
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 1: Introduction

1.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 1: Introduction

 What Operating Systems Do
 Computer-System Organization
 Computer-System Architecture
 Operating-System Structure
 Operating-System Operations
 Process Management
 Memory Management
 Storage Management
 Protection and Security
 Distributed Systems
 Special-Purpose Systems
 Computing Environments
 Open-Source Operating Systems

1.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

 To provide a grand tour of the major operating systems components

 To provide coverage of basic computer system organization

1.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

What is an Operating System?

 A program that acts as an intermediary between a user of a computer
and the computer hardware

 Operating system goals:
 Execute user programs and make solving user problems easier
 Make the computer system convenient to use
 Use the computer hardware in an efficient manner

1.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Computer System Structure

 Computer system can be divided into four components:
 Hardware – provides basic computing resources

 CPU, memory, I/O devices
 Operating system

 Controls and coordinates use of hardware among various
applications and users

 Application programs – define the ways in which the system
resources are used to solve the computing problems of the
users
 Word processors, compilers, web browsers, database

systems, video games
 Users

 People, machines, other computers

1.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Four Components of a Computer System

1.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

What Operating Systems Do

 Depends on the point of view
 Users want convenience, ease of use

 Don’t care about resource utilization
 But shared computer such as mainframe or minicomputer must keep all

users happy
 Users of dedicate systems such as workstations have dedicated resources

but frequently use shared resources from servers
 Handheld computers are resource poor, optimized for usability and battery

life
 Some computers have little or no user interface, such as embedded

computers in devices and automobiles

1.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating System Definition

 OS is a resource allocator
 Manages all resources
 Decides between conflicting requests for efficient and fair resource

use

 OS is a control program
 Controls execution of programs to prevent errors and improper use

of the computer

1.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating System Definition (Cont.)

 No universally accepted definition

 “Everything a vendor ships when you order an operating system” is
good approximation

 But varies wildly

 “The one program running at all times on the computer” is the kernel.
 Everything else is either a system program (ships with the operating
system) or an application program.

1.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Computer Startup

 bootstrap program is loaded at power-up or reboot
 Typically stored in ROM or EPROM, generally known as firmware
 Initializes all aspects of system
 Loads operating system kernel and starts execution

1.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Computer System Organization

 Computer-system operation
 One or more CPUs, device controllers connect through common

bus providing access to shared memory
 Concurrent execution of CPUs and devices competing for

memory cycles

1.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Computer-System Operation

 I/O devices and the CPU can execute concurrently

 Each device controller is in charge of a particular device type

 Each device controller has a local buffer

 CPU moves data from/to main memory to/from local buffers

 I/O is from the device to local buffer of controller

 Device controller informs CPU that it has finished its operation by
causing an interrupt

1.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Common Functions of Interrupts

 Interrupt transfers control to the interrupt service routine generally,
through the interrupt vector, which contains the addresses of all the
service routines

 Interrupt architecture must save the address of the interrupted
instruction

 Incoming interrupts are disabled while another interrupt is being
processed to prevent a lost interrupt

 A trap is a software-generated interrupt caused either by an error or a
user request

 An operating system is interrupt driven

1.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Interrupt Handling

 The operating system preserves the state of the CPU by storing
registers and the program counter

 Determines which type of interrupt has occurred:
 polling
 vectored interrupt system

 Separate segments of code determine what action should be taken for
each type of interrupt

1.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Interrupt Timeline

1.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

I/O Structure

 After I/O starts, control returns to user program only upon I/O
completion

 Wait instruction idles the CPU until the next interrupt
 Wait loop (contention for memory access)
 At most one I/O request is outstanding at a time, no

simultaneous I/O processing

 After I/O starts, control returns to user program without waiting for
I/O completion

 System call – request to the operating system to allow user to
wait for I/O completion

 Device-status table contains entry for each I/O device indicating
its type, address, and state

 Operating system indexes into I/O device table to determine
device status and to modify table entry to include interrupt

1.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Direct Memory Access Structure

 Used for high-speed I/O devices able to transmit information at close to
memory speeds

 Device controller transfers blocks of data from buffer storage directly to
main memory without CPU intervention

 Only one interrupt is generated per block, rather than the one interrupt
per byte

1.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Storage Structure

 Main memory – only large storage media that the CPU can access
directly

 Random access
 Typically volatile

 Secondary storage – extension of main memory that provides large
nonvolatile storage capacity

 Magnetic disks – rigid metal or glass platters covered with magnetic
recording material

 Disk surface is logically divided into tracks, which are subdivided
into sectors

 The disk controller determines the logical interaction between the
device and the computer

1.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Storage Hierarchy

 Storage systems organized in hierarchy
 Speed
 Cost
 Volatility

 Caching – copying information into faster storage system; main
memory can be viewed as a cache for secondary storage

1.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Storage-Device Hierarchy

1.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Caching

 Important principle, performed at many levels in a computer (in
hardware, operating system, software)

 Information in use copied from slower to faster storage temporarily

 Faster storage (cache) checked first to determine if information is
there

 If it is, information used directly from the cache (fast)
 If not, data copied to cache and used there

 Cache smaller than storage being cached
 Cache management important design problem
 Cache size and replacement policy

1.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Computer-System Architecture

 Most systems use a single general-purpose processor (PDAs through
mainframes)

 Most systems have special-purpose processors as well

 Multiprocessors systems growing in use and importance
 Also known as parallel systems, tightly-coupled systems
 Advantages include:

1. Increased throughput
2. Economy of scale
3. Increased reliability – graceful degradation or fault tolerance

 Two types:
1. Asymmetric Multiprocessing
2. Symmetric Multiprocessing

1.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

How a Modern Computer Works

A von Neumann architecture

1.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Symmetric Multiprocessing Architecture

1.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

A Dual-Core Design

1.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Clustered Systems

 Like multiprocessor systems, but multiple systems working together
 Usually sharing storage via a storage-area network (SAN)
 Provides a high-availability service which survives failures

 Asymmetric clustering has one machine in hot-standby mode
 Symmetric clustering has multiple nodes running applications,

monitoring each other
 Some clusters are for high-performance computing (HPC)

 Applications must be written to use parallelization

1.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Clustered Systems

1.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating System Structure

 Multiprogramming needed for efficiency
 Single user cannot keep CPU and I/O devices busy at all times
 Multiprogramming organizes jobs (code and data) so CPU always has one to

execute
 A subset of total jobs in system is kept in memory
 One job selected and run via job scheduling
 When it has to wait (for I/O for example), OS switches to another job

 Timesharing (multitasking) is logical extension in which CPU switches jobs
so frequently that users can interact with each job while it is running, creating
interactive computing

 Response time should be < 1 second
 Each user has at least one program executing in memory process
 If several jobs ready to run at the same time CPU scheduling
 If processes don’t fit in memory, swapping moves them in and out to run
 Virtual memory allows execution of processes not completely in memory

1.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Memory Layout for Multiprogrammed System

1.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating-System Operations

 Interrupt driven by hardware
 Software error or request creates exception or trap

 Division by zero, request for operating system service
 Other process problems include infinite loop, processes modifying each

other or the operating system
 Dual-mode operation allows OS to protect itself and other system

components
 User mode and kernel mode
 Mode bit provided by hardware

 Provides ability to distinguish when system is running user code
or kernel code

 Some instructions designated as privileged, only executable in
kernel mode

 System call changes mode to kernel, return from call resets it to
user

1.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Transition from User to Kernel Mode

 Timer to prevent infinite loop / process hogging resources
 Set interrupt after specific period
 Operating system decrements counter
 When counter zero generate an interrupt
 Set up before scheduling process to regain control or terminate

program that exceeds allotted time

1.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Management

 A process is a program in execution. It is a unit of work within the
system. Program is a passive entity, process is an active entity.

 Process needs resources to accomplish its task
 CPU, memory, I/O, files
 Initialization data

 Process termination requires reclaim of any reusable resources
 Single-threaded process has one program counter specifying

location of next instruction to execute
 Process executes instructions sequentially, one at a time, until

completion
 Multi-threaded process has one program counter per thread
 Typically system has many processes, some user, some operating

system running concurrently on one or more CPUs
 Concurrency by multiplexing the CPUs among the processes /

threads

1.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Management Activities

 Creating and deleting both user and system processes
 Suspending and resuming processes
 Providing mechanisms for process synchronization
 Providing mechanisms for process communication
 Providing mechanisms for deadlock handling

The operating system is responsible for the following activities in
connection with process management:

1.34 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Memory Management

 All data in memory before and after processing

 All instructions in memory in order to execute

 Memory management determines what is in memory when
 Optimizing CPU utilization and computer response to users

 Memory management activities
 Keeping track of which parts of memory are currently being used

and by whom
 Deciding which processes (or parts thereof) and data to move into

and out of memory
 Allocating and deallocating memory space as needed

1.35 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Storage Management

 OS provides uniform, logical view of information storage
 Abstracts physical properties to logical storage unit - file
 Each medium is controlled by device (i.e., disk drive, tape drive)

 Varying properties include access speed, capacity, data-
transfer rate, access method (sequential or random)

 File-System management
 Files usually organized into directories
 Access control on most systems to determine who can access

what
 OS activities include

 Creating and deleting files and directories
 Primitives to manipulate files and dirs
 Mapping files onto secondary storage
 Backup files onto stable (non-volatile) storage media

1.36 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Mass-Storage Management

 Usually disks used to store data that does not fit in main memory or
data that must be kept for a “long” period of time

 Proper management is of central importance
 Entire speed of computer operation hinges on disk subsystem and its

algorithms
 OS activities

 Free-space management
 Storage allocation
 Disk scheduling

 Some storage need not be fast
 Tertiary storage includes optical storage, magnetic tape
 Still must be managed – by OS or applications
 Varies between WORM (write-once, read-many-times) and RW

(read-write)

1.37 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Performance of Various Levels of Storage

 Movement between levels of storage hierarchy can be explicit or
implicit

1.38 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Migration of Integer A from Disk to Register

 Multitasking environments must be careful to use most recent value, no
matter where it is stored in the storage hierarchy

 Multiprocessor environment must provide cache coherency in hardware
such that all CPUs have the most recent value in their cache

 Distributed environment situation even more complex
 Several copies of a datum can exist
 Various solutions covered in Chapter 17

1.39 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

I/O Subsystem

 One purpose of OS is to hide peculiarities of hardware devices from
the user

 I/O subsystem responsible for
 Memory management of I/O including buffering (storing data

temporarily while it is being transferred), caching (storing parts of
data in faster storage for performance), spooling (the overlapping
of output of one job with input of other jobs)

 General device-driver interface
 Drivers for specific hardware devices

1.40 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Protection and Security

 Protection – any mechanism for controlling access of processes or
users to resources defined by the OS

 Security – defense of the system against internal and external attacks
 Huge range, including denial-of-service, worms, viruses, identity

theft, theft of service

 Systems generally first distinguish among users, to determine who can
do what

 User identities (user IDs, security IDs) include name and
associated number, one per user

 User ID then associated with all files, processes of that user to
determine access control

 Group identifier (group ID) allows set of users to be defined and
controls managed, then also associated with each process, file

 Privilege escalation allows user to change to effective ID with
more rights

1.41 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Distributed Computing

 Collection of separate, possibly heterogeneous, systems networked together
 Network is a communications path

– Local Area Network (LAN)
– Wide Area Network (WAN)
– Metropolitan Area Network (MAN)

 Network Operating System provides features between systems across
network

 Communication scheme allows systems to exchange messages
 Illusion of a single system

1.42 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Special-Purpose Systems

 Real-time embedded systems most prevalent form of computers
 Vary considerable, special purpose, limited purpose OS, real-time OS

 Multimedia systems
 Streams of data must be delivered according to time restrictions

 Handheld systems
 PDAs, smart phones, limited CPU, memory, power
 Reduced feature set OS, limited I/O

1.43 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Computing Environments

 Traditional computer
 Blurring over time
 Office environment

 PCs connected to a network, terminals attached to
mainframe or minicomputers providing batch and
timesharing

 Now portals allowing networked and remote systems
access to same resources

 Home networks
 Used to be single system, then modems
 Now firewalled, networked

1.44 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Computing Environments (Cont.)

 Client-Server Computing
 Dumb terminals supplanted by smart PCs
 Many systems now servers, responding to requests generated

by clients
 Compute-server provides an interface to client to request

services (i.e., database)
 File-server provides interface for clients to store and

retrieve files

1.45 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Peer-to-Peer Computing

 Another model of distributed system

 P2P does not distinguish clients and servers
 Instead all nodes are considered peers
 May each act as client, server or both
 Node must join P2P network

 Registers its service with central lookup service on network, or
 Broadcast request for service and respond to requests for

service via discovery protocol
 Examples include Napster and Gnutella

1.46 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Web-Based Computing

 Web has become ubiquitous

 PCs most prevalent devices

 More devices becoming networked to allow web access

 New category of devices to manage web traffic among similar servers:
load balancers

 Use of operating systems like Windows 95, client-side, have evolved
into Linux and Windows XP, which can be clients and servers

1.47 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Open-Source Operating Systems

 Operating systems made available in source-code format rather than
just binary closed-source

 Counter to the copy protection and Digital Rights Management
(DRM) movement

 Started by Free Software Foundation (FSF), which has “copyleft”
GNU Public License (GPL)

 Examples include GNU/Linux and BSD UNIX (including core of Mac
OS X), and many more

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

End of Chapter 1

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 2: Operating-System
Structures

2.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 2: Operating-System Structures

 Operating System Services
 User Operating System Interface
 System Calls
 Types of System Calls
 System Programs
 Operating System Design and Implementation
 Operating System Structure
 Virtual Machines
 Operating System Debugging
 Operating System Generation
 System Boot

2.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

 To describe the services an operating system provides to users,
processes, and other systems

 To discuss the various ways of structuring an operating system

 To explain how operating systems are installed and customized and
how they boot

2.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating System Services

 Operating systems provide an environment for execution of programs and
services to programs and users

 One set of operating-system services provides functions that are helpful to the
user:

 User interface - Almost all operating systems have a user interface (UI).
 Varies between Command-Line (CLI), Graphics User Interface (GUI),

Batch
 Program execution - The system must be able to load a program into

memory and to run that program, end execution, either normally or
abnormally (indicating error)

 I/O operations - A running program may require I/O, which may involve a
file or an I/O device

 File-system manipulation - The file system is of particular interest.
Programs need to read and write files and directories, create and delete
them, search them, list file Information, permission management.

2.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating System Services (Cont.)

 Communications – Processes may exchange information, on the
same computer or between computers over a network
 Communications may be via shared memory or through message

passing (packets moved by the OS)
 Error detection – OS needs to be constantly aware of possible

errors
 May occur in the CPU and memory hardware, in I/O devices, in

user program
 For each type of error, OS should take the appropriate action to

ensure correct and consistent computing
 Debugging facilities can greatly enhance the user’s and

programmer’s abilities to efficiently use the system

2.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating System Services (Cont.)

 Another set of OS functions exists for ensuring the efficient operation of the
system itself via resource sharing

 Resource allocation - When multiple users or multiple jobs running
concurrently, resources must be allocated to each of them

 Many types of resources - Some (such as CPU cycles, main memory,
and file storage) may have special allocation code, others (such as I/O
devices) may have general request and release code

 Accounting - To keep track of which users use how much and what kinds
of computer resources

 Protection and security - The owners of information stored in a multiuser
or networked computer system may want to control use of that information,
concurrent processes should not interfere with each other

 Protection involves ensuring that all access to system resources is
controlled

 Security of the system from outsiders requires user authentication,
extends to defending external I/O devices from invalid access attempts

 If a system is to be protected and secure, precautions must be
instituted throughout it. A chain is only as strong as its weakest link.

2.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

A View of Operating System Services

2.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

User Operating System Interface - CLI

 Command Line Interface (CLI) or command interpreter allows direct
command entry

 Sometimes implemented in kernel, sometimes by systems
program

 Sometimes multiple flavors implemented – shells
 Primarily fetches a command from user and executes it

– Sometimes commands built-in, sometimes just names of
programs
» If the latter, adding new features doesn’t require shell

modification

2.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

User Operating System Interface - GUI

 User-friendly desktop metaphor interface
 Usually mouse, keyboard, and monitor
 Icons represent files, programs, actions, etc
 Various mouse buttons over objects in the interface cause various

actions (provide information, options, execute function, open directory
(known as a folder)

 Invented at Xerox PARC

 Many systems now include both CLI and GUI interfaces
 Microsoft Windows is GUI with CLI “command” shell
 Apple Mac OS X as “Aqua” GUI interface with UNIX kernel underneath

and shells available
 Solaris is CLI with optional GUI interfaces (Java Desktop, KDE)

2.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Bourne Shell Command Interpreter

2.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

The Mac OS X GUI

2.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

System Calls

 Programming interface to the services provided by the OS

 Typically written in a high-level language (C or C++)

 Mostly accessed by programs via a high-level Application Program
Interface (API) rather than direct system call use

 Three most common APIs are Win32 API for Windows, POSIX API for
POSIX-based systems (including virtually all versions of UNIX, Linux,
and Mac OS X), and Java API for the Java virtual machine (JVM)

 Why use APIs rather than system calls?

(Note that the system-call names used throughout this text are
generic)

2.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of System Calls

 System call sequence to copy the contents of one file to another file

2.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of Standard API

 Consider the ReadFile() function in the
 Win32 API—a function for reading from a file

 A description of the parameters passed to ReadFile()
 HANDLE file—the file to be read
 LPVOID buffer—a buffer where the data will be read into and written from
 DWORD bytesToRead—the number of bytes to be read into the buffer
 LPDWORD bytesRead—the number of bytes read during the last read
 LPOVERLAPPED ovl—indicates if overlapped I/O is being used

2.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

System Call Implementation

 Typically, a number associated with each system call
 System-call interface maintains a table indexed according to these

numbers

 The system call interface invokes intended system call in OS kernel
and returns status of the system call and any return values

 The caller need know nothing about how the system call is
implemented

 Just needs to obey API and understand what OS will do as a result
call

 Most details of OS interface hidden from programmer by API
 Managed by run-time support library (set of functions built into

libraries included with compiler)

2.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

API – System Call – OS Relationship

2.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Standard C Library Example

 C program invoking printf() library call, which calls write() system call

2.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

System Call Parameter Passing

 Often, more information is required than simply identity of desired
system call

 Exact type and amount of information vary according to OS and
call

 Three general methods used to pass parameters to the OS
 Simplest: pass the parameters in registers

 In some cases, may be more parameters than registers
 Parameters stored in a block, or table, in memory, and address of

block passed as a parameter in a register
 This approach taken by Linux and Solaris

 Parameters placed, or pushed, onto the stack by the program and
popped off the stack by the operating system

 Block and stack methods do not limit the number or length of
parameters being passed

2.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Parameter Passing via Table

2.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Types of System Calls

 Process control
 end, abort
 load, execute
 create process, terminate process
 get process attributes, set process attributes
 wait for time
 wait event, signal event
 allocate and free memory

 File management
 create file, delete file
 open, close file
 read, write, reposition
 get and set file attributes

2.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Types of System Calls (Cont.)

 Device management
 request device, release device
 read, write, reposition
 get device attributes, set device attributes
 logically attach or detach devices

 Information maintenance
 get time or date, set time or date
 get system data, set system data
 get and set process, file, or device attributes

 Communications
 create, delete communication connection
 send, receive messages
 transfer status information
 attach and detach remote devices

2.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Examples of Windows and
Unix System Calls

2.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example: MS-DOS

 Single-tasking
 Shell invoked when system booted
 Simple method to run program

 No process created
 Single memory space
 Loads program into memory, overwriting all but the kernel
 Program exit -> shell reloaded

2.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

MS-DOS execution

(a) At system startup (b) running a program

2.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example: FreeBSD

 Unix variant
 Multitasking
 User login -> invoke user’s choice of shell
 Shell executes fork() system call to create process

 Executes exec() to load program into process
 Shell waits for process to terminate or continues with user commands

 Process exits with code of 0 – no error or > 0 – error code

2.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

FreeBSD Running Multiple Programs

2.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

System Programs

 System programs provide a convenient environment for program
development and execution. They can be divided into:

 File manipulation
 Status information
 File modification
 Programming language support
 Program loading and execution
 Communications
 Application programs

 Most users’ view of the operation system is defined by system
programs, not the actual system calls

2.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

System Programs

 Provide a convenient environment for program development and
execution

 Some of them are simply user interfaces to system calls; others
are considerably more complex

 File management - Create, delete, copy, rename, print, dump, list, and
generally manipulate files and directories

 Status information
 Some ask the system for info - date, time, amount of available

memory, disk space, number of users
 Others provide detailed performance, logging, and debugging

information
 Typically, these programs format and print the output to the

terminal or other output devices
 Some systems implement a registry - used to store and retrieve

configuration information

2.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

System Programs (Cont.)

 File modification
 Text editors to create and modify files
 Special commands to search contents of files or perform

transformations of the text

 Programming-language support - Compilers, assemblers,
debuggers and interpreters sometimes provided

 Program loading and execution- Absolute loaders, relocatable
loaders, linkage editors, and overlay-loaders, debugging systems for
higher-level and machine language

 Communications - Provide the mechanism for creating virtual
connections among processes, users, and computer systems

 Allow users to send messages to one another’s screens, browse
web pages, send electronic-mail messages, log in remotely,
transfer files from one machine to another

2.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating System Design
and Implementation

 Design and Implementation of OS not “solvable”, but some
approaches have proven successful

 Internal structure of different Operating Systems can vary widely

 Start by defining goals and specifications

 Affected by choice of hardware, type of system

 User goals and System goals
 User goals – operating system should be convenient to use, easy

to learn, reliable, safe, and fast
 System goals – operating system should be easy to design,

implement, and maintain, as well as flexible, reliable, error-free,
and efficient

2.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating System Design and
Implementation (Cont.)

 Important principle to separate
Policy: What will be done?
Mechanism: How to do it?

 Mechanisms determine how to do something, policies decide what will
be done

 The separation of policy from mechanism is a very important
principle, it allows maximum flexibility if policy decisions are to be
changed later

2.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Simple Structure

 MS-DOS – written to provide the most functionality in the least space
 Not divided into modules
 Although MS-DOS has some structure, its interfaces and levels of

functionality are not well separated

2.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

MS-DOS Layer Structure

2.34 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Layered Approach

 The operating system is divided into a number of layers (levels), each
built on top of lower layers. The bottom layer (layer 0), is the
hardware; the highest (layer N) is the user interface.

 With modularity, layers are selected such that each uses functions
(operations) and services of only lower-level layers

2.35 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Traditional UNIX System Structure

2.36 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

UNIX

 UNIX – limited by hardware functionality, the original UNIX operating
system had limited structuring. The UNIX OS consists of two
separable parts

 Systems programs
 The kernel

 Consists of everything below the system-call interface and
above the physical hardware

 Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a large
number of functions for one level

2.37 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Layered Operating System

2.38 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Microkernel System Structure

 Moves as much from the kernel into “user” space

 Communication takes place between user modules using message
passing

 Benefits:
 Easier to extend a microkernel
 Easier to port the operating system to new architectures
 More reliable (less code is running in kernel mode)
 More secure

 Detriments:
 Performance overhead of user space to kernel space

communication

2.39 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Mac OS X Structure

2.40 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Modules

 Most modern operating systems implement kernel modules
 Uses object-oriented approach
 Each core component is separate
 Each talks to the others over known interfaces
 Each is loadable as needed within the kernel

 Overall, similar to layers but with more flexible

2.41 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Solaris Modular Approach

2.42 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Virtual Machines

 A virtual machine takes the layered approach to its logical
conclusion. It treats hardware and the operating system kernel as
though they were all hardware.

 A virtual machine provides an interface identical to the underlying bare
hardware.

 The operating system host creates the illusion that a process has its
own processor and (virtual memory).

 Each guest provided with a (virtual) copy of underlying computer.

2.43 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Virtual Machines History and Benefits

 First appeared commercially in IBM mainframes in 1972
 Fundamentally, multiple execution environments (different operating

systems) can share the same hardware
 Protect from each other
 Some sharing of file can be permitted, controlled
 Commutate with each other, other physical systems via networking
 Useful for development, testing
 Consolidation of many low-resource use systems onto fewer busier

systems
 “Open Virtual Machine Format”, standard format of virtual machines,

allows a VM to run within many different virtual machine (host)
platforms

2.44 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Virtual Machines (Cont.)

 (a) Nonvirtual machine (b) virtual machine

2.45 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Para-virtualization

 Presents guest with system similar but not identical to hardware

 Guest must be modified to run on paravirtualized hardware

 Guest can be an OS, or in the case of Solaris 10 applications running in
containers

2.46 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Virtualization Implementation

 Difficult to implement – must provide an exact duplicate of underlying
machine

 Typically runs in user mode, creates virtual user mode and virtual kernel
mode

 Timing can be an issue – slower than real machine
 Hardware support needed

 More support-> better virtualization
 i.e. AMD provides “host” and “guest” modes

2.47 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Solaris 10 with Two Containers

2.48 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

VMware Architecture

2.49 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

The Java Virtual Machine

2.50 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating-System Debugging

 Debugging is finding and fixing errors, or bugs
 OSes generate log files containing error information
 Failure of an application can generate core dump file capturing

memory of the process
 Operating system failure can generate crash dump file containing

kernel memory
 Beyond crashes, performance tuning can optimize system performance
 Kernighan’s Law: “Debugging is twice as hard as writing the code in the

first place. Therefore, if you write the code as cleverly as possible, you
are, by definition, not smart enough to debug it.”

 DTrace tool in Solaris, FreeBSD, Mac OS X allows live instrumentation
on production systems

 Probes fire when code is executed, capturing state data and
sending it to consumers of those probes

2.51 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Solaris 10 dtrace Following System Call

2.52 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating System Generation

 Operating systems are designed to run on any of a class of machines;
the system must be configured for each specific computer site

 SYSGEN program obtains information concerning the specific
configuration of the hardware system

 Booting – starting a computer by loading the kernel

 Bootstrap program – code stored in ROM that is able to locate the
kernel, load it into memory, and start its execution

2.53 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

System Boot

 Operating system must be made available to hardware so hardware
can start it

 Small piece of code – bootstrap loader, locates the kernel, loads
it into memory, and starts it

 Sometimes two-step process where boot block at fixed location
loads bootstrap loader

 When power initialized on system, execution starts at a fixed
memory location
 Firmware used to hold initial boot code

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

End of Chapter 2

	Slide 1
	Chapter 1: Introduction
	Objectives
	What is an Operating System?
	Computer System Structure
	Four Components of a Computer System
	What Operating Systems Do
	Operating System Definition
	Operating System Definition (Cont.)
	Computer Startup
	Computer System Organization
	Computer-System Operation
	Common Functions of Interrupts
	Interrupt Handling
	Interrupt Timeline
	I/O Structure
	Direct Memory Access Structure
	Storage Structure
	Storage Hierarchy
	Storage-Device Hierarchy
	Caching
	Computer-System Architecture
	How a Modern Computer Works
	Symmetric Multiprocessing Architecture
	A Dual-Core Design
	Clustered Systems
	Clustered Systems (1)
	Operating System Structure
	Memory Layout for Multiprogrammed System
	Operating-System Operations
	Transition from User to Kernel Mode
	Process Management
	Process Management Activities
	Memory Management
	Storage Management
	Mass-Storage Management
	Performance of Various Levels of Storage
	Migration of Integer A from Disk to Register
	I/O Subsystem
	Protection and Security
	Distributed Computing
	Special-Purpose Systems
	Computing Environments
	Computing Environments (Cont.)
	Peer-to-Peer Computing
	Web-Based Computing
	Open-Source Operating Systems
	Slide 48
	Slide 1 (1)
	Chapter 2: Operating-System Structures
	Objectives (1)
	Operating System Services
	Operating System Services (Cont.)
	Operating System Services (Cont.) (1)
	A View of Operating System Services
	User Operating System Interface - CLI
	User Operating System Interface - GUI
	Bourne Shell Command Interpreter
	The Mac OS X GUI
	System Calls
	Example of System Calls
	Example of Standard API
	System Call Implementation
	API – System Call – OS Relationship
	Standard C Library Example
	System Call Parameter Passing
	Parameter Passing via Table
	Types of System Calls
	Types of System Calls (Cont.)
	Examples of Windows and Unix System Calls
	Example: MS-DOS
	MS-DOS execution
	Example: FreeBSD
	FreeBSD Running Multiple Programs
	System Programs
	System Programs (1)
	System Programs (Cont.)
	Operating System Design and Implementation
	Operating System Design and Implementation (Cont.)
	Simple Structure
	MS-DOS Layer Structure
	Layered Approach
	Traditional UNIX System Structure
	UNIX
	Layered Operating System
	Microkernel System Structure
	Mac OS X Structure
	Modules
	Solaris Modular Approach
	Virtual Machines
	Virtual Machines History and Benefits
	Virtual Machines (Cont.)
	Para-virtualization
	Virtualization Implementation
	Solaris 10 with Two Containers
	VMware Architecture
	The Java Virtual Machine
	Operating-System Debugging
	Solaris 10 dtrace Following System Call
	Operating System Generation
	System Boot
	Slide 54

