectively. Clearly given any set of data the 

Huffman codes would yield the best compression on a general set of text. The Huffman Code for 

any given letter in a text it is more likely to result in a shorter codeword the resulting codeword 

when multiples of three backwards or backwards is used.  Over the course of compressing the 

whole text the savings of each letter builds upon each other and yields an overall better 

compression.  As mentioned in chapter two the average codeword length can be used to 

approximate the length of the compressed text. Simply multiplying average codeword length by 

the number of letters in the text, yields the approximate length of the compressed text. The 

reason why it is an approximate solution is because the relative frequencies of the letters are 

often approximations or may only reflect a section of the data rather than the data as a whole. For 

example the percentage frequencies in chart B.1 do not add up to exactly one hundred percent 

since percentage frequencies were rounded to three decimal places. It is possible to have the 

computer keep track of all the decimal places (as much as memory will allow), but this may be 

prohibitive because it could have serious effects upon performance with regards to speed, and 

memory usage. However, if the actual percentage frequencies can be calculated exactly without 

round-off error, then the average codeword length and compressed files size differ by a factor 

equal to the number of characters in the original file. This observation can be seen by comparing 

charts B.2 and B.3. The average codeword lengths in B.2 and the compressed file sizes in B.3 

differ by a factor of 100,000. The actual file size is 99999, but this discrepancy is due to round-

off error.  

 The compression ratio is one of the simplest aspects of data compression and is one of the 

easiest to calculate.  Chart B.3 shows the compression ratios of the three sets of codewords on a 

theoretical set of data. The theoretical data contains 99999 letters, and since each letter 
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corresponds to 8 bits the data contains 799992 bits.  By multiplying the frequency of occurrences 

of particular letter, by the number of bits that letter uses in the compressed file results in the total 

numbers of bits that perticular letter takes up in the compressed file. For example the letter ‘e’ 

occurs 12702 times in the uncompressed file, and each ‘e’ is represented by 3 bits with the 

Huffman code. By multiplying the number of e’s by the number of bits it takes up one finds that 

‘e’ takes up 38106 bits of the compressed file when the Huffman code is used. Doing this for 

every letter in the alphabet and adding the respective number of bits will produce the total 

number of bits in the compressed file. In the case of the theoretical file, Huffman codes compress 

the file down to 420502 bits, backwards codewords, 492234 bits, and forwards codewords, 

632809 bits. Taking these numbers and dividing them by the size of the original file yield the 

compression ratios 1.90246, 1.62522, and 1.26419 respectively. Huffman’s compression ratio is 

almost two, so that means that the original file is almost twice the size of the compressed file, or 

the compressed file is about half the size of the original. The original file size is about one and a 

half times the file compressed by multiples of three backwards codewords and about one and a 

quarter times the file compressed by the multiples of three forwards codewords.  

 Clearly Huffman has proven, in general, to be the best of the three prefix codes. The 

others may prove to have purposes that suit them better than Huffman, but for now Huffman still 

remains the best for general data. The multiples of three backwards code proved to be a worthy 

endeavor and helped me to develop a better understanding of Huffman and data compression in 

general. The study of data compression, including the methods studied here, will continue 

converting long elements of the past into smaller elements of the future.  
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Appendix A 
 

Huffman Codes* Multiple of 
Three Backwards 

Prefix Codes 

Decimal 
Equivalent 
(Forwards) 

Multiple of 
Three Forwards 

Prefix Codes 

Decimal 
Equivalent 

 
000 11 3 11 3 
110 011 6 1001 9 
0100 1001 9 10101 21 
0110 0011 12 100001 33 
0010 01001 18 101101 45 
0011 10101 21 1000101 69 
1000 00011 24 1010001 81 
1001 100001 33 1011101 93 
1010 001001 36 10000001 129 
01010 010101 42 10001101 141 
01011 101101 45 10100101 165 
10110 000011 48 10110001 177 
10111 0100001 66 10111101 189 
11100 1010001 69 100000101 261 
11101 0001001 72 100010001 273 
11110 1000101 81 100011101 285 
011100 0010101 84 101000001 321 
011101 0101101 90 101001101 333 
011110 1011101 93 101100101 357 
011111 0000011 96 101110001 369 
111110 10000001 129 101111101 381 
1111110 00100001 132 1000000001 513 
111111100 01010001 138 1000001101 525 
111111101 10110001 141 1000100101 549 
111111110 00001001 144 1000110001 561 
111111111 01000101 162 1000111101 573 
 10100101 165 1010000101 645 
 00010101 168 1010010001 657 
 10001101 177 1010011101 669 

*Huffman Codes Come From Appendix B 

(Chart A.1)
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Prefix Multiples of Three: Forwards Vs. Backwards
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Comparison of Codeword Lengths
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Appendix B 

Relative Frequencies of the Letters of the English Language 

Letter Relative 
Frequency (%)* 

Huffman 
Codes 

Letter Relative 
Frequency (%)* 

Huffman 
Codes 

a 8.167 0100 e 12.702 000 
b 1.492 011111 t 9.056 110 
c 2.782 10110 a 8.167 0100 
d 4.253 01010 o 7.507 0110 
e 12.702 000 i 6.966 0010 
f 2.228 11110 n 6.749 0011 
g 2.015 011100 s 6.327 1000 
h 6.094 1001 h 6.094 1001 
i 6.966 0010 r 5.987 1010 
j 0.153 111111100 d 4.253 01010 
k 0.772 1111110 l 4.025 01011 
l 4.025 01011 c 2.782 10110 
m 2.406 11100 u 2.758 10111 
n 6.749 0011 m 2.406 11100 
o 7.507 0110 w 2.36 11101 
p 1.929 011110 f 2.228 11110 
q 0.095 111111110 g 2.015 011100 
r 5.987 1010 y 1.974 011101 
s 6.327 1000 p 1.929 011110 
t 9.056 110 b 1.492 011111 
u 2.758 10111 v 0.978 111110 
v 0.978 111110 k 0.772 1111110 
w 2.360 11101 j 0.153 111111100 
x 0.150 111111101 x 0.15 111111101 
y 1.974 011101 q 0.095 111111110 
z 0.074 111111111 z 0.074 111111111 

*0.001% round-off error 

(Chart B.1)
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Average Codeword Lengths 

Huffman Codes  
Multiples of Three 

Backwards  Multiples of Three Forwards

Relative 
Freq. 

Codeword
Len. (bits) 

Freq.∗ 
Length  

Relative 
Freq. 

Codeword
Len. (bits)

Freq.∗ 
Length  

Relative 
Freq. 

Codeword
Len. (bits) 

Freq.∗ 
Length 

12.702 3 38.106  12.702 2 25.404  12.702 2 25.404 
9.056 3 27.168  9.056 3 27.168  9.056 4 36.224 
8.167 4 32.668  8.167 4 32.668  8.167 5 40.835 
7.507 4 30.028  7.507 4 30.028  7.507 6 45.042 
6.966 4 27.864  6.966 5 34.83  6.966 6 41.796 
6.749 4 26.996  6.749 5 33.745  6.749 7 47.243 
6.327 4 25.308  6.327 5 31.635  6.327 7 44.289 
6.094 4 24.376  6.094 6 36.564  6.094 7 42.658 
5.987 4 23.948  5.987 6 35.922  5.987 8 47.896 
4.253 5 21.265  4.253 6 25.518  4.253 8 34.024 
4.025 5 20.125  4.025 6 24.15  4.025 8 32.2 
2.782 5 13.91  2.782 6 16.692  2.782 8 22.256 
2.758 5 13.79  2.758 7 19.306  2.758 8 22.064 
2.406 5 12.03  2.406 7 16.842  2.406 9 21.654 
2.36 5 11.8  2.36 7 16.52  2.36 9 21.24 
2.228 5 11.14  2.228 7 15.596  2.228 9 20.052 
2.015 6 12.09  2.015 7 14.105  2.015 9 18.135 
1.974 6 11.844  1.974 7 13.818  1.974 9 17.766 
1.929 6 11.574  1.929 7 13.503  1.929 9 17.361 
1.492 6 8.952  1.492 7 10.444  1.492 9 13.428 
0.978 6 5.868  0.978 8 7.824  0.978 9 8.802 
0.772 7 5.404  0.772 8 6.176  0.772 10 7.72 
0.153 9 1.377  0.153 8 1.224  0.153 10 1.53 
0.15 9 1.35  0.15 8 1.2  0.15 10 1.5 
0.095 9 0.855  0.095 8 0.76  0.095 10 0.95 
0.074 9 0.666  0.074 8 0.592  0.074 10 0.74 

Average Code 
Length 

4.20502 
 

 Average Code 
Length 

4.92234
 

 Average Code 
Length 

6.32809

 
(Chart B.2) 
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Expected Compression Size 
(Of A File With 99,999 Characters) 

Huffman Codes  Multiples of Three Backwards  Multiples of Three Forwards 
Number of 
Characters 

Compress 
Len.(bits) 

Number ∗ 
Length  

Number of 
Characters

Compress
Len.(bits)

Number ∗ 
Length  

Number of 
Characters 

Compress
Len.(bits)

Number ∗ 
Length 

12702 3 38106  12702 2 25404  12702 2 25404 
9056 3 27168  9056 3 27168  9056 4 36224 
8167 4 32668  8167 4 32668  8167 5 40835 
7507 4 30028  7507 4 30028  7507 6 45042 
6966 4 27864  6966 5 34830  6966 6 41796 
6749 4 26996  6749 5 33745  6749 7 47243 
6327 4 25308  6327 5 31635  6327 7 44289 
6094 4 24376  6094 6 36564  6094 7 42658 
5987 4 23948  5987 6 35922  5987 8 47896 
4253 5 21265  4253 6 25518  4253 8 34024 
4025 5 20125  4025 6 24150  4025 8 32200 
2782 5 13910  2782 6 16692  2782 8 22256 
2758 5 13790  2758 7 19306  2758 8 22064 
2406 5 12030  2406 7 16842  2406 9 21654 
2360 5 11800  2360 7 16520  2360 9 21240 
2228 5 11140  2228 7 15596  2228 9 20052 
2015 6 12090  2015 7 14105  2015 9 18135 
1974 6 11844  1974 7 13818  1974 9 17766 
1929 6 11574  1929 7 13503  1929 9 17361 
1492 6 8952  1492 7 10444  1492 9 13428 
978 6 5868  978 8 7824  978 9 8802 
772 7 5404  772 8 6176  772 10 7720 
153 9 1377  153 8 1224  153 10 1530 
150 9 1350  150 8 1200  150 10 1500 
95 9 855  95 8 760  95 10 950 
74 9 666  74 8 592  74 10 740 

Average Code Length 420502   Average Code Length 492234  Average Code Length 632809 
Compression Ratio 1.90246  Compression Ratio 1.62522  Compression Ratio 1.26419 

 
(Chart B.3)
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Appendix C 

An Implementation in C++ of a Huffman style algorithm with 
codewords of prefix-free multiples of three backwards 

 
1 //Runner of Three.cpp 
2 /* 
3 Huffman style compresion 
4 Author: Jeremy Brown 
5 Language: C++ 
6 Compiler: Microsoft Visual C++ 6.0 Compiler Introductory Edition 
7 */ 
8  
9 #include <iostream.h> 
10 #include <conio.h> 
11 #include "H3Compressor.h" 
12  
13 int main() 
14 { 
15  H3Compressor fileCompressor; 
16  fileCompressor.compressFile(); 
17  fileCompressor.displayStatistics(); 
18  fileCompressor.decompressFile(); 
19  return 0; 
20 } 
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21 //H3Compressor.h 
22 /* 
23 Jeremy Brown 
24 Thesis Poject 
25 H3Compressor class 
26 Last Updated: 2/15/04 
27 */ 
28  
29 #ifndef h3compressor_h_ 
30 #define h3compressor_h_ 
31  
32 #include <iostream.h> 
33 #include <fstream.h> 
34 #include "KeyList.h" 
35  
36 /* 
37 H3Compressor compresses or decompress a file with a variation of Huffman which 

uses prefix codes of multiples of three backwards 
38 */ 
39  
40  
41 class H3Compressor 
42 { 
43 private:  
44   
45  KeyList keyList; 
46  bool mode; //true for compresstion. false for decomprestion 
47  
48  //statistics for compresstion 
49  unsigned long int originalFileSizeBytes; 
50  unsigned long int compressedFileSizeBits; 
51  
52  //File stuff 
53  char* sourceFileName; 
54  fstream sourceFile; 
55  fstream outputFile; 
56  void resetSourceFile(); 
57  char* getFileFrequency(int &charaterListSize); 
58 public: 
59  //general functions 
60  H3Compressor(); 
61  char* getNameFromUser(); 
62  void prepareFiles(char* fileName); 
63  void closeFiles(); 
64  
65  //compress functions 
66  void compressFile(); 
67  int findLetter(char letter,char* charaterList); 
68  void displayStatistics(); 
69  
70  //decompress functions 
71  void decompressFile(); 
72 }; 
73  
74 H3Compressor::H3Compressor() 
75 { 
76  mode = true; 
77  originalFileSizeBytes = 0; 
78  compressedFileSizeBits = 0; 
79 } 
80  
81 void H3Compressor::compressFile() 
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82 { 
83  mode = true; 
84  prepareFiles(getNameFromUser()); 
85  char* frequencyList = 0; 
86  int frequListSize = 0; 
87  frequencyList=getFileFrequency(frequListSize); 
88  keyList.generateKeyList(frequListSize); 
89  unsigned char* tempString = new unsigned char[2]; 
90  //output the size of the dictionary 
91  tempString[0] = frequListSize; 
92  outputFile.write(tempString,1); 
93  //output the dictionary 
94  for(int letterCount = 0;letterCount<frequListSize;letterCount++) 
95  { 
96  
97   tempString[0] = frequencyList[letterCount]; 
98   outputFile.write(tempString,1); 
99  } 
100  char* byte = new char[1]; 
101  int shift = 0; 
102  char* key = 0; 
103  BitIndex keyLength; 
104  tempString[0] = 0;tempString[1]=0; 
105  sourceFile.read(byte,1); 
106  while(sourceFile.gcount() !=0) 
107  { //find the codeword for the letter 
108   key = keyList.getKey(findLetter(byte[0],frequencyList)).key; 
109   keyLength = 

keyList.getKey(findLetter(byte[0],frequencyList)).keySize; 
110   compressedFileSizeBits += (keyLength.getIndex() * 8) + 

keyLength.getOffset(); 
111   char temp = 138; 
112   //output all the complete bytes of the codeword 
113   for(unsigned int index = 0;index<keyLength.getIndex();index++) 
114    { 
115     tempString[0] = (tempString[0] | (key[index] << 

shift)); 
116     tempString[1] = ~(((~((unsigned char)0))<<shift) | 

(~(tempString[1] |  
117      (key[index]>> (8 - shift))))); 
118     outputFile.write(tempString,1); 
119     tempString[0] = tempString[1]; 
120     tempString[1] = 0; 
121    } 
122   //output any remaining bits 
123   if(keyLength.getOffset()!=0) 
124   { 
125    tempString[0] = tempString[0] | (key[keyLength.getIndex()] 

<< shift); 
126    tempString[1] = tempString[1] | (key[keyLength.getIndex()] 

>> (8 - shift)); 
127    shift += keyLength.getOffset(); 
128    if(shift > 7) 
129    { 
130     outputFile.write(tempString,1); 
131     tempString[0] = tempString[1]; 
132     tempString[1] = 0; 
133     shift = shift%8; 
134    } 
135   } 
136   //read the next charater out of the file 
137   sourceFile.read(byte,1); 
138  } 
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139  //output any remainding bits 
140  if(shift != 0) 
141  { 
142   outputFile.write(tempString,1); 
143  } 
144  delete tempString; 
145  delete frequencyList; 
146  closeFiles(); 
147 } 
148  
149 char* H3Compressor::getNameFromUser() 
150 { 
151  char* fileName = new char[20]; 
152  if(mode) 
153  { 
154   cout<<"Please input the file you wish to compress. "; 
155  } 
156  else 
157  { 
158   cout<<"Plaese input the file you wish to decompress. "; 
159  } 
160  cin.getline(fileName,20); 
161  return fileName; 
162 } 
163  
164 void H3Compressor::prepareFiles(char* fileName) 
165 { 
166  sourceFileName = fileName; 
167  if(mode) 
168  {//Open source in text mode if compressing 
169   sourceFile.open(fileName,ios::in); 
170   if(!sourceFile) 
171   { 
172    cout<<"Failed to open sourceFile"<<endl; 
173    exit(0); 
174   } 
175  } 
176  else 
177  {//Open source in binary mode if decompressing 
178   sourceFile.open(fileName,ios::in | ios::binary); 
179   if(!sourceFile) 
180   { 
181    cout<<"Failed to open sourceFile"<<endl; 
182    exit(0); 
183   } 
184  } 
185  if(mode) 
186  {//Open output in binary mode if compressing 
187   const char* CompressedFile = "Compressed File"; 
188   outputFile.open(CompressedFile,ios::out | ios::trunc | 

ios::binary); 
189   if(!outputFile) 
190   { 
191    cout<<"Failed to open outputFile"<<endl; 
192    exit(0); 
193   } 
194  } 
195  else 
196  {//Open output in text mode if decompressing 
197   const char* DecompressedFile = "Decompressed File.txt"; 
198   outputFile.open(DecompressedFile,ios::out | ios::trunc ); 
199   if(!outputFile) 
200   { 
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201    cout<<"Failed to open outputFile"<<endl; 
202    exit(0); 
203   } 
204  } 
205 } 
206  
207 void H3Compressor::closeFiles() 
208 { 
209  sourceFile.close(); 
210  outputFile.close(); 
211 } 
212  
213 char* H3Compressor::getFileFrequency(int &charaterListSize) 
214 {//the function retrun a list of letter in order of the most frequent (index 0) 

to the least  
215  //frequent 
216  char* charaterList = 0; 
217  charaterListSize = 0; 
218  unsigned char* byte =  new unsigned char[1]; 
219  unsigned long int tempFrequencyList[256]; 
220  for(unsigned long int i = 0;i<256;i++) 
221  { 
222   tempFrequencyList[i] = 0; 
223  } 
224  sourceFile.read(byte,1); 
225  while(sourceFile.gcount() !=0) 
226  { 
227   if(tempFrequencyList[(int)byte[0]] == 0) 
228   { 
229    charaterListSize++; 
230   } 
231   tempFrequencyList[(int)byte[0]]++; 
232   originalFileSizeBytes++; 
233   sourceFile.read(byte,1); 
234  } 
235  resetSourceFile(); 
236  charaterList = new char[charaterListSize]; 
237  for(int t = 0; t < charaterListSize; t++) 
238  { 
239   charaterList[0] = 0; 
240  } 
241  unsigned long int tempNum = 0; 
242  for(int k = 0; k < charaterListSize; k++) 
243  { 
244   tempNum = 0; 
245   for(int j = 0;j<256;j++) 
246   { 
247    if(tempFrequencyList[j] > tempNum) 
248    { 
249     tempNum = tempFrequencyList[j]; 
250     charaterList[k] = j; 
251    } 
252   } 
253   tempFrequencyList[(int)charaterList[k]] = 0; 
254  } 
255  return charaterList; 
256 } 
257  
258 void H3Compressor::resetSourceFile() 
259 { 
260  sourceFile.close(); 
261  if(mode) 
262  {//Open source in text mode if compressing 
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263   sourceFile.open(sourceFileName,ios::in); 
264   if(!sourceFile) 
265   { 
266    cout<<"Failed to open sourceFile"<<endl; 
267    exit(0); 
268   } 
269  } 
270  else 
271  {//Open source in binary mode if decompressing 
272   sourceFile.open(sourceFileName,ios::in | ios::binary); 
273   if(!sourceFile) 
274   { 
275    cout<<"Failed to open sourceFile"<<endl; 
276    exit(0); 
277   } 
278  } 
279 } 
280  
281 int H3Compressor::findLetter(char letter,char* charaterList) 
282 { 
283  int count = 0; 
284  while(1) 
285  { 
286   if(charaterList[count] == letter) 
287   { 
288    return count; 
289   } 
290   count++; 
291  } 
292  return 0; 
293 } 
294  
295 void H3Compressor::decompressFile() 
296 { 
297  mode = false; 
298  prepareFiles(getNameFromUser()); 
299  //get the number of letters different letters of the original 
300  char* fileGetter = new char[1]; 
301  char* outToFile = new char[1]; 
302  sourceFile.read(fileGetter,1); 
303  int letterListSize = fileGetter[0]; 
304  //get the letter list 
305  char* letterList = new char[letterListSize]; 
306  sourceFile.read(letterList,letterListSize); 
307  //getnerate the serch tree 
308  KeyList searchTree; 
309  searchTree.generateLetterSearchTree(letterListSize,letterList); 
310  //translate charaters 
311  sourceFile.read(fileGetter,1); 
312  unsigned long int key = 0; 
313  unsigned long int keyMarker = 1; 
314  while(sourceFile.gcount() != 0) 
315  { 
316   int byteMaker = 1; 
317   char letter; 
318   for(int shift = 0;shift<8;shift++) 
319   { 
320    byteMaker = 1; 
321    byteMaker = byteMaker << shift; 
322    if((fileGetter[0] & byteMaker) != 0) 
323    { 
324     key = key | keyMarker; 
325    } 
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326    keyMarker = keyMarker << 1; 
327    if(searchTree.findLetterInTree(key,letter)) 
328    { 
329     outToFile[0] = letter; 
330     outputFile.write(outToFile,1); 
331     keyMarker = 1; 
332     key = 0; 
333    } 
334   } 
335   sourceFile.read(fileGetter,1); 
336  } 
337 } 
338  
339 void H3Compressor::displayStatistics(){ 
340  cout<<"The original file size is: "<<endl; 
341  cout<<originalFileSizeBytes<<" bytes or"<<endl; 
342  cout<<originalFileSizeBytes * 8<<" bits"<<endl<<endl; 
343  unsigned long int compressedFileSizeBytes = 0; 
344  compressedFileSizeBytes = compressedFileSizeBits / 8; 
345  if((compressedFileSizeBits%8) != 0) 
346  { 
347   compressedFileSizeBytes++; 
348  } 
349  cout<<"The compressed file size is: "<<endl; 
350  cout<<compressedFileSizeBytes<<" bytes"<<endl; 
351  cout<<compressedFileSizeBits<<" bits   "<<compressedFileSizeBytes * 8 
352   <<" actual bits"<<endl<<endl; 
353  cout<<"compresstion ratio: "<<(unsigned long 

double)((double)originalFileSizeBytes/ 
354   (double)compressedFileSizeBytes); 
355  cout<<" (bytes)"<<endl; 
356  cout<<"compresstion ratio: "<<(unsigned long double)((unsigned long 

double) 
357   (originalFileSizeBytes * 8)/compressedFileSizeBits); 
358  cout<<" (bits)"<<endl<<endl; 
359  unsigned long double percentOfOriginalBytes = 0; 
360  unsigned long double percentOfOriginalBits = 0; 
361  percentOfOriginalBytes = (double)((double)compressedFileSizeBytes/ 
362   (double)originalFileSizeBytes) * 100; 
363  cout<<"percent of original: "<<percentOfOriginalBytes<<"% 

(bytes)"<<endl; 
364  percentOfOriginalBits = (double)((double)compressedFileSizeBits /  
365   (double)(originalFileSizeBytes * 8) * 100); 
366  cout<<"percent of original: "<<percentOfOriginalBits<<"% 

(bits)"<<endl<<endl; 
367  cout<<"percent savings: "<<(double)(100 - percentOfOriginalBytes)<<"% 

(bytes)"<<endl; 
368  cout<<"percent savings: "<<(double)(100 - percentOfOriginalBits)<<"% 

(bits)"<<endl; 
369  
370 } 
371  
372 #endif 
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373 //KeyList.h 
374 /* 
375 Jeremy Brown 
376 Thesis Poject 
377 KeyList class 
378 Last Updated: 2/15/04 
379 */ 
380 #ifndef keyList_h_ 
381 #define keyList_h_ 
382  
383 #include <math.h> 
384 #include "BitIndex.h" 
385  
386 /* 
387 KeyList generate prefix codes that are comprsed of multiples of three 

backwards.  
388 It will aslso genetate a decoding tree for decompression 
389 */ 
390  
391 struct KeyEntry 
392 { 
393 public: 
394  char* key; 
395  BitIndex keySize; 
396 }; 
397  
398 struct LetterTreeNode 
399 { 
400  LetterTreeNode* one; 
401  char letter; 
402  LetterTreeNode* zerro; 
403 }; 
403  
405 class KeyList 
406 { 
407 private: 
408  KeyEntry* keysList;//list of prefix codes  
409  int keysListSize; 
410  
411  LetterTreeNode* searchTree; 
412  
413  int getNumBits(unsigned long int number);//finds the numbers of bits in 

a number 
414  unsigned long int getSubBitStringFrom1To(int nthBit,unsigned long int 

number); 
415  bool isAaPostfixOfB(unsigned long int a,unsigned long int b); 
416  unsigned long int* generateTempList(int& tempListSize,int &numKeys); 
417   
418 public: 
419  
420  KeyList(); 
421  ~KeyList(); 
422  KeyEntry getKey(int index); 
423  void generateKeyList(int numKeys); 
424  void displayListContents(); 
425  void generateLetterSearchTree(int numKeys,char* letterList); 
426  bool findLetterInTree(unsigned long int key,char& letter); 
427 }; 
428  
429 KeyList::KeyList() 
430 { 
431  keysListSize = 0; 
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432  keysList = 0; 
433  searchTree = new LetterTreeNode; 
434  (*searchTree).one=0; 
435  (*searchTree).zerro=0; 
436 } 
437  
438 KeyList::~KeyList() 
439 { 
440  for(int index = 0;index<keysListSize;index++) 
441  { 
442   //delete keysList[index].key; 
443  } 
444  if(keysList != 0) 
445  { 
446   delete keysList; 
447  } 
448 } 
449  
450  
451 unsigned long int* KeyList::genrateTempList(int& tempListSize,int &numKeys) 
452 { 
453  unsigned long int key = 0; 
454  unsigned long int* tempKeyList = new unsigned long int [numKeys]; 
455  tempListSize = 0; 
456  bool keyNotInList = false; 
457  
458  while(tempListSize != numKeys) 
459  { 
460   key +=3; 
461   keyNotInList = true; 
462   //see if any of the keys in the list are a postfix of the new key 
463   if(tempListSize != 0) 
464   { 
465    for(int i = 0;i<tempListSize;i++) 
466    { 
467     if(isAaPostfixOfB(tempKeyList[i],key)) 
468     { 
469      keyNotInList = false; 
470     } 
471    } 
472   } 
473   //add the key to the list if it does not have a postfix in the 

list 
474   if(keyNotInList) 
475   { 
476    tempKeyList[tempListSize]=key; 
477    tempListSize++; 
478   } 
479  } 
480  return tempKeyList; 
481  
482 } 
483  
484 void KeyList::generateKeyList(int numKeys) 
485 {//generates a key list of multiples of three that are not postfixes of each 

other 
486  //or prefixes backwards.  
487  keysList = new KeyEntry[numKeys]; 
488  keysListSize = numKeys; 
489  int tempListSize = 0; 
490  unsigned long int* tempKeyList = generateTempList(tempListSize,numKeys); 
491  for(int k = 0;k < tempListSize;k++) 
492  { 
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493   KeyEntry entry; 
494   int numBits = getNumBits(tempKeyList[k]); 
495   int numBytes = (int)ceil((double)(numBits/8)); 
496   entry.keySize+=numBits; 
497   entry.key = new char[numBytes]; 
498   for(int p =0;p<=numBytes;p++) 
499   { 
500    entry.key[p] = 0; 
501   } 
502   unsigned int long intMarker = 1; 
503   for(int index = 0;index <= numBytes;index++) 
504   { 
505    int charMarker = 1; 
506    for(int i = 0;i<8;i++) 
507    { 
508     if(intMarker & tempKeyList[k]) 
509     { 
510      entry.key[index] = entry.key[index] | 

charMarker; 
511     } 
512     charMarker = charMarker << 1; 
513     intMarker = intMarker << 1; 
514    } 
515   } 
516   keysList[k]=entry; 
517  } 
518  delete tempKeyList; 
519 } 
520  
521  
522 bool KeyList::isAaPostfixOfB(unsigned long int a,unsigned long int b) 
523 {//return true if a is a postfix of be otherswist it is false 
524  if(getSubBitStringFrom1To(getNumBits(a),b) == a) 
525  { 
526   return true; 
527  } 
528  return false; 
529 } 
530  
531  
532 int KeyList::getNumBits(unsigned long int number) 
533 { 
534  unsigned long int marker = 2147483648;//10000000000000000000000000000000 

in binary 
535  int numbits = 32; 
536  while( (!(marker & number)) && (numbits>0)) 
537  { 
538   numbits --; 
539   marker = marker >> 1; 
540  } 
541  return numbits; 
542 } 
543  
544 unsigned long int KeyList::getSubBitStringFrom1To(int nthBit,unsigned long int 

number) 
545 {//this funtion will return the number formed from the substirng of number from 

the  
546  //first bit to the nth bit 
547  
548  int shift = 32 - nthBit; 
549  number = number << shift; 
550  number = number >> shift; 
551  return number; 
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552 } 
553  
554 void KeyList::displayListContents() 
555 { 
556  for(int i = 0;i<keysListSize;i++) 
557  { 
558   cout<<"key size: ";keysList[i].keySize.displayPosition();cout<<"  

Key:"; 
559   for(unsigned int j = 0;j<=keysList[i].keySize.getIndex();j++) 
560   { 
561    cout<<(int)keysList[i].key[j]<<" "; 
562   } 
563   cout<<endl; 
564  } 
565 } 
566  
567 KeyEntry KeyList::getKey(int index) 
568 { 
569  if(index < keysListSize) 
570  { 
571   return keysList[index]; 
572  } 
573  else 
574  { 
575   cout<<"Error in KeyList.getKey: invalid index"<<endl; 
576   exit(0); 
577  } 
578 } 
579  
580 void KeyList::generateLetterSearchTree(int numKeys,char* letterList) 
581 { 
582  LetterTreeNode* treeNode = searchTree; 
583  int tempListSize = 0; 
584  unsigned long int* tempKeyList = generateTempList(tempListSize,numKeys); 
585  int keySize = 0; 
586  unsigned long int key = 0; 
587  //add each key to the list 
588  for(int index = 0;index<tempListSize;index++) 
589  { 
590   treeNode = searchTree; 
591   key = tempKeyList[index]; 
592   keySize = getNumBits(key); 
593   unsigned long int marker = 1; 
594   //add a letter to the list 
595   for(int bitNum = 0;bitNum<keySize;bitNum++) 
596   { 
597    marker = 1;  
598    marker = marker << bitNum; 
599    if(marker & key) 
600    {//if the bit is one add a node to the one's side 
601     if((*treeNode).one == 0) 
602     { 
603      (*treeNode).one = new LetterTreeNode; 
604      //set blank node 
605      (*(*treeNode).one).one = 0; 
606      (*(*treeNode).one).zerro = 0; 
607     } 
608     treeNode = (*treeNode).one; 
609    } 
610    else 
611    {//if the bit is zerro add a node to the zerro's side 
612     if((*treeNode).zerro == 0) 
613     { 
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614      (*treeNode).zerro = new LetterTreeNode; 
615      //set blank node 
616      (*(*treeNode).zerro).one = 0; 
617      (*(*treeNode).zerro).zerro = 0; 
618     } 
619     treeNode = (*treeNode).zerro; 
620    } 
621   } 
622   (*treeNode).letter = letterList[index]; 
623  } 
624 } 
625  
626 bool KeyList::findLetterInTree(unsigned long int key,char& letter) 
627 { 
628  LetterTreeNode* treeNode = searchTree; 
629  int keySize = 0; 
630  keySize = getNumBits(key); 
631  if(keySize != 0) 
632  { 
633   unsigned long int marker = 1; 
634   //find key in list 
635   for(int bitNum = 0;bitNum<keySize;bitNum++) 
636   { 
637    marker = 1;  
638    marker = marker << bitNum; 
639    if(marker & key) 
640    {//if the bit is one go to the one node 
641     if((*treeNode).one == 0) 
642     { 
643      return false; 
644     } 
645     treeNode = (*treeNode).one; 
646    } 
647    else 
648    {//if the bit is zerro go to the zerro node 
649     if((*treeNode).zerro == 0) 
650     { 
651      return false; 
652     } 
653     treeNode = (*treeNode).zerro; 
654    } 
655   } 
656   if(((*treeNode).one == 0) && ((*treeNode).zerro == 0)) 
657   { 
658    letter = (*treeNode).letter; 
659    return true; 
660   } 
661   else 
662   { 
663    return false; 
664   } 
665  } 
666  else 
667  { 
668   return false; 
669  } 
670 } 
671  
672 #endif 
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673 //BitIndex.h 
674 /* 
675 Jeremy Brown 
676 Thesis Poject 
677 BitIndex class 
678 Last Updated: 2/15/04 
679 */ 
680 #ifndef bitindex_h_ 
681 #define bitindex_h_ 
682  
683 #include <stdlib.h> 
684 /* 
685 This class stores a spot of a particular bit in an array 
686 */ 
687  
688 class BitIndex 
689 { 
690 private: 
691  unsigned long int index;//index in the array of bytes 
692  unsigned int offset;//offset (index of the bit in the byte) 
693  
694 public: 
695  BitIndex(); 
696  BitIndex(unsigned long int newIndex,int newOffset); 
697  void setIndexAndOffset(unsigned long int newIndex,int newOffset); 
698  unsigned long int getIndex(); 
699  void setIndex(unsigned long int newIndex); 
700  unsigned int getOffset(); 
701  void setOffset(unsigned long int newOffset); 
702  void displayPosition(); 
703   
704  void operator=(unsigned long int numBits); 
705  void operator+=(unsigned long int numBits); 
706  BitIndex operator+(unsigned long int numBits); 
707  BitIndex operator-(unsigned long int num); 
708  bool operator<(BitIndex compareIndex); 
709  bool operator==(BitIndex compareIndex); 
710  bool operator<=(BitIndex compareIndex); 
711  unsigned int operator-(BitIndex compareIndex); 
712 }; 
713  
714 BitIndex::BitIndex() 
715 { 
716  index = 0; 
717  offset = 0; 
718 } 
719  
720  
721 BitIndex::BitIndex(unsigned long int newIndex,int newOffset) 
722 { 
723  index = newIndex; 
724  offset = newOffset; 
725 } 
726  
727 void BitIndex::setIndexAndOffset(unsigned long int newIndex,int newOffset) 
728 { 
729  index = newIndex; 
730  offset = newOffset; 
731 } 
732  
733 unsigned long int BitIndex::getIndex() 
734 { 
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735  return index; 
736 } 
737  
738 void BitIndex::setIndex(unsigned long int newIndex) 
739 { 
740  index = newIndex; 
741 } 
742  
743 unsigned int BitIndex::getOffset() 
744 { 
745  return offset; 
746 } 
747  
748 void BitIndex::setOffset(unsigned long int newOffset) 
749 { 
750  offset = newOffset; 
751 } 
752  
753 void BitIndex::displayPosition() 
754 { 
755  cout<<"BitIndex:  Index: "<<index<<" Offset Index: "<<offset<<endl;

  
756 } 
757  
758 void BitIndex::operator=(unsigned long int numBits) 
759 { 
760  offset = numBits%8; 
761  index = (numBits - offset)/8; 
762 } 
763  
764 void BitIndex::operator+=(unsigned long int numBits) 
765 { 
766  int leftover = numBits%8; 
767  numBits = numBits - leftover; 
768  if((leftover + offset) >= 8) 
769  { 
770   index++; 
771   offset = leftover + offset - 8; 
772  } 
773  else 
774  { 
775   offset = leftover + offset; 
776  } 
777  index = index + (numBits/8); 
778 } 
779  
780 BitIndex BitIndex::operator+(unsigned long int numBits) 
781 { 
782  int leftover = numBits%8; 
783  numBits = numBits - leftover; 
784  unsigned long int tempIndex = index; 
785  unsigned int tempOffset = offset; 
786  if((leftover + tempOffset) >= 8) 
787  { 
788   tempIndex++; 
789   tempOffset = leftover + tempOffset - 8; 
790  } 
791  else 
792  { 
793   tempOffset = leftover + tempOffset; 
794  } 
795  tempIndex = tempIndex + (numBits/8); 
796  BitIndex newIndex(tempIndex,tempOffset); 
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797  return newIndex; 
798 } 
799  
800 BitIndex BitIndex::operator-(unsigned long int num) 
801 { 
802  unsigned long int tempIndex = index; 
803  unsigned int tempOffset = offset; 
804   
805  if((tempIndex != 0) || (tempOffset != 0)) 
806  { 
807   if(tempOffset != 0) 
808   { 
809    tempOffset--; 
810   } 
811   else 
812   { 
813    tempIndex--; 
814    tempOffset = 7; 
815   } 
816    
817  } 
818  else 
819  { 
820   cout<<"Error in BitIndex.operator-: cannot have negative 

index"<<endl; 
821   exit(0); 
822  } 
823  BitIndex newIndex(tempIndex,tempOffset); 
824  return newIndex; 
825 } 
826  
827  
828  
829 bool BitIndex::operator<(BitIndex compareIndex) 
830 { 
831  if(index < compareIndex.getIndex()) 
832  { 
833   return true; 
834  } 
835  if((index == compareIndex.getIndex()) && (offset < 

compareIndex.getOffset())) 
836  { 
837   return true; 
838  } 
839  return false; 
840 } 
841  
842 bool BitIndex::operator==(BitIndex compareIndex) 
843 { 
844  if((index == compareIndex.getIndex()) && (offset == 

compareIndex.getOffset())) 
845  { 
846   return true; 
847  } 
848  return false; 
849 } 
850  
851 bool BitIndex::operator<=(BitIndex compareIndex) 
852 { 
853  return ((*this) < compareIndex) || ((*this) == compareIndex); 
854 } 
855  
856 unsigned int BitIndex::operator-(BitIndex compareIndex) 
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857 { 
858  unsigned int tempIndex = index; 
859  unsigned int tempOffset = offset; 
860  if(compareIndex<(*this)) 
861  { 
862   
863   tempIndex = tempIndex - compareIndex.getIndex(); 
864   if(tempOffset>=compareIndex.getOffset()) 
865   { 
866    tempOffset = tempOffset - compareIndex.getOffset(); 
867   } 
868   else 
869   { 
870    tempIndex--; 
871    tempOffset = (tempOffset - compareIndex.getOffset())%8; 
872   } 
873  } 
874  else 
875  { 
876   cout<<"Error in BitIndex: cannot have a negative index"<<endl; 
877   exit(0); 
878  } 
879  return 8*tempIndex+tempOffset; 
880 } 
881  
882 #endif 
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