Chemistry

Chapter 1

Chemical Foundations

Section 1.1
 Chemistry: An Overview

- A main challenge of chemistry is to understand the connection between the macroscopic world that we experience and the microscopic world of atoms and molecules.
- You must learn to think on the atomic level.

Section 1.1
 Chemistry: An Overview

Atoms vs. Molecules

- Matter is composed of tiny particles called atoms.
- Atom: smallest part of an element that is still that element.
- Molecule: Two or more atoms joined and acting as a unit.
oxygen atom

Section 1.1
 Chemistry: An Overview

Oxygen and Hydrogen Molecules

- Use subscripts when more than one atom is in the molecule.
oxygen molecule

written O_{2}

hydrogen molecule

written H_{2}

Section 1.1
 Chemistry: An Overview

A Chemical Reaction

- One substance changes to another by reorganizing the way the atoms are attached to each other.
two water
molecules
written $2 \mathrm{H}_{2} \mathrm{O}$

two hydrogen molecules written $2 \mathrm{H}_{2}$

Section 1.2

The Scientific Method

Science

- Science is a framework for gaining and organizing knowledge.
- Science is a plan of action - a procedure for processing and understanding certain types of information.
- Scientists are always challenging our current beliefs about science, asking questions, and experimenting to gain new knowledge.
- Scientific method is needed.

Section 1.2
 The Scientific Method

Fundamental Steps of the Scientific Method

- Process that lies at the center of scientific inquiry.

Section 1.2
 The Scientific Method

Scientific Models

Law

- A summary of repeatable observed (measurable) behavior. Hypothesis
- A possible explanation for an observation.

Theory (Model)

- Set of tested hypotheses that gives an overall explanation of some natural phenomenon.

Section 1.3
 Units of Measurement

Nature of Measurement
Measurement

- Quantitative observation consisting of two parts.
- number
- scale (unit)
- Examples
- 20 grams
- 6.63×10^{-34} joule•second

Section 1.3 Units of Measurement

The Fundamental SI Units

Physical Quantity
Mass
Length
Time
Temperature
Electric current
Amount of substance
Luminous intensity

Abbreviation
kilogram kg
meter m
second S
kelvin K
ampere A
mole mol
candela

Section 1.3
 Units of Measurement

Prefixes Used in the SI System

- Prefixes are used to change the size of the unit.

Table 1.2 | Prefixes Used in the SI System (The most commonly encountered are shown in blue.)

Prefix	Symbol	Meaning	Exponential Notation
exa	E	$1,000,000,000,000,000,000$	10^{18}
peta	P	$1,000,000,000,000,000$	10^{15}
tera	T	$1,000,000,000,000$	10^{12}
giga	G	$1,000,000,000$	10^{9}
mega	M	$1,000,000$	10^{6}
kilo	k	1,000	10^{3}
hecto	h	100	10^{2}
deka	da	10	10^{1}
-	-	1	10^{0}

[^0]
Section 1.3

Units of Measurement

Prefixes Used in the SI System

Table $1.2 \mid$ Prefixes Used in the SI System (The most commonly encountered are shown in blue.)

			Exponential Prefix
Symbol	Meaning	10^{-1}	
deci	d	0.1	10^{-2}
centi	c	0.01	10^{-3}
milli	m	0.001	10^{-6}
micro	μ	0.000001	10^{-9}
nano	n	0.000000001	10^{-12}
pico	p	0.000000000001	10^{-15}
femto	f	0.000000000000001	10^{-18}
atto	a	0.000000000000000001	

*See Appendix 1.1 if you need a review of exponential notation.
© Cengage Learning. All Rights Reserved.

Section 1.3
 Units of Measurement

Mass \neq Weight

- Mass is a measure of the resistance of an object to a change in its state of motion. Mass does not vary.
- Weight is the force that gravity exerts on an object. Weight varies with the strength of the gravitational field.

Section 1.4
 Uncertainty in Measurement

A digit that must be estimated in a measurement is called uncertain.

- A measurement always has some degree of uncertainty. It is dependent on the precision of the measuring device.

Record the certain digits and the first uncertain digit (the estimated number).

Measurement of Volume Using a Buret

- The volume is read at the bottom of the liquid curve (meniscus).
- Meniscus of the liquid occurs at about 20.15 mL .
- Certain digits:20.15
- Uncertain digit: 20.15

Section 1.4
 Uncertainty in Measurement

Precision and Accuracy

Accuracy

- Agreement of a particular value with the true value.

Precision

- Degree of agreement among several measurements of the same quantity.

Section 1.4

Uncertainty in Measurement

Precision and Accuracy

Neither accurate nor precise.
© Cengage Learning. All Rights Reserved.

-b
Precise but not accurate.

-
Accurate and precise.

Section 1.5

Significant Figures and Calculations

Rules for Counting Significant Figures

1. Nonzero integers always count as significant figures.

- 3456 has 4 sig figs (significant figures).

Section 1.5

Significant Figures and Calculations

Rules for Counting Significant Figures
2. There are three classes of zeros.
a. Leading zeros are zeros that precede all the nonzero digits. These do not count as significant figures.

- 0.048 has 2 sig figs.

Section 1.5

Significant Figures and Calculations

Rules for Counting Significant Figures
b. Captive zeros are zeros between nonzero digits. These always count as significant figures.

- 16.07 has 4 sig figs.

Section 1.5

Significant Figures and Calculations

Rules for Counting Significant Figures
c. Trailing zeros are zeros at the right end of the number. They are significant only if the number contains a decimal point.

- 9.300 has 4 sig figs.
- 150 has 2 sig figs.

Section 1.5

Significant Figures and Calculations

Rules for Counting Significant Figures
3. Exact numbers have an infinite number of significant figures.

- 1 inch = 2.54 cm , exactly.
- 9 pencils (obtained by counting).

Section 1.5

Significant Figures and Calculations

Exponential Notation

- Example
- 300 . written as 3.00×10^{2}
- Contains three significant figures.
- Two Advantages
- Number of significant figures can be easily indicated.
- Fewer zeros are needed to write a very large or very small number.

Section 1.5

Significant Figures and Calculations

Significant Figures in Mathematical Operations

1. For multiplication or division, the number of significant figures in the result is the same as the number in the least precise measurement used in the calculation.

$$
1.342 \times 5.5=7.381 \rightarrow 7.4
$$

Section 1.5

Significant Figures and Calculations

Significant Figures in Mathematical Operations
2. For addition or subtraction, the result has the same number of decimal places as the least precise measurement used in the calculation.

$$
\begin{aligned}
& 23.445 \\
& +\quad 7.83 \\
& 31.275 \xrightarrow{\text { Corrected }} 31.2 \underline{8}
\end{aligned}
$$

Section 1.5

Significant Figures and Calculations

CONCEPT CHECK!

You have water in each graduated cylinder shown. You then add both samples to a beaker (assume that all of the liquid is transferred).

How would you write the number describing the total volume?
3.1 mL

What limits the precision of the total volume?

Section 1.6
 Learning to Solve Problems Systematically

Questions to ask when approaching a problem

- What is my goal?
- What do I know?
- How do I get there?

Use when converting a given result from one system of units to another.

- To convert from one unit to another, use the equivalence statement that relates the two units.
- Derive the appropriate unit factor by looking at the direction of the required change (to cancel the unwanted units).
- Multiply the quantity to be converted by the unit factor to give the quantity with the desired units.

Section 1.7
 Dimensional Analysis

Example \#1

A golfer putted a golf ball 6.8 ft across a green. How many inches does this represent?

- To convert from one unit to another, use the equivalence statement that relates the two units.
$1 \mathrm{ft}=12 \mathrm{in}$

The two unit factors are:

$$
\frac{1 \mathrm{ft}}{12 \mathrm{in}} \text { and } \frac{12 \mathrm{in}}{1 \mathrm{ft}}
$$

Section 1.7
 Dimensional Analysis

Example \#1

A golfer putted a golf ball 6.8 ft across a green. How many inches does this represent?

Derive the appropriate unit factor by looking at the direction of the required change (to cancel the unwanted units).

$$
6.8 \mathrm{ft} \times \frac{12 \mathrm{in}}{1 \mathrm{ft}}=\quad \text { in }
$$

Section 1.7
 Dimensional Analysis

Example \#1

A golfer putted a golf ball 6.8 ft across a green. How many inches does this represent?

- Multiply the quantity to be converted by the unit factor to give the quantity with the desired units.

$$
6.8 \mathrm{ft} \times \frac{12 \mathrm{in}}{1 \mathrm{ft}}=82 \mathrm{in}
$$

Section 1.7
 Dimensional Analysis

Example \#2

An iron sample has a mass of 4.50 lb . What is the mass of this sample in grams?
$(1 \mathrm{~kg}=2.2046 \mathrm{lbs} ; 1 \mathrm{~kg}=1000 \mathrm{~g})$

$$
4.50 \mathrm{ks} \times \frac{1 \mathrm{~kg}}{2.2046 \mathrm{lbs}} \times \frac{1000 \mathrm{~g}}{1 \mathrm{~kg}}=2.04 \times 10^{3} \mathrm{~g}
$$

Section 1.7
 Dimensional Analysis

CONCEPT CHECK!

What data would you need to estimate the money you would spend on gasoline to drive your car from New York to Los Angeles? Provide estimates of values and a sample calculation.

Section 1.8

Temperature

Three Systems for Measuring Temperature

- Fahrenheit

Celsius
Kelvin

Section 1.8

Temperature

The Three Major Temperature Scales

Section 1.8

Temperature

Converting Between Scales

$$
T_{\mathrm{K}}=T_{\mathrm{C}}+273.15 \quad T_{\mathrm{C}}=T_{\mathrm{K}}-273.15
$$

$$
T_{\mathrm{C}}=\left(T_{\mathrm{F}}-32^{\circ} \mathrm{F}\right) \frac{5^{\circ} \mathrm{C}}{9^{\circ} \mathrm{F}}
$$

$$
T_{\mathrm{F}}=T_{\mathrm{C}} \times \frac{9^{\circ} \mathrm{F}}{5^{\circ} \mathrm{C}}+32^{\circ} \mathrm{F}
$$

Section 1.8
 Temperature

EXERCISE!

At what temperature does ${ }^{\circ} \mathrm{C}={ }^{\circ} \mathrm{F}$?

Section 1.8
 Temperature

EXERCISEI

- Since $^{\circ}$ C equals ${ }^{\circ} \mathrm{F}$, they both should be the same value (designated as variable x).
- Use one of the conversion equations such as:

$$
T_{\mathrm{C}}=\left(T_{\mathrm{F}}-32^{\circ} \mathrm{F}\right) \frac{5^{\circ} \mathrm{C}}{9^{\circ} \mathrm{F}}
$$

- Substitute in the value of x for both T_{C} and T_{F}. Solve for x.

Section 1.8

Temperature

EXERCISE!

$$
\begin{aligned}
T_{\mathrm{C}} & =\left(T_{\mathrm{F}}-32^{\circ} \mathrm{F}\right) \frac{5^{\circ} \mathrm{C}}{9^{\circ} \mathrm{F}} \\
x & =\left(x-32^{\circ} \mathrm{F}\right) \frac{5^{\circ} \mathrm{C}}{9^{\circ} \mathrm{F}} \\
x & =-40
\end{aligned}
$$

$$
\text { So }-40^{\circ} \mathrm{C}=-40^{\circ} \mathrm{F}
$$

Section 1.9
 Density

Mass of substance per unit volume of the substance.
Common units are $\mathrm{g} / \mathrm{cm}^{3}$ or g / mL.

$$
\text { Density }=\frac{\text { mass }}{\text { volume }}
$$

Section 1.9
 Density

Example \#1

A certain mineral has a mass of 17.8 g and a volume of $2.35 \mathrm{~cm}^{3}$. What is the density of this mineral?

$$
\begin{aligned}
& \text { Density }=\frac{\text { mass }}{\text { volume }} \\
& \text { Density }=\frac{17.8 \mathrm{~g}}{2.35 \mathrm{~cm}^{3}} \\
& \text { Density }=7.57 \mathrm{~g} / \mathrm{cm}^{3}
\end{aligned}
$$

Section 1.9
 Density

Example \#2

What is the mass of a $49.6-\mathrm{mL}$ sample of a liquid, which has a density of $0.85 \mathrm{~g} / \mathrm{mL}$?

$$
\begin{aligned}
\text { Density } & =\frac{\text { mass }}{\text { volume }} \\
0.85 \mathrm{~g} / \mathrm{mL} & =\frac{x}{49.6 \mathrm{~mL}}
\end{aligned}
$$

$$
\operatorname{mass}=x=42 \mathrm{~g}
$$

Section 1.10
 Classification of Matter

Matter

Anything occupying space and having mass. Matter exists in three states.

- Solid
- Liquid
- Gas

Section 1.10

Classification of Matter

The Three States of Water

Solid: The water molecules are locked into rigid positions and are close together.

- Cengage Learning. All Rights Reserved.

Liquid: The water molecules are still close together but can move around to some extent.

Gas: The water molecules are far apart and move randomly.

Section 1.10
Classification of Matter

Solid

- Rigid

Has fixed volume and shape.

Section 1.10
 Classification of Matter

Structure of a Solid

To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE

Section 1.10
 Classification of Matter

Liquid

- Has definite volume but no specific shape.

Assumes shape of container.

Section 1.10
 Classification of Matter

Structure of a liquid

To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE

Section 1.10
 Classification of Matter

Gas

- Has no fixed volume or shape.

Takes on the shape and volume of its container.

Section 1.10
 Classification of Matter

Structure of a gas

To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE

Section 1.10
 Classification of Matter

Mixtures

- Have variable composition.

Homogeneous Mixture

- Having visibly indistinguishable parts; solution.

Heterogeneous Mixture

- Having visibly distinguishable parts.

Section 1.10
 Classification of Matter

Homogeneous Mixtures

To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE

Section 1.10
 Classification of Matter

CONCEPT CHECK!

Which of the following is a homogeneous mixture?

- Pure water
- Gasoline
- Jar of jelly beans
- Soil
- Copper metal

Section 1.10
 Classification of Matter

Physical Change

- Change in the form of a substance, not in its chemical composition.
- Example: boiling or freezing water

Can be used to separate a mixture into pure compounds, but it will not break compounds into elements.

- Distillation
- Filtration
- Chromatography

Section 1.10
 Classification of Matter

Chemical Change

- A given substance becomes a new substance or substances with different properties and different composition.
- Example: Bunsen burner (methane reacts with oxygen to form carbon dioxide and water)

Section 1.10
 Classification of Matter

CONCEPT CHECK!

Which of the following are examples of a chemical change?

- Pulverizing (crushing) rock salt
- Burning of wood
- Dissolving of sugar in water
- Melting a popsicle on a warm summer day

Section 1.10
 Classification of Matter

The Organization of Matter

[^0]: © Cengage Learning. All Rights Reserved.

