Name:

Chapter 1: Essentials of Geometry

Guided Notes

CH. 1 Guided Notes, page 2
1.1 Identify Points, Lines, and Planes

Term	Definition	Example
undefined terms		
point		
line		
plane		
collinear points		
coplanar points		
line segment		
(segment)		
endpoints		
defined terms		

CH. 1 Guided Notes, page 3

ray		
opposite rays		
intersection		

Naming and symbols:
Point:

Line:

Plane:

Line Segment:

Ray:

Examples:
1.

Other names for $L N$:
Other names for plane Z:
Points that are collinear:

Another name for $\overline{V X}$:

All rays with endpoint W :
Opposite Rays:
3. Sketches:
a) Sketch a plane and a line that intersects the plane at one point.
b) Sketch a plane and a line that is in the plane. Sketch another line that intersects the line and plane at a point (use dotted lines to show where the intersecting line can not be seen).
c) Sketch two planes that intersect in a line.

Step 1: Draw one plane as if you are facing it. (straight up and down)
Step 2: Draw a second plane that is horizontal. (Use dotted lines to show where one plane can not be seen).

Step 3: Draw the line of intersection.

1.2 Use Segments and Congruence

Term	Definition	Example
postulate/axiom		
theorem		
coordinate		
distance	The points on a line can be matched one-to- one with the real numbers.	
Ruler Postulate		
Segment Addition Postulate	If B is between A and C, then $A B+B C=A C$. If $A B+B C=A C$, then B is between A and C.	
congruent segments		

Examples:

1. Measure the length of $C D$ to the nearest tenth of a centimeter using a ruler and the ruler postulate.

2. Use the Segment Addition Postulate to write an equation and solve for KL .

3. Plot $\mathrm{F}(4,5), \mathrm{G}(-1,5), \mathrm{H}(3,3)$, and $\mathrm{J}(3,-2)$ on coordinate grid. Then determine whether $\overline{F G}$ and $\overline{H J}$ are congruent.

1.3 Use Midpoint and Distance Formulas

Term	Definition	Example		
midpoint				
segment bisector				The Midpoint
:---	:---			
Formula	\quad	The coordinates of the midpoint of a		
:---				
segment with endpoints $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$				
are $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.				

CH. 1 Guided Notes, page 8
Examples (Part One):

1. Find RS.

2. Point \boldsymbol{C} is the midpoint of $\overline{B D}$. Find the length of $\overline{B C}$.

Find the length of $\overline{B D}$.
3. a. Find Midpoint The endpoints of $\overline{P R}$ are $P(-2,5)$ and $R(4,3)$. Find the coordinates of the midpoint M.

Line ℓ bisects the segment. Find the indicated length.
4. Find DF if $\mathrm{DE}=17 \mathrm{~cm}$.

CH. 1 Guided Notes, page 10
6. What is the approximate length of $\overline{R T}$, with endpoints $R(3,2)$ and $T(-4,3)$?
(Use the distance formula)

Now use the Pythagorean Theorem to find the length of $\overline{R T}$.
7. Find the approximate length of the segment.
(Use the distance formula)

Now use the Pythagorean Theorem to find the length of the segment.

1.4 Measure and Classify Angles

Term	Definition	Example
angle		
sides		
vertex		
measure	Consider $\overrightarrow{O B}$ and a point A on one side of Protractor Postulate	$\overrightarrow{O B}$. The rays of the form matched one-to-one with the real numbers from 0 to 180. The measure of $\angle A O B$ is equal to the absolute value of the difference between the real numbers for $\overrightarrow{O A}$ and $\overrightarrow{O B}$.

Classifying Angles: Angles are classified by their angle measures.

acute		
right		
obtuse		
straight		

CH. 1 Guided Notes, page 12

interior		
Angle Addition Postulate	If P is in the interior of $\angle R S T$, then $m \angle R S T=m \angle R S P+m \angle P S T$.	
congruent angles		
angle bisector		
construction		

Examples

1. Name the three angles in the diagram.

2. Use the diagram to find the measure of the indicated angle. Then classify the angle.
a. $\angle W S R$
b. $\angle T S W$
c. $\angle R S T$
d. $\angle \mathrm{VST}$

CH. 1 Guided Notes, page 13
3. Given that $m \angle G F J=155^{\circ}$, find $m \angle G F H$ and $m \angle H F J$.

4. Identify all pairs of congruent angles in the diagram.

5. In the diagram at the right, $\overrightarrow{W Y}$ bisects $\angle X W Z$, and $m \angle X W Y=29^{\circ}$. Find $m \angle X W Z$.

CH. 1 Guided Notes, page 14

1.5 Describe Angle Pair Relationships

Term	Definition	Example
complementary angles		
supplementary angles		
adjacent angles		
non-adjacent		
angles		
linear pair		

Examples:

1. In the figure name a pair of complementary angles, a pair of supplementary angles, and a pair of adjacent angles.

2. a) Given that $\angle 1$ is a complement of $\angle 2$ and $m \angle 2=57^{\circ}$, find $m \angle 1$.
b). Given that $\angle 3$ is a supplement of $\angle 4$ and, $m \angle 4=41^{\circ}$, find $m \angle 3$.
3. The basketball pole at right forms a pair of supplementary angles with the ground. Find $m \angle B C A$ and $m \angle D C A$.

4. Identify all of the linear pairs and all of the vertical angles in the figure at the right.

CH. 1 Guided Notes, page 16
5. Two angles form a linear pair. The measure of one angle is 4 times the measure of the other. Find the measure of each angle.

Interpreting a Diagram

There are some things you can conclude from a diagram, and some you cannot. Below, we will list things we can conclude from the diagram at right, and things we cannot conclude.

We CAN conclude that:

We CANNOT conclude that:

CH. 1 Guided Notes, page 17
1.6 Classify Polygons

Term	Definition	Example
plane figure		
polygon		
sides		
vertex		
convex		
concave		
equiangular		
regular		

Examples:

1. Tell whether the figure is a polygon and whether it is convex or concave.
a).

b).

c).

2. Classify the polygon by the number of sides. Tell whether the polygon is equilateral, equiangular, or regular.

3. The head of a bolt is shaped like a regular hexagon. The expressions shown represent side lengths of the hexagonal bolt. Find the length of a side.

CH. 1 Guided Notes, page 19
1.7 Find Perimeter, Circumference, and Area

Term	Definition	Example
perimeter		
circumference		
area		
diameter		
radius	The ratio of a circle's circumference to its diameter.	
Pi (π)		

Formulas for Perimeter, Circumference, and Area:

	Perimeter/Circumference	Area
Square	$P=4 s$	$A=s^{2}$
Rectangle	$P=2(I+w)=2 l+2 w$	$A=I \cdot w$
Triangle	$P=s_{1}+s_{2}+s_{3}$	$A=\frac{1}{2} b h$
Circle	$C=\pi \mathrm{d}=2 \pi \mathrm{r}$	$\mathrm{A}=\pi \mathrm{r}^{2}$

Examples:

1. The in-bounds portion of a singles tennis court is shown. Find its perimeter and area.

Perimeter

Area

2. The smallest circle on an Olympic archery target is 12 centimeters in diameter. Find the approximate circumference and area of the smallest circle.
3. Triangle JKL has vertices $J(1,6), K(6,6)$, and $L(3,2)$. Find the approximate perimeter of triangle JKL.

4. The base of a triangle is 24 feet. The area is 216 square feet. Find the height of the triangle.

5. You are using a roller to smooth a lawn. You can roll about 125 square yards in one minute. About how many minutes would it take you to roll a lawn that is 120 feet long and 75 feet wide?

