Precalculus 1 (Algebra)

Chapter 1. Graphs

1.1. The Distance and Midpoint Formulas-Exercises, Examples, Proofs

SULLIVAN

Table of contents

(1) Page 7 Number 16
(2) Page 7 Number 18
(3) Theorem 1.1.A. The Distance Formula
4) Page 7 Number 26
(5) Page 7 Number 34
(6) Theorem 1.1.B. The Midpoint Formula
(7) Page 7 Number 40
(8) Page 7 Number 44
(9) Page 8 Number 56
(10) Page 8 Number 68

Page 7 Number 16

Page 7 Number 16. Plot each point in the xy-plane. Tell in which quadrant or on what coordinate axis each point lies:
(a) $A=(1,4)$
(d) $D=(4,1)$
(b) $B=(-3,-4)$
(e) $E=(0,1)$
(c) $C=(-3,4)$
(f) $F=(-3,0)$

Solution. We have the Cartesian plane:

Page 7 Number 16

Page 7 Number 16. Plot each point in the xy-plane. Tell in which quadrant or on what coordinate axis each point lies:
(a) $A=(1,4)$
(d) $D=(4,1)$
(b) $B=(-3,-4)$
(e) $E=(0,1)$
(c) $C=(-3,4)$
(f) $F=(-3,0)$

Solution. We have the Cartesian plane:

Page 7 Number 16

Page 7 Number 16. Plot each point in the xy-plane. Tell in which quadrant or on what coordinate axis each point lies:
(a) $A=(1,4)$
(d) $D=(4,1)$
(b) $B=(-3,-4)$
(e) $E=(0,1)$
(c) $C=(-3,4)$
(f) $F=(-3,0)$

Solution. We have the Cartesian plane:

Page 7 Number 16

Page 7 Number 16. Plot each point in the xy-plane. Tell in which quadrant or on what coordinate axis each point lies:
(a) $A=(1,4)$
(d) $D=(4,1)$
(b) $B=(-3,-4)$
(e) $E=(0,1)$
(c) $C=(-3,4)$
(f) $F=(-3,0)$

Solution. We have the Cartesian plane:

The points are as graphed. They appear
in the following locations:

Point	Location
A	Quadrant I
B	Quadrant III
C	Quadrant II
D	Quadrant I
E	y-axis
F	x-axis

Page 7 Number 16

Page 7 Number 16. Plot each point in the xy-plane. Tell in which quadrant or on what coordinate axis each point lies:
(a) $A=(1,4)$
(d) $D=(4,1)$
(b) $B=(-3,-4)$
(e) $E=(0,1)$
(c) $C=(-3,4)$
(f) $F=(-3,0)$

Solution. We have the Cartesian plane:

The points are as graphed. They appear in the following locations:

Point	Location
A	Quadrant I
B	Quadrant III
C	Quadrant II
D	Quadrant I
E	y-axis
F	x-axis

Page 7 Number 18

Page 7 Number 18. Plot the points $(0,3),(1,3),(-2,3),(5,3)$, and $(-4,3)$. Describe the set of all points of the form $(x, 3)$ where x is any real number.

Solution. We have the Cartesian plane:

Page 7 Number 18

Page 7 Number 18. Plot the points $(0,3),(1,3),(-2,3),(5,3)$, and $(-4,3)$. Describe the set of all points of the form $(x, 3)$ where x is any real number.

Solution. We have the Cartesian plane:

Page 7 Number 18

Page 7 Number 18. Plot the points $(0,3),(1,3),(-2,3),(5,3)$, and $(-4,3)$. Describe the set of all points of the form $(x, 3)$ where x is any real number.

Solution. We have the Cartesian plane:

Page 7 Number 18

Page 7 Number 18. Plot the points (0,3), (1, 3), ($-2,3$), (5, 3), and $(-4,3)$. Describe the set of all points of the form $(x, 3)$ where x is any real number.

Solution. We have the Cartesian plane; the 5 points are as graphed.

Page 7 Number 18 (continued)

Page 7 Number 18. Plot the points (0,3), (1, 3), ($-2,3$), (5, 3), and $(-4,3)$. Describe the set of all points of the form $(x, 3)$ where x is any real number.

Solution (continued). The points of the form $(x, 3)$ yield a horizontal line:

Theorem 1.1.A

Theorem 1.1.A. The Distance Formula. The distance between two points $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$, denoted $d\left(P_{1}, P_{2}\right)$, is

$$
d\left(P_{1}, P_{2}\right)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} .
$$

Proof. First, assume that the line joining P_{1} and P_{2} is neither horizontal nor vertical:

Theorem 1.1.A

Theorem 1.1.A. The Distance Formula. The distance between two points $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$, denoted $d\left(P_{1}, P_{2}\right)$, is

$$
d\left(P_{1}, P_{2}\right)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} .
$$

Proof. First, assume that the line joining P_{1} and P_{2} is neither horizontal nor vertical:

The coordinates of point P_{3} are $\left(x_{2}, y_{1}\right)$. The horizontal distance from P_{1} to P_{3} is the absolute value of the difference of the x coordinates (because this is how distance is measured on the real line), $\left|x_{2}-x_{1}\right|$. The vertical distance from P_{3} to P_{2} is the absolute value of the difference of the y-coordinates $\left|y_{2}-y_{1}\right|$. Notice that $P_{1} P_{2} P_{3}$ is a right triangle.

Theorem 1.1.A

Theorem 1.1.A. The Distance Formula. The distance between two points $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$, denoted $d\left(P_{1}, P_{2}\right)$, is

$$
d\left(P_{1}, P_{2}\right)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} .
$$

Proof. First, assume that the line joining P_{1} and P_{2} is neither horizontal nor vertical:

The coordinates of point P_{3} are $\left(x_{2}, y_{1}\right)$. The horizontal distance from P_{1} to P_{3} is the absolute value of the difference of the x coordinates (because this is how distance is measured on the real line), $\left|x_{2}-x_{1}\right|$. The vertical distance from P_{3} to P_{2} is the absolute value of the difference of the y-coordinates $\left|y_{2}-y_{1}\right|$. Notice that $P_{1} P_{2} P_{3}$ is a right triangle.

Theorem 1.1.A (continued 1)

Theorem 1.1.A. The Distance Formula. The distance between two points $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$, denoted $d\left(P_{1}, P_{2}\right)$, is

$$
d\left(P_{1}, P_{2}\right)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Proof (continued). The hypotenuse of the right triangle has length $d\left(P_{1}, P_{2}\right)$, so by the Pythagorean Theorem (see Appendix A.2. Geometry Essentials)

$$
\left[d\left(P_{1}, P_{2}\right)\right]^{2}=\left|x_{2}-x_{1}\right|^{2}+\left|y_{2}-y_{1}\right|^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}
$$

and so (since distances are always positive)

$$
\sqrt{d\left(P_{1}, P_{2}\right)^{2}}=\left|d\left(P_{1}, P_{2}\right)\right|=d\left(P_{1}, P_{2}\right)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}},
$$

as claimed.

Theorem 1.1.A (continued 2)

Proof (continued). Second, if the line joining P_{1} and P_{2} is horizontal, then the y-coordinate of P_{1} equals the y-coordinate of P_{2}; that is, $y_{1}=y_{2}$. In this case $d\left(P_{1}, P_{2}\right)$ is simply $\left|x_{2}-x_{1}\right|$ and the the distance formula still holds since $d\left(P_{1}, P_{2}\right)=\left|x_{2}-x_{1}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+0}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.

If the line joining P_{1} and P_{2} is vertical, then the x-coordinate of P_{1} equals the x-coordinate of P_{2}; that is, $x_{1}=x_{2}$. In this case $d\left(P_{1}, P_{2}\right)$ is simply $\left|y_{2}-y_{1}\right|$ and the the distance formula still holds since
$d\left(P_{1}, P_{2}\right)=\left|y_{2}-y_{1}\right|=\sqrt{0+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.

Theorem 1.1.A (continued 2)

Proof (continued). Second, if the line joining P_{1} and P_{2} is horizontal, then the y-coordinate of P_{1} equals the y-coordinate of P_{2}; that is, $y_{1}=y_{2}$. In this case $d\left(P_{1}, P_{2}\right)$ is simply $\left|x_{2}-x_{1}\right|$ and the the distance formula still holds since $d\left(P_{1}, P_{2}\right)=\left|x_{2}-x_{1}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+0}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.

If the line joining P_{1} and P_{2} is vertical, then the x-coordinate of P_{1} equals the x-coordinate of P_{2}; that is, $x_{1}=x_{2}$. In this case $d\left(P_{1}, P_{2}\right)$ is simply $\left|y_{2}-y_{1}\right|$ and the the distance formula still holds since $d\left(P_{1}, P_{2}\right)=\left|y_{2}-y_{1}\right|=\sqrt{0+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.

Page 7 Number 26

Page 7 Number 26. Find the distance between the points $P_{1}=(2,-3)$ and $P_{2}=(4,2)$.

Solution. We use the distance formula

$$
d\left(P_{1}, P_{2}\right)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

where we have $P_{1}=\left(x_{1}, y_{1}\right)=(2,-3)$ and $P_{2}=\left(x_{2}, y_{2}\right)=(4,2)$. So we have $x_{1}=2, y_{1}=-3, x_{2}=4$, and $y_{2}=2$.

Page 7 Number 26

Page 7 Number 26. Find the distance between the points $P_{1}=(2,-3)$ and $P_{2}=(4,2)$.

Solution. We use the distance formula

$$
d\left(P_{1}, P_{2}\right)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

where we have $P_{1}=\left(x_{1}, y_{1}\right)=(2,-3)$ and $P_{2}=\left(x_{2}, y_{2}\right)=(4,2)$. So we have $x_{1}=2, y_{1}=-3, x_{2}=4$, and $y_{2}=2$. Hence the distance is

$$
d\left(P_{1}, P_{2}\right)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{(4-2)^{2}+(2-(-3))^{2}}
$$

$$
=\sqrt{2^{2}+(5)^{2}}=\sqrt{4+25}=\sqrt{\sqrt{29}} .
$$

Page 7 Number 26

Page 7 Number 26. Find the distance between the points $P_{1}=(2,-3)$ and $P_{2}=(4,2)$.

Solution. We use the distance formula

$$
d\left(P_{1}, P_{2}\right)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

where we have $P_{1}=\left(x_{1}, y_{1}\right)=(2,-3)$ and $P_{2}=\left(x_{2}, y_{2}\right)=(4,2)$. So we have $x_{1}=2, y_{1}=-3, x_{2}=4$, and $y_{2}=2$. Hence the distance is

$$
\begin{gathered}
d\left(P_{1}, P_{2}\right)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{(4-2)^{2}+(2-(-3))^{2}} \\
=\sqrt{2^{2}+(5)^{2}}=\sqrt{4+25}=\sqrt{29} .
\end{gathered}
$$

Page 7 Number 34

Page 7 Number 34. Plot each point $A=(-6,3), B=(3,-5)$, and $C=(-1,5)$, and form the triangle $A B C$. Show that the triangle is a right triangle and give its area.

Solution. The points and triangle $A B C$ are:

Page 7 Number 34

Page 7 Number 34. Plot each point $A=(-6,3), B=(3,-5)$, and $C=(-1,5)$, and form the triangle $A B C$. Show that the triangle is a right triangle and give its area.

Solution. The points and triangle $A B C$ are:

Page 7 Number 34

Page 7 Number 34. Plot each point $A=(-6,3), B=(3,-5)$, and $C=(-1,5)$, and form the triangle $A B C$. Show that the triangle is a right triangle and give its area.

Solution. The points and triangle $A B C$ are:

The lengths of the edges of $A B C$ are given by the distances:

$$
d(A, B)=\sqrt{(3-(-6))^{2}}+(-5-3)^{2}
$$

$$
=\sqrt{81+64}=\sqrt{145},
$$

$$
d(A, C)=\sqrt{(-1-(-6))^{2}+(5-3)^{2}}
$$

$$
=\sqrt{25+4}=\sqrt{29}, \text { and }
$$

$$
d(B, C)=\sqrt{(-1-(3))^{2}+(5-(-5))^{2}}
$$

$$
=\sqrt{16+100}=\sqrt{116}
$$

Page 7 Number 34

Page 7 Number 34. Plot each point $A=(-6,3), B=(3,-5)$, and $C=(-1,5)$, and form the triangle $A B C$. Show that the triangle is a right triangle and give its area.

Solution. The points and triangle $A B C$ are:

The lengths of the edges of $A B C$ are given by the distances:

$$
\begin{aligned}
& d(A, B)=\sqrt{(3-(-6))^{2}+(-5-3)^{2}} \\
& \quad=\sqrt{81+64}=\sqrt{145}, \\
& d(A, C)=\sqrt{(-1-(-6))^{2}+(5-3)^{2}} \\
& \quad=\sqrt{25+4}=\sqrt{29}, \text { and } \\
& d(B, C)=\sqrt{(-1-(3))^{2}+(5-(-5))^{2}} \\
& \quad=\sqrt{16+100}=\sqrt{116} .
\end{aligned}
$$

Page 7 Number 34 (continued)

Page 7 Number 34. Plot of the points each point $A=(-6,3)$, $B=(3,-5)$, and $C=(-1,5)$, and form the triangle $A B C$. Show that the triangle is a right triangle and give its area.

Solution (continued). By the Converse of the Pythagorean Theorem (see Appendix A.2. Geometry Essentials), $A B C$ is a right triangle if the square of the length of one side is the sum of the squares of the lengths of the other two sides. We have $(\sqrt{145})^{2}=(\sqrt{29})^{2}+\sqrt{116}^{2}$ (since $145=29+116)$ and so $d(A, B)^{2}=d(A, C)^{2}+d(B, C)^{2}$. Therefore, $A B C$ is a right triangle with the right angle at vertex C and with side $A B$ as the hypotenuse.

The area of a triangle is $1 / 2$ the base times the height. With side $A C$ as the base and side $B C$ as the height, we then have the area $A=(1 / 2) d(A, C) d(B, C)=(1 / 2) \sqrt{29} \sqrt{116}=58 / 2=29$. \square

Page 7 Number 34 (continued)

Page 7 Number 34. Plot of the points each point $A=(-6,3)$, $B=(3,-5)$, and $C=(-1,5)$, and form the triangle $A B C$. Show that the triangle is a right triangle and give its area.

Solution (continued). By the Converse of the Pythagorean Theorem (see Appendix A.2. Geometry Essentials), $A B C$ is a right triangle if the square of the length of one side is the sum of the squares of the lengths of the other two sides. We have $(\sqrt{145})^{2}=(\sqrt{29})^{2}+\sqrt{116}^{2}$ (since $145=29+116)$ and so $d(A, B)^{2}=d(A, C)^{2}+d(B, C)^{2}$. Therefore, $A B C$ is a right triangle with the right angle at vertex C and with side $A B$ as the hypotenuse.

The area of a triangle is $1 / 2$ the base times the height. With side $A C$ as the base and side $B C$ as the height, we then have the area $A=(1 / 2) d(A, C) d(B, C)=(1 / 2) \sqrt{29} \sqrt{116}=58 / 2=29$. \square

Theorem 1.1.B

Theorem 1.1.B. The Midpoint Formula. The midpoint $M=(x, y)$ of the line segment from $P_{1}=\left(x_{1}, y_{1}\right)$ to $P_{2}=\left(x_{2}, y_{2}\right)$ is

$$
M=(x, y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) .
$$

Proof. Consider the triangles $P_{1} A M$ and $M B P_{2}$:

Theorem 1.1.B

Theorem 1.1.B. The Midpoint Formula. The midpoint $M=(x, y)$ of the line segment from $P_{1}=\left(x_{1}, y_{1}\right)$ to $P_{2}=\left(x_{2}, y_{2}\right)$ is

$$
M=(x, y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) .
$$

Proof. Consider the triangles $P_{1} A M$ and $M B P_{2}$:

Theorem 1.1.B

Theorem 1.1.B. The Midpoint Formula. The midpoint $M=(x, y)$ of the line segment from $P_{1}=\left(x_{1}, y_{1}\right)$ to $P_{2}=\left(x_{2}, y_{2}\right)$ is

$$
M=(x, y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) .
$$

Proof. Consider the triangles $P_{1} A M$ and $M B P_{2}$:

Theorem 1.1.B

Theorem 1.1.B. The Midpoint Formula. The midpoint $M=(x, y)$ of the line segment from $P_{1}=\left(x_{1}, y_{1}\right)$ to $P_{2}=\left(x_{2}, y_{2}\right)$ is

$$
M=(x, y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) .
$$

Proof. Consider the triangles $P_{1} A M$ and $M B P_{2}$:
By classical Euclidean geometry, triangles $P_{1} A M$ and $M B P_{2}$ are congruent (by angle-side-angle). So corresponding sides of the triangles are equal and

$$
\begin{array}{rlrl}
x-x_{1} & =x_{2}-x & y-y_{1} & =y_{2}-y \\
2 x & =x_{1}+x_{2} & 2 y & =y_{1}+y_{2} \\
x & =\frac{x_{1}+x_{2}}{2} & y & =\frac{y_{1}+y_{2}}{2}
\end{array}
$$

Page 7 Number 40

Page 7 Number 40. Find the midpoint of the line segment joining the points $P_{1}=(2,-3)$ and $P_{2}=(4,2)$.

Solution. We use the midpoint formula

$$
M=(x, y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

where $P_{1}=\left(x_{1}, y_{1}\right)=(2,-3)$ and $P_{2}=\left(x_{2}, y_{2}\right)=(4,2)$. So we have $x_{1}=2, y_{1}=-3, x_{2}=4$, and $y_{2}=2$.

Page 7 Number 40

Page 7 Number 40. Find the midpoint of the line segment joining the points $P_{1}=(2,-3)$ and $P_{2}=(4,2)$.

Solution. We use the midpoint formula

$$
M=(x, y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

where $P_{1}=\left(x_{1}, y_{1}\right)=(2,-3)$ and $P_{2}=\left(x_{2}, y_{2}\right)=(4,2)$. So we have $x_{1}=2, y_{1}=-3, x_{2}=4$, and $y_{2}=2$. So the midpoint is

$$
\begin{aligned}
M=(x, y)= & \left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{2+4}{2}, \frac{-3+2}{2}\right) \\
& =\left(\frac{6}{2}, \frac{-1}{2}\right)=(3,-1 / 2) .
\end{aligned}
$$

Page 7 Number 40

Page 7 Number 40. Find the midpoint of the line segment joining the points $P_{1}=(2,-3)$ and $P_{2}=(4,2)$.

Solution. We use the midpoint formula

$$
M=(x, y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

where $P_{1}=\left(x_{1}, y_{1}\right)=(2,-3)$ and $P_{2}=\left(x_{2}, y_{2}\right)=(4,2)$. So we have $x_{1}=2, y_{1}=-3, x_{2}=4$, and $y_{2}=2$. So the midpoint is

$$
\begin{aligned}
M=(x, y)= & \left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{2+4}{2}, \frac{-3+2}{2}\right) \\
& =\left(\frac{6}{2}, \frac{-1}{2}\right)=(3,-1 / 2) .
\end{aligned}
$$

Page 7 Number 44

Page 7 Number 44. Find the midpoint of the line segment joining the points $P_{1}=(a, a)$ and $P_{2}=(0,0)$.

Solution. We use the midpoint formula

$$
M=(x, y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

where $P_{1}=\left(x_{1}, y_{1}\right)=(a, a)$ and $P_{2}=\left(x_{2}, y_{2}\right)=(0,0)$. So we have $x_{1}=a, y_{1}=a, x_{2}=0$, and $y_{2}=0$.

Page 7 Number 44

Page 7 Number 44. Find the midpoint of the line segment joining the points $P_{1}=(a, a)$ and $P_{2}=(0,0)$.

Solution. We use the midpoint formula

$$
M=(x, y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

where $P_{1}=\left(x_{1}, y_{1}\right)=(a, a)$ and $P_{2}=\left(x_{2}, y_{2}\right)=(0,0)$. So we have $x_{1}=a, y_{1}=a, x_{2}=0$, and $y_{2}=0$. So the midpoint is

$$
M=(x, y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{a+0}{2}, \frac{a+0}{2}\right)=\left(\frac{a}{2}, \frac{a}{2}\right) .
$$

Page 7 Number 44

Page 7 Number 44. Find the midpoint of the line segment joining the points $P_{1}=(a, a)$ and $P_{2}=(0,0)$.

Solution. We use the midpoint formula

$$
M=(x, y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

where $P_{1}=\left(x_{1}, y_{1}\right)=(a, a)$ and $P_{2}=\left(x_{2}, y_{2}\right)=(0,0)$. So we have $x_{1}=a, y_{1}=a, x_{2}=0$, and $y_{2}=0$. So the midpoint is

$$
M=(x, y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{a+0}{2}, \frac{a+0}{2}\right)=\left(\frac{a}{2}, \frac{a}{2}\right) .
$$

Page 8 Number 56

Page 8 Number 56. An equilateral triangle is one in which all three sides are of equal length. If two vertices of an equilateral triangle are $(0,4)$ and $(0,0)$, find the third vertex. How many of these triangles are possible?

Solution. Consider the graph of the two points:

Page 8 Number 56

Page 8 Number 56. An equilateral triangle is one in which all three sides are of equal length. If two vertices of an equilateral triangle are $(0,4)$ and $(0,0)$, find the third vertex. How many of these triangles are possible?

Solution. Consider the graph of the two points:

Page 8 Number 56

Page 8 Number 56. An equilateral triangle is one in which all three sides are of equal length. If two vertices of an equilateral triangle are $(0,4)$ and $(0,0)$, find the third vertex. How many of these triangles are possible?

Solution. Consider the graph of the two points:

Page 8 Number 56

Page 8 Number 56. An equilateral triangle is one in which all three sides are of equal length. If two vertices of an equilateral triangle are $(0,4)$ and $(0,0)$, find the third vertex. How many of these triangles are possible?

Solution. Consider the graph of the two points:

For an equilateral triangle, we need a third point that is also a distance of 4 from both given points. So we draw circles of radius 4 centered at each point.

We see that there are two possible choices for the third point.
We now find the coordinates of
these two points.

Page 8 Number 56

Page 8 Number 56. An equilateral triangle is one in which all three sides are of equal length. If two vertices of an equilateral triangle are $(0,4)$ and $(0,0)$, find the third vertex. How many of these triangles are possible?

Solution. Consider the graph of the two points:

For an equilateral triangle, we need a third point that is also a distance of 4 from both given points. So we draw circles of radius 4 centered at each point.

We see that there are two possible choices for the third point. We now find the coordinates of these two points.

Page 8 Number 56 (continued)

Page 8 Number 56. An equilateral triangle is one in which all three sides are of equal length. If two vertices of an equilateral triangle are $(0,4)$ and $(0,0)$, find the third vertex. How many of these triangles are possible?

Solution (continued). Let (x, y) be a point distance 4 from both $(0,4)$ and $(0,0)$. Then from the distance formula, $4=\sqrt{(x-0)^{2}+(y-4)^{2}}=\sqrt{(x-0)^{2}+(y-0)^{2}}$ or, squaring,

$$
\begin{equation*}
16=x^{2}+(y-4)^{2}=x^{2}+y^{2} . \tag{*}
\end{equation*}
$$

So we need $x^{2}+y^{2}-8 y+16=x^{2}+y^{2}$ or $-8 y+16=0$ or $y=2$. $(*)$ with $y=2$, we need (say) $16=x^{2}+(2)^{2}$ or $x^{2}=12$ or $\sqrt{x^{2}}=\sqrt{12}$ or $|x|=\sqrt{12}=2 \sqrt{3}$. So we must have $x= \pm 2 \sqrt{3}$. The two points which make an equilateral triangle are
\square

Page 8 Number 56 (continued)

Page 8 Number 56. An equilateral triangle is one in which all three sides are of equal length. If two vertices of an equilateral triangle are $(0,4)$ and $(0,0)$, find the third vertex. How many of these triangles are possible?

Solution (continued). Let (x, y) be a point distance 4 from both $(0,4)$ and $(0,0)$. Then from the distance formula,
$4=\sqrt{(x-0)^{2}+(y-4)^{2}}=\sqrt{(x-0)^{2}+(y-0)^{2}}$ or, squaring,

$$
\begin{equation*}
16=x^{2}+(y-4)^{2}=x^{2}+y^{2} . \tag{*}
\end{equation*}
$$

So we need $x^{2}+y^{2}-8 y+16=x^{2}+y^{2}$ or $-8 y+16=0$ or $y=2$. From $(*)$ with $y=2$, we need (say) $16=x^{2}+(2)^{2}$ or $x^{2}=12$ or $\sqrt{x^{2}}=\sqrt{12}$ or $|x|=\sqrt{12}=2 \sqrt{3}$. So we must have $x= \pm 2 \sqrt{3}$. The two points which make an equilateral triangle are

$$
(x, y)=(2 \sqrt{3}, 2) \text { and }(x, y)=(-2 \sqrt{3}, 2)
$$

Page 8 Number 68

Page 8 Number 68. A hot-air balloon, headed due east at an average speed of 15 miles per hour and at a constant altitude of 100 feet, passes over an intersection (see the figure). Find an expression for the distance d (measured in feet) from the balloon to the intersection t seconds later. HINT: 1 mile is 5280 feet and 1 hour is 3600 seconds.

Page 8 Number 68

Page 8 Number 68. A hot-air balloon, headed due east at an average speed of 15 miles per hour and at a constant altitude of 100 feet, passes over an intersection (see the figure). Find an expression for the distance d (measured in feet) from the balloon to the intersection t seconds later. HINT: 1 mile is 5280 feet and 1 hour is 3600 seconds.

Solution. We need to use the distance formula: (distance) $=($ rate $)($ time $)$.

Page 8 Number 68 (continued 1)

Solution (continued). The horizontal distance traveled after t seconds is

$$
\begin{gathered}
x=(15 \text { miles } / \text { hour })\left(\frac{5280 \text { feet }}{1 \text { mile }}\right)(t \text { seconds })\left(\frac{1 \text { hour }}{3600 \text { seconds }}\right) \\
=\frac{(15)(5280) t}{3600} \text { feet }=22 t \text { feet. }
\end{gathered}
$$

So at time t seconds we have:

Page 8 Number 68 (continued 2)

Solution (continued).

So with the origin of the above coordinate system at the intersection, the distance from the intersection at $(0,0)$ to the balloon at $(22 t, 100)$ (with all distance units in feet) is

$$
\sqrt{(22 t-0)^{2}+(100-0)^{2}}=\sqrt{484 t^{2}+10000}=d .
$$

