
Chapter 1:

An Overview of Computers and

Logic

Programming Logic and

Design, 4th Edition Introductory

Programming Logic and Design, 4th Edition Introductory 2

Objectives

• After studying Chapter 1, you should be able to:

• Understand computer components and

operations

• Describe the steps involved in the programming

process

• Describe the data hierarchy

• Understand how to use flowchart symbols and

pseudocode statements

• Use and name variables

Programming Logic and Design, 4th Edition Introductory 3

Objectives (continued)

• Use a sentinel, or dummy value, to end a program

• Use a connector symbol

• Assign values to variables

• Recognize the proper format of assignment

statements

• Describe data types

• Understand the evolution of programming

techniques

Programming Logic and Design, 4th Edition Introductory 4

Understanding Computer Components

and Operations

• Hardware: equipment, or devices, associated with

a computer

• For a computer to be useful, it needs more than

equipment; a computer needs to be given

instructions

• The instructions that tell the computer what to do

are called software, or programs, and are written

by programmers

• Hardware devices that perform input include

keyboards and mice

Programming Logic and Design, 4th Edition Introductory 5

Understanding Computer Components

and Operations (continued)

• Through input devices,

– data, or facts, enter the computer system

• Processing data items may involve

– organizing them,

– checking them for accuracy, or

– performing mathematical operations on them

Programming Logic and Design, 4th Edition Introductory 6

Understanding Computer Components

and Operations (continued)

• The hardware that performs these sorts of tasks

is the central processing unit, or CPU

• After data items have been processed, the

resulting information is sent to a printer, monitor,

or some other output device so people can view,

interpret, and use the results

Programming Logic and Design, 4th Edition Introductory 7

Understanding Computer Components

and Operations (continued)

• You write computer instructions in a computer

programming language, such as Visual Basic,

Pascal, COBOL, C++, Java, or Fortran

• Every language has rules governing its word

usage and punctuation

• Programming rules are called the language’s

syntax

• Each programming language uses a piece of

software to translate the specific programming

language into the computer’s on-off circuitry, or

machine language

Programming Logic and Design, 4th Edition Introductory 8

Understanding Computer Components

and Operations (continued)

• The language translation software, known as a
compiler or interpreter, tells you if you have used
a programming language incorrectly

• For a program to work properly, you must give
the computer exact instructions in a specific
sequence

• By doing this, you are developing the logic of the
computer program

• Once instructions have been inputted to the
computer and translated into machine language,
a program can be run, or executed

Programming Logic and Design, 4th Edition Introductory 9

Understanding Computer Components

and Operations (continued)

• Besides input, processing, and output, all

computer systems need and have:

– Internal storage, commonly called memory, main

memory, or primary memory. Though needed to

run programs, internal memory is volatile—that

is, its contents are lost every time the computer

loses power

– External storage, or permanent storage outside

the main memory of the machine, is held on a

device such as a floppy disk, hard disk, or

magnetic tape

Programming Logic and Design, 4th Edition Introductory 10

Understanding the Programming

Process
• The programmer’s job can be broken down into six

programming steps:

1. Understand the problem

2. Plan the logic

3. Code the program

4. Translate the program into machine language

5. Test the program

6. Debug

7. Put the program into production

Programming Logic and Design, 4th Edition Introductory 11

Understand The Problem

• Really understanding the problem may be one of

the most difficult aspects of programming

– The description of what the user needs may be

vague

– The user may not even really know what he or

she wants

– Users who think they know what they want

frequently change their minds after seeing

sample output

• A good programmer is often part counselor, part

detective

Programming Logic and Design, 4th Edition Introductory 12

Plan the Logic

• Programmer plans the steps to the program,

deciding what steps to include and how to order

them

• The two most common tools are flowcharts and

pseudocode

• Both tools involve writing the steps of the

program in English

Programming Logic and Design, 4th Edition Introductory 13

Code the Problem

• Some very experienced programmers can

successfully combine the logic planning and the

actual instruction writing, or coding of the

program, in one step

• A good term paper needs planning before writing,

and so do most programs

Programming Logic and Design, 4th Edition Introductory 14

Translate the Program into Machine

Language

• Languages such as Java or Visual Basic translate

the programmer’s English-like high-level

programming language into the low-level

machine language that the computer understands

• If you write a programming language statement

incorrectly (for example, by misspelling a word,

using a word that doesn’t exist in the language,

or using “illegal” grammar), the translator

program doesn’t know what to do and issues an

error message identifying a syntax error

Programming Logic and Design, 4th Edition Introductory 15

Translate the Program into Machine

Language (continued)

• All syntax errors are caught by the compiler or

interpreter

• When writing a program, a programmer might

need to recompile the code several times

• An executable program is created only when the

code is free of syntax errors

• When you run an executable program, it might

also typically require input data

Programming Logic and Design, 4th Edition Introductory 16

Creating an Executable Program

Programming Logic and Design, 4th Edition Introductory 17

Test the Program

• A program that is free of syntax errors is not

necessarily free of logical errors

• Once a program is free from syntax errors, the

programmer can test it—that is, execute it with

some sample data to see whether the results are

logically correct

Programming Logic and Design, 4th Edition Introductory 18

Put the Program into Production

• Putting a program into production might mean

simply running the program once, if it was written

to satisfy a user’s request for a special list

• The process might take months if the program

will be run on a regular basis, or it is one of a

large system of programs being developed

• Conversion, the entire set of actions an

organization must take to switch over to using a

new program or set of programs, can sometimes

take months or years to accomplish

Programming Logic and Design, 4th Edition Introductory 19

Understanding the Data Hierarchy

• When data is stored for use on computer

systems, it is often stored in a data hierarchy,

where the smallest usable unit of data is the

character

• Characters are letters, numbers, and special

symbols, such as “A”, “7”, and “$”

• A field is a single data item, such as lastName,

streetAddress, or annualSalary

Programming Logic and Design, 4th Edition Introductory 20

Understanding the Data Hierarchy

(continued)

• Records are groups of fields that go together for

some logical reason

• Files are groups of records that go together for

some logical reason

• A database holds a group of files, often called

tables, that together serve the information needs

of an organization

• Database software establishes and maintains

relationships between fields in these tables, so

that users can write questions called queries

Programming Logic and Design, 4th Edition Introductory 21

Using Flowchart Symbols and

Pseudocode Statements

• Flowcharts (pictorial representations) and

pseudocode (English-like representations) are

used by programmers to plan the logical steps for

solving a programming problem

• Some professional programmers prefer writing

pseudocode to drawing flowcharts, because

using pseudocode is more similar to writing final

statements in programming language

Programming Logic and Design, 4th Edition Introductory 22

Using Flowchart Symbols and

Pseudocode Statements (continued)

• Almost every program involves the steps of input,

processing, and output, necessitating some

graphical way to separate them

• Arithmetic operation statements are examples of

processing in a flowchart, where you use a

rectangle as the processing symbol containing a

processing statement

Programming Logic and Design, 4th Edition Introductory 23

Using Flowchart Symbols and

Pseudocode Statements (continued)

Programming Logic and Design, 4th Edition Introductory 24

Using Flowchart Symbols and

Pseudocode Statements (continued)

• To represent an output statement, you use the

parallelogram, which is also the same symbol

used for input statements

Programming Logic and Design, 4th Edition Introductory 25

Using Flowchart Symbols and

Pseudocode Statements (continued)

• In flowcharts:

– Arrows, or flowlines, connect and show the

appropriate sequence of steps

– A terminal symbol, or start/stop symbol, should be

included at each end

– Often, “start” or “begin” is used as the first

terminal symbol and “end” or “stop” is used in the

other

– The standard terminal symbol is shaped like a

racetrack; often called a lozenge, because it

resembles the shape of a medicated candy lozenge

you might use to soothe a sore throat

Programming Logic and Design, 4th Edition Introductory 26

Using Flowchart Symbols and

Pseudocode Statements (continued)

• Figure 1-7 shows a complete flowchart for the

program that doubles a number, and the pseudocode

for the same problem

Programming Logic and Design, 4th Edition Introductory 27

Using and Naming Variables

• Variables are memory locations, whose contents

can vary or differ over time

• Sometimes, inputNumber can hold a 2 and

calculatedAnswer will hold a 4; at other times,

inputNumber can hold a 6 and

calculatedAnswer will hold a 12

• A variable name is also called an identifier

Programming Logic and Design, 4th Edition Introductory 28

Using and Naming Variables (continued)

• Variable names used here follow only two rules:

1. Must be one word

2. Have some appropriate meaning

• Table 1-1 on page 19 of the text lists some

possible variable names that might be used to

hold an employee’s last name and provides a

rationale for the appropriateness of each one

Programming Logic and Design, 4th Edition Introductory 29

Ending a Program By Using Sentinel

Values

• An infinite loop is a repeating flow of logic with

no end

• To end the program, set a predetermined value
for inputNumber that means “Stop the program!”

• The program can then test any incoming value for
inputNumber and, if it is a 0, stop the program

• Testing a value is also called making a decision

– Represented in flowchart by diamond shape called

a decision symbol

Programming Logic and Design, 4th Edition Introductory 30

Ending a Program By Using Sentinel

Values (continued)

• A pre-selected value that stops the execution of a

program is often called a dummy value since it

does not represent real data, but just a signal to

stop

• Sometimes, such a value is called a sentinel

value because it represents an entry or exit point,

like a sentinel who guards a fortress

Programming Logic and Design, 4th Edition Introductory 31

Using the Connector

• By using just the input, processing, output,

decision, and terminal symbols, you can

represent the flowcharting logic for many diverse

applications

• When drawing a flowchart segment, you might

use only one other symbol, the connector

• You can use a connector when limited page size

forces you to continue a flowchart in an

unconnected location or on another page

Programming Logic and Design, 4th Edition Introductory 32

Using a Connector (continued)

• By convention, programmers use a circle as

an on-page connector symbol, and a

symbol that looks like a square with a

pointed bottom as an off-page connector

symbol

Programming Logic and Design, 4th Edition Introductory 33

Using a Connector (continued)

• If a flowchart has six processing steps and a page provides

room for only three, you might represent the logic as shown

below:

Programming Logic and Design, 4th Edition Introductory 34

Assigning Values to Variables

• When you create a flowchart or pseudocode for a

program that doubles numbers, you can include
the statement compute caclulatedAnswer as

inputNumber times 2

• This statement incorporates two actions:

– First, the computer computes the arithmetic value
of inputNumber times 2

– Second, the computed value is stored in the
calculatedAnswer memory location

Programming Logic and Design, 4th Edition Introductory 35

Assigning Values to Variables

(continued)

• Most programming languages allow a shorthand

expression for assignment statements such as
compute caculatedAnswer as inputNumber

times 2

• The shorthand takes the form
calculatedAnswer = inputNumber * 2

• The equal sign is the assignment operator, which

always requires the name of a memory location

on its left side—the location where the result will

be stored

Programming Logic and Design, 4th Edition Introductory 36

Understanding Data Types

• Computers deal with two basic types of data—
character and numeric

• When you use a specific numeric value, such as
43, within a program, you write it using the digits
and no quotation marks

• A specific numeric value is often called a numeric
constant because it does not change—a 43
always has the value 43

• When you use a specific character value, or
string of characters, such as “Chris” you enclose
the string, or character constant, within quotation
marks

Programming Logic and Design, 4th Edition Introductory 37

Understanding Data Types (continued)

• Most computer languages allow at least two
distinct types of variables:

– One holds a number, often called a numeric
variable

– Others hold letters of the alphabet and various
special characters such as punctuation marks, and
are called character, text, or string variables,
depending on the language being used

Programming Logic and Design, 4th Edition Introductory 38

Understanding Data Types (continued)

• Some languages allow for several types of

numeric data

• Languages such as Pascal, C++, C#, and Java

distinguish between integer (whole number)

numeric variables and floating-point (fractional)

numeric variables containing a decimal point

Programming Logic and Design, 4th Edition Introductory 39

Understanding the Evolution of

Programming Techniques

• Old programming languages required
programmers to work with memory addresses
and to memorize awkward codes associated with
machine languages

• Newer programming languages look much more
like natural language and are easier to use

Programming Logic and Design, 4th Edition Introductory 40

Understanding the Evolution of

Programming Techniques (continued)

• Currently, there are two major techniques used to

develop programs and their procedures

– Procedural programming focuses on the

procedures that programmers create

– Object-oriented programming, focuses on objects,

or “things”, and describes their features, or

attributes, and their behaviors

Programming Logic and Design, 4th Edition Introductory 41

Summary

• A programmer’s job involves:

– Understanding the problem

– Planning the logic

– Coding the problem

– Translating the program into machine language

– Testing the program

– Putting the program into production

• When programmers plan the logic for a solution
to a programming problem, they often use
flowcharts or pseudocode

Programming Logic and Design, 4th Edition Introductory 42

Summary (continued)

• Testing a value involves making a decision

• Most programming languages use the equal sign

to assign values to variables

• Procedural and object-oriented programmers

approach program problems differently

