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2	 Chapter 1  Introduction

Learning Objectives
❶	 What is an inductive statement and how can the truth of an inductive statement be 

analyzed?
❷	 What are examples of inductive statements that you deal with every day?
❸	 What is research design and how does it relate to statistical reasoning?
❹	 What is the “Pygmalion effect”? What three characteristics of the experimental/

statistical method do experimental explorations of the Pygmalion effect illustrate?
❺	 What is the difference between a population and a sample? Between a parameter 

and a statistic?
❻	 How do we determine the probability that an event will occur?

An inductive statement is one whose truth or falsehood can be assessed by 
collecting and analyzing data. Statistics is the best tool available for ana­
lyzing data, and mastering statistical analysis is worth the effort involved.

We’ll consider studies of the Pygmalion effect, classic experiments that rely on 
statistical analyses. These studies highlight the distinction between populations and 
samples. We also discuss the basic notions of probability.

A principal aim of all education is to become skilled in differentiating true 
statements from false ones. That may seem obvious, but learning about truth 
is not simple. Part of the difficulty is that truth has different meanings in 

different contexts. Consider these four statements, all of which use the word true:

1.	 The conclusion of this syllogism is true: 
		  Major premise: All men are mortal.
		  Minor premise: Socrates is a man.
		  Conclusion: Therefore Socrates is mortal.

2.	 William Tell’s arrow sped true to its mark and split the apple in two.

3.	 “For aught that I could ever read, 
		  Could ever hear by tale or history,
	 The course of true love never did run smooth.”1

4.	 It is true that one can get across town faster on Elm Street than on Pine Street.

All four statements use the word true, but with four different meanings. Philoso­
phers have tried unsuccessfully to determine whether there is a fundamental meaning 
of truth that underlies all four of those examples. Statistics focuses on the kind of truth 
illustrated in statement 4.

	 1.1	 Inductive Statements
Statement 4 is an example of an inductive statement—a statement whose truth is 
assessed by observing a series of examples, by collecting and analyzing data.

1 W. Shakespeare, A Midsummer Night’s Dream, act 1, sc. 1, line 132.

inductive statements   
Statements whose truth can 
be assessed by collecting and 
analyzing data

Pygmalion (pig∙MAIL∙ee∙un)
inductive
deductive
placebo (pluh∙SEE∙bo)
syllogism (SILL∙oh∙jizm)
blind
population
sample
probability of an event
random
lectlet (LECT∙let)
SILI (SILL∙lee) note

The above is a SILI note (Say 
It Learn It; see the Preface). 
Say everything in that list 
aloud 3 times. It will jump 
start your learning.

c
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	 1.2  Statistical Reasoning	 3

Inductive statements are frequent: 

T	 I use fluoridated toothpaste because it is said to be more effective than 
nonfluoridated.

T	 I choose to fly because I believe air travel is safer than driving.

T	 The Surgeon General says that smoking cigarettes causes cancer.

T	 In basketball, the home team has an advantage, but I wonder how big that 
advantage is.

T	 I believe that most beer drinkers can’t distinguish between Miller and Bud; that 
is, most “preference” is really the result of advertising hype.

T	 I think the ozone layer is deteriorating.

Some of these situations are trivial, some have life-or-death implications, some 
of the opinions are true and some are false, but all are based on (implicit or explicit) 
evaluations of inductive statements. In fact, most of what we know about the world is 
the result of inductive processes. Like it or not, aware of it or not, skillful at it or not, 
we all engage in inductive reasoning almost constantly.

Reminder: “Lectlets” are short audio lectures synchronized to displays that appear on your 
computer screen. In Personal Trainer click Lectlets. Then click 1A for an introduction to 
the study of statistics. Click 1B for a discussion of Sections 1.1 through 1.6.

	 1.2	 Statistical Reasoning
Statistics is the best set of tools available for deciding whether inductive statements 
should be considered “true.” Statement 4 and all the inductive statements in the preced­
ing section are best supported or discarded by using statistical procedures. Every time 
we exercise an inductive process (hundreds of times a day), we use statistical reasoning 
more or less skillfully. Statistical reasoning is not something foreign to us—we do it 
all the time, so this book is intended simply to increase your skill at doing what you 
already do.

Consider the Elm Street/Pine Street trips. I state that the Elm Street route is faster 
than Pine Street. You doubt my conclusion, so you propose a “race”: We will leave 
at the same time, you will take Pine Street and I will take Elm, and we both agree to 
observe the speed limits.

Suppose I win this race. Should we conclude that the Elm Street route is in fact 
faster than Pine Street? “Perhaps,” you say, “but not for certain.” Maybe I was just 
lucky with the traffic lights; maybe you were unlucky because that truck blocked traf­
fic while it backed up into the supermarket; maybe it depends on the time of day. You 
conclude, “We need more races to decide for sure.”

When you think like that, you are reasoning like a statistician. You are recog­
nizing that travel time is a “variable” that can take on different values, some longer 
and some shorter. You are recognizing that many unpredictable things (traffic-lights, 
trucks) influence that variable, increasing or decreasing the magnitude of the variable 
(the travel time itself). In the language of statistics, you are recognizing that the travel-
time variable is “distributed” (see Chapter 3).

Inductive statements are 
evaluated using statistical 
reasoning.

c

Personal Trainer

Lectlets

lectlet (LECT∙let)
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4	 Chapter 1  Introduction

You know already that we need more races; in this book you will learn something 
about how many more races we need to conclude rationally that the Elm Street route 
is faster than Pine Street. 

	 1.3	 Rational Decision Making
So rational inductive decision making requires statistical reasoning. Behavioral sci­
ence has developed two specialties that are part of the rational inductive process: 
research design and statistical reasoning. Research design is the science of collecting 
data, making observations about the real world, considering how many observations 
to make and under what conditions to make them. Statistical reasoning begins with 
the collected data and prescribes the rules by which rational statements about those 
data can be made. Research design and statistical reasoning are intertwined, depen­
dent skills; one cannot be a good research designer without being a good statistician, 
and vice versa. They are, however, usually taught as two separate skills, and this book 
follows that practice. We will focus on statistical reasoning and not discuss research 
design here.

Although inductive rationality (and therefore skill in statistical reasoning) is 
indeed valuable in many situations, it cannot claim to be the ultimate form of human 
truth seeking. Statements 1, 2, and 3 of the four statements near the beginning of the 
chapter do not involve inductive (statistical) reasoning. For example, statistics is of no 
use in determining whether your own or someone else’s love is true, and yet the truth in 
such a situation may be of vital importance. That determination must be made on some 
grounds other than statistical. Thus, it seems to me, it is wise to be skillfully rational 
when the situation calls for it and to be artfully irrational when some other situation 
calls for that.

Although objective rationality is not necessarily the primary access to ultimate 
truth, it is our primary access to the truth about the real events in our world, and it is 
therefore one of the most valued skills we know. That skill requires using statistical 
reasoning competently, and this book is dedicated toward that end.

	 1.4	 A Classic Example: Pygmalion in the Classroom
You see, really and truly, apart from the things anyone can pick up (the dressing 
and the proper way of speaking, and so on), the difference between a lady and a 
flower girl is not how she behaves, but how she’s treated. I shall always be a flower 
girl to Professor Higgins, because he always treats me as a flower girl, and always 
will; but I know I can be a lady to you, because you always treat me as a lady, and 
always will.

—Eliza Doolittle in George Bernard Shaw’s Pygmalion

George Bernard Shaw was an acute observer of human nature, and Eliza Doolittle’s 
important observation has come to be known as the “Pygmalion effect”: People act in 
accordance with others’ expectations.

Pygmalion effect   People 
act in accordance with others’ 
expectations

Pygmalion (pig∙MAIL∙ee∙un)

Statistics is not about 
ultimate truth.

c

The science of statistics 
is simply a refinement of 
techniques that we use every 
day.

c
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	 1.4  A Classic Example: Pygmalion in the Classroom	 5

However, the Pygmalion effect, though compelling, may or may not in fact exist. 
To decide whether it exists requires the skillful rationality of the experimental method 
and its competent statistical analysis. Let’s consider an example.

Psychologist Robert Rosenthal and his colleagues explored whether the 
Pygmalion effect exists in a variety of settings. For example, they told one group of 
students in an experimental psychology laboratory course the rats they were training 
were “maze bright”—bred to be extremely quick at learning to run a maze. They 
told another group of students in the same class that their rats were “maze-dull” 
(Rosenthal & Fode, 1963). Actually, the rats had been randomly assigned to the 
students and were neither particularly maze-bright nor maze-dull. The rats whose 
handlers thought they were maze-bright did in fact learn their mazes faster than 
those whose handlers thought they were maze-dull. The students were not inten­
tionally trying to speed up or slow down their rats’ learning; nonetheless, through 
some apparently unconscious mechanism, they did influence that learning. Thus, the 
Pygmalion effect applies in the rat lab: If rat handlers expect quick learning, they get 
quick learning.

Rosenthal is perhaps best known for a study of the Pygmalion effect at “Oak 
School.” Did teachers’ expectations of children affect the performance of those 
children?2 In the spring of 1964, they administered the “Harvard Test of Inflected 
Acquisition” (“HTIA”) to all the children of Oak School who might return the follow­
ing fall. They explained to each teacher that the HTIA was a new test that could predict 
future “academic spurts” in students, that students who scored in the top 20% on the 
HTIA were likely to “spurt” or “bloom” in the next year. They explained that they were 
administering this test at Oak School as a final check on the validity of the HTIA, a 
project sponsored by the National Science Foundation.

That fall, when the students returned to school, Rosenthal and Jacobson gave 
teachers a list of “the top 20% scorers on the HTIA. . . . Teachers were told only that 
they might find it of interest to know which of their children were about to bloom. They 
were also cautioned not to discuss the test findings with their pupils or the children’s 
parents” (p. 70).

This study involved deception: The “top 20% scorers” were not really the highest 
scorers on the HTIA but were actually selected by using a table of random numbers; 
that is, students were chosen with no information whatever about their performance on 
the HTIA, their actual ability, or their previous performance in the classroom. (We’ll 
discuss the use of tables of random numbers in Chapter 7.)

Thus teachers were manipulated into thinking that a particular 20% of their stu­
dents would likely bloom and the other 80% would not. Actually, there was no differ­
ence between the bloomers and the others; a totally arbitrary random procedure had 
assigned the label “bloomer” to some children and the label “other” to the remaining 
children.

You will recall that the HTIA was administered to all the students as part of the 
cover story for assigning the label “bloomer.” Actually, the “HTIA” was a standardized 
test of intelligence called the Tests of General Ability (TOGA) that yielded an IQ score 

This is an influential study in 
psychology. We’ll return to 
it frequently throughout the 
book.

c

The bloomers and others 
were selected at random.

c

2 We have simplified our explanation by presenting only a portion of Rosenthal and Jacobson’s study.
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6	 Chapter 1  Introduction

for each child. The teachers were unaware that the TOGA (aka “HTIA”) was actually 
an IQ test, and they were not given the children’s actual TOGA IQ scores.

A year later, Rosenthal and Jacobson administered the TOGA to the same children 
again. They defined “intellectual growth” as the difference between a child’s current 
(“posttest”) IQ and his or her “pretest” IQ from the original testing (positive scores 
indicate an increase in IQ). Pretest IQ, posttest IQ, and intellectual growth scores for 
the bloomers are listed in Table 1.1. The first student identified as a bloomer was Kathy. 
Her IQ on the original TOGA was 105, her IQ on the TOGA a year later was 125, so 
her intellectual growth (or IQ gain) was 125 – 105 = 20 IQ points. A similar table exists 
for the other children, but it is too long to show here.

Rosenthal’s question was whether there was more intellectual growth in the 
bloomers than in the other children. Finding the answer requires inductive reasoning: 
the collection and analysis of data such as those in Table 1.2. That table shows the 
intellectual growth (IQ gain) scores for both the bloomers and the other children (note 
that the first column of Table 1.2 is the same as the last column of Table 1.1). The high­
est intellectual growth score (Mario’s 69) is in the bloomer group, which might lead us 
to think that being labeled a bloomer does improve intellectual growth. However, the 
next three highest intellectual growth scores (31, 30, and 26) are in the others group, 
which might lead us to think that not being labeled a bloomer improves intellectual 
growth. Furthermore, we are actually interested in all the children, not just the highest 
or lowest scorers, and there is a lot of overlap between the intellectual growth scores 
for bloomers and other children. For example, intellectual growth scores of 20, 19, 
14, 13, 12, 11, 1, –4, and –6 occur in both the bloomers and the other children, which 
again would lead us to conclude that being labeled a bloomer does not have a particular 
advantage for improving intellectual growth.

Inspection of the data, then, does not lead to an obvious answer to the question 
of whether positive expectations lead to greater intellectual growth. You may feel that 
the bloomer scores are clearly higher as a group, but someone else might think that 
the two sets of scores are about the same. Statistics is a set of tools designed to give us 

“Intellectual growth” = 
posttest IQ minus pretest IQ.

c

Does being labeled a bloomer 
lead to intellectual growth?

c

TABLE 1.1  Intellectual growth (IQ gain) of Oak School second-grade bloomers*

Student Pretest IQ Posttest IQ Intellectual Growth (IQ Gain)
Kathy 105 125 125 − 105 = 20
Tony 109 123 14
Mario 133 202 69
Louise 101 114 13
Juan 123 117 –6
Able 109 134 25
Patricia   89   90   1
Douglas 111 107 –4
Baker 108 132 24
Charlie   89 101 12
Delta   72   91 19
Echo   75   86 11

* These values can be inferred from statistics provided in Rosenthal and Jacobson (1968, pp. 75, 85–93, 187, 190, and 
193). Rosenthal and Jacobson provided names for only seven of these students: I added Able, Baker, Charlie, Delta, and 
Echo for the missing names.

Remember: The bloomers 
were selected at random.

c
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	 1.4  A Classic Example: Pygmalion in the Classroom	 7

rational ways of deciding between such alternatives rather than relying on your own or 
someone else’s feelings.

Do these data actually imply that the Pygmalion effect exists in the classroom? We 
shall see in Chapter 11 that the rational/statistical answer is yes.

In fact, many studies in many different situations have used statistical methods 
to demonstrate the existence of the Pygmalion effect. As a result, the Pygmalion 
effect (also called “experimenter bias”) is now an accepted fact, no longer in need 
of further empirical demonstration. Thus, for example, when researchers attempt to 
demonstrate the effectiveness of a new drug compared with a placebo, we require 
that experimenter bias be eliminated by keeping the researchers blind to which par­
ticipants receive the actual drug and which participants receive a placebo. Many 
school districts, as another example, have eliminated “tracking” (where students 
are divided into groups according to scores on IQ tests) because such groupings 
may affect teacher bias; some school districts have eliminated the use of IQ tests 
entirely. Thus, the experimental/statistical examination of the Pygmalion effect has 
led to important social consequences. Our lives today are in fact substantially altered 
by yesterday’s application of statistical tests.

This classic example illustrates three characteristics of the experimental/statisti­
cal method. First, the inspiration for an experiment is a pre-experimental observation: 
George Bernard Shaw (and, of course, others) observed what he took to be a charac­
teristic of human nature. Only later did Rosenthal and Jacobson seek to verify experi­
mentally whether that observation was correct.

Second, Rosenthal and Jacobson’s main interest was not in the intellectual growth 
patterns of the particular 59 students (12 bloomers plus 47 others) who participated in 
this study, but rather in the intellectual growth patterns of all students. Our statistical 
tools, then, must distinguish between samples (e.g., Rosenthal’s 59 second-graders) 
and populations (e.g., all second-graders in the United States). We will begin to discuss 
the distinction between samples and populations in Section 1.5, and most of the text 
(Chapters 7–18) will discuss the general question of what can be inferred about popu­
lations when all we know is about samples.

Table 1.2  Intellectual growth (IQ gain) of Oak School second-grade bloomers and other children*

Bloomers Others
20     3 –3 –10 –4
14   –2   4   15 –3
69 –15 20   15   6
13     1   8     8 11
–6   31 –6     6 13
25   10 –6   30 18
  1     5   6   –5   4
–4     9 10   17   0
24     1 11     7 26
12   12 13   4 –1
19   14 14   19 14
11 –11   7     3

* These values are from Rosenthal and Jacobson (1968). The Bloomers data are exact (see Table 1.1). The Others data are 
manufactured to match the classroom means and standard deviations that Rosenthal and Jacobson (p. 193) provided (they did 
not provide original data).

Do bloomers have greater 
intellectual growth than do 
the others?

c

placebo  In a drug study, a 
substance that looks like the 
drug being tested but actually 
has no effect

blind  Not knowing which 
participants are assigned to 
which experimental condition

One of the most important 
questions in statistics is 
What can we say about a 
population when all we know 
about is a sample?

c

placebo (pluh∙SEE∙bo)

ch01.indd   7 6/7/17   4:00 PM



8	 Chapter 1  Introduction

The third characteristic of the statistical method is that it must allow us to derive 
meaningful results from data that are not perfectly consistent—that fluctuate from 
one person to another or from one occasion to another. The Pygmalion bloomers 
are a random sample from all the second-graders. We wonder whether our conclu­
sions would be the same if a different random sample were used. Understanding 
this aspect of statistics requires us to understand some of the concepts of probabil­
ity, which are discussed in Section 1.6, and the characteristics of random samples, 
which are described in Chapter 7. Furthermore, our statistical toolbox must include 
methods to measure the differences between individuals. We will discuss those tools 
starting in Chapter 3.

Nowadays we take the Pygmalion effect for granted because many experiments 
have collected data (not only in the rat lab and the classroom) and analyzed them as  
discussed in this textbook. Statistics is important!

	 1.5	 Samples from Populations
We just saw that one of the main tasks of statistics is to use small samples to infer char­
acteristics about larger populations: Rosenthal and Jacobson used the characteristics 
of their sample of 59 second-graders from Oak School to infer something about the 
characteristics of the entire population of millions of second-graders. Let’s be clear 
about the distinction between populations and samples.

A population includes all the members of the group under consideration. 
Populations can be large (such as the residents of the United States, 295 million) or 
small (such as the residents who live on my street, 33). Populations can be of people 
(such as piano players), of objects (such as the stars in our galaxy), or of events (such 
as thunderstorms). What makes a particular group a population is not a characteristic 
of the group itself, but rather a characteristic of our interest. If we are interested in 
a group for its own sake, not as being representative of or selected from some other 
larger group, then we call that group a population.

A sample is a subset of a population, a group that is interesting to us not on its 
own merits but because it somehow represents the larger population. For example, if 
we are interested in the voting patterns of the U.S. electorate and contact by telephone 
1200 voters and inquire how they plan to vote, then the 1200 voters we contacted are 
not interesting to us for themselves, but only because they may be representative of the 
whole electorate. The 1200 voters are a sample from the population of all voters.

The Yankees have 40 players. Is that a population or a sample? It depends on our 
interest. If the Yankees are our target of interest, then the Yankees are a population. 
But if professional baseball players are our interest, then the Yankees are a sample that 
might reveal something about professional baseball players in general. 

To be clear about the distinction between populations and samples, we use the 
term statistic to refer to any measurement on a sample and the term parameter to refer 
to any measurement on (or assumption about) a population.

Most often, it is too difficult, too costly, or impossible to measure all the elements 
of a population, so we select a sample of the population and measure just those ele­
ments. Almost always (but not necessarily), samples are much smaller than the parent 
populations.

population  All the 
members of the group under 
consideration

sample  Some subset of the 
group under consideration

statistic  Any measurement 
on a sample

parameter  Any measured 
(or assumed) characteristic of 
a population

Our interest determines 
whether a group is a 
population or a sample.

c
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	 1.6  Probability	 9

Much of the science of statistics can be thought of as the procedures for using 
relatively small samples to infer the characteristics of large populations. Rosenthal and 
Jacobson, for example, used their small (59 person) sample to draw conclusions about 
the effect of teacher expectancies on the second-grade population in general. They 
might have preferred to have measured the intellectual growth of all the millions of 
second-graders, but that would have been impractical.

	 1.6	 Probability
We have observed that in Rosenthal’s data, the amount of intellectual growth differs 
from student to student. Some extraneous influences that might have affected intellec­
tual growth during the year are help from parents with homework (or lack of it), good 
or bad parent models, and health or illness during testing. There are actually many such 
influences—far too many for us to be able to take directly into account. Because we 
can’t measure them directly, we lump all such influences together into what we call 
“random” influences. Random means unpredictable at our current level of understand­
ing. Perhaps if we knew how much homework help students got from their parents, and 
if we knew how stable their parents’ interpersonal patterns were, and if we knew how 
healthy the students were, and so on, we could reduce the size of this random effect. 
But there are almost always far too many things to measure, so our data almost always 
contain random effects.

The science that deals with the nature of randomness is called probability theory: 
thus, probability is a measure of our ignorance or uncertainty about the outcomes of 
events in the world. Nearly all statistical tests rely on probability concepts. Probability 
theory is a fascinating study in its own right, and its mastery can easily be the exclu­
sive topic of a textbook. For our present purposes, we need only to understand its most 
basic elements.

Random procedures have several possible outcomes or results. One random proce­
dure is drawing a single card from a shuffled standard deck.3 One possible outcome of 
this procedure would be “ace of spades,” another would be “6 of diamonds,” and so on. 
An event is a set of possible outcomes; thus, an event might be defined as “drawing a 
heart.” The event of drawing a heart can be satisfied by any of the 13 outcomes ace of 
hearts, king of hearts, . . . , 2 of hearts.

If we assume that each outcome is equally likely, then the probability of an event 
E can be obtained from this formula:

	 P E
E

( ) = number of outcomes favorable to

total number of possible outcomes
	 (1.1)

For example, what is the probability of shuffling a standard deck and then drawing 
the Jack of diamonds? The event E is drawing the Jack of diamonds. There is only one 

Populations: We are primarily 
interested in them but 
(usually) can’t measure them. 

Samples: We can measure 
them but are not primarily 
interested in them.

c

random  Unpredictable 
given our current knowledge

3 A standard deck has 52 cards divided into four suits (spades, hearts, diamonds, and clubs). Spades and 
clubs are black. Hearts and diamonds are red. Each suit has 13 cards (2, 3, 4, 5, 6, 7, 8, 9, 10, jack, queen, 
king, and ace).

probability of an event   
The number of outcomes 
favorable to that event 
divided by total number of 
possible outcomes

Probability of an event
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10	 Chapter 1  Introduction

outcome “favorable” to that event—the drawn card is in fact the Jack of diamonds.  
Therefore the numerator of P(E) is 1. There are 52 total possible outcomes, so the 
probability P(E) = 1/52 = .02. 

Another example: What is the probability of shuffling the deck and drawing 
any heart? The event E is drawing  a heart. There are 13 outcomes “favorable” to 
that event—the drawn card is the 2 of hearts, the 3 of hearts, the 4 of hearts, . . . ,  
the King of hearts, or the Ace of hearts. Therefore the numerator of P(E) is 13. 
There are still 52 total possible outcomes, so the probability P(E) = 13/52 = 1/4 = 
.25. Similarly:

	

= =

= + + + = =

P

P

(drawing the 15 of hearts)
0

52
0

(drawing a heart or a spade or a diamond or a club)

13 13 13 13

52

52

52
1

These examples illustrate three important characteristics of probability:

T	 0 ≤ P(E) ≤ 1; probabilities lie between 0 and 1.

T	 The probability of an event that cannot occur is 0.

T	 The probability of an event that must occur is 1.

Unusual events have probabilities close to 0; for example, P (drawing the queen 
of spades) = 1/52 = .02. Very likely events have probabilities close to 1; for example, 
P(drawing any card except the queen of spades) = 51/52 = .98. Probabilities are close 
to .5 for events that occur about half the time; for example, P(drawing a red card) = 
(13 + 13)/52 = .5.

When we determine probabilities, we must count all the possible outcomes of 
an experiment. That may seem obvious, but in practice such counting can be tricky. 
Consider the rolling of dice, where P(1) is the probability of rolling a 1. A die is called 
fair if P(1) = P(2) = … = P(6) = 1/6. Now suppose you roll two fair dice. What is the 
probability that the two dice will sum to 4? Answering that question requires that we 
count the number of ways of rolling a sum of 4 on two dice. It may seem (incorrectly) 
that there are two such ways: rolling 1 and 3, and rolling 2 and 2. However, the correct 
answer is three: rolling 1 and 3, rolling 2 and 2, and rolling 3 and 1. Because there are 
36 total possible ways of rolling two dice (1–1, 2–1, 3–1, . . . , 6–1; 1–2, 2–2, . . . , 6–2: 
1–3, etc.), we see that P(rolling a 4 with two dice) = 3/36 = 1/12.

If you know the probability of an event, you can determine how often that event 
is expected to occur by multiplying the probability by the number of occasions.  For 
example, if the probability of drawing a heart is .25 and you perform 200 draws 
(replacing the card and shuffling each time), you can expect to draw a heart approxi­
mately .25 × 200 = 50 times. Exactly how many hearts you actually draw will depend 
on chance. 

Sometimes we put restrictions or conditions on the range of possible outcomes 
of a procedure. If we do so, we call it conditional probability. For example, we may 
ask: What is the probability of drawing a heart given that or on the condition that the 
card is known to be red? This condition requires that the card is either a heart or a dia­
mond; therefore the number of possible outcomes (the denominator of the probability 

conditional probability  The 
probability of an event 
given that another event has 
occurred

Hint: Imagine one die is green 
and the other red. Green 1 
and red 3 is different from 
green 3 and red 1, but both 
sum to 4.

c

The expected number of 
outcomes favorable to an 
event is the probability of the 
event times the total number 
of outcomes.  

c
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	 1.7  A Note to the Student	 11

formula) is 13 + 13 = 26. Thus, the conditional probability of drawing a heart on the 
condition that (or given that) the card is red is P(heart ⎪ red card) = 13/26 = .5. Note 
that we symbolize “given that” by a vertical line.

The probabilities that we have been considering so far are “discrete” in the sense 
that we could explicitly count all the possible outcomes. We can extend the notion of 
probability to situations where such counting is impossible or impractical. For example, 
suppose we are about to measure a person’s intelligence quotient (IQ). We might ask: 
What is P(her IQ is higher than 130)? To answer that question using discrete probability, 
we would have to know the number of individuals whose IQs are higher than 130 and 
then divide that number by the total number of individuals. That would be impractical in 
real life; we will develop methods of approximating this probability in subsequent chap­
ters. When we make a statement such as P(IQ is higher than 130) = .02, we mean that if 
we were to measure all people’s IQs (which we won’t because it is too impractical), we 
would find that 2% of all those individuals would have IQs over 130.

For reasons that will become clearer in Chapters 8 and 9, probabilities of .05 and 
.95 are the most widely mentioned values in statistics, so let’s explore these values 
explicitly. Suppose we have an urn that contains 1000 identical balls except that 950 
are red and 50 are white. We thoroughly mix the balls and then draw out one of them. 
What is the probability that the ball is white? Equation (1.1) indicates that P(white) = 
50/1000 = .05 and P(red) = 950/1000 = .95.

Drawing a white ball out of such an urn is an “unusual” event. It is not impossible, 
but it won’t happen very often—about 5 times out of every 100 attempts on the aver­
age. Drawing a red ball is “usual”; it will happen about 95 times out of every 100 over 
the long run.

Much of statistics depends on a definition of unusual such as this. Statisticians 
generally take unusual to mean “occurring with probability less than .05”; however, in 
some situations, we may prefer a stricter definition of unusual—perhaps a probability 
of less than .01.

Click Resources and then 1A in the Personal Trainer for a true story about how 
failure to understand basic probability concepts can lead to important, possibly disas­
trous mistakes.

	 1.7	 A Note to the Student
I would like to impress upon you at the very beginning that statistics is fundamentally 
quite simple. In fact, there are basically only three major concepts to be mastered 
in this text. I’ll state them here, even though the terms might not mean much to you 
yet: (1) what a “distribution of a variable” is and how to describe it, (2) what a “dis­
tribution of means” is and how it is related to the distribution of the variable, and (3) 
what a “test statistic” is and how it is related to the distribution of means. There are, 
to be sure, many important details to be learned, but once you grasp the three major 
concepts, the rest of statistics follows rather straightforwardly. It’s worth memorizing 
those three concepts now (even if it is mere rote memory for the moment) to begin 
building the cognitive structure that we will elaborate throughout the remainder of the 
textbook.

.05 is a frequently used 
probability. .05 indicates, on 
average, 50 successes out of 
every 1000 chances.

c

Personal Trainer

Resources

Worth memorizing—three 
main concepts:
1.	 Distribution of a variable
2.	� Distribution of means
3.	 Test stastistic

c

Convention:
.05 is “unusual”
.95 is “usual”

c

distribution
distribution of means
test statistic
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Studying statistics—attempting to acquire statistical skills—is a valuable exercise. 
It is worthwhile to develop your ability to think rationally about empirical events. But 
skill acquisition requires work and practice, work and practice. I urge you to look for­
ward positively to the prospect of engaging in this exercise. If I were your basketball 
coach, I would try to make running laps interesting (by using races, relays, music), 
but I would require that you run the laps regardless of whether you found them fun. I 
would try to impress upon you that good basketball players do not avoid calisthenics 
but instead look upon them as a discipline, a self-challenge.

The same is true about the effort required to learn statistics. As your statistics 
“coach,” I have gone to great lengths to make the work of learning statistics as inter­
esting, challenging, informative, and rewarding as possible, but you may still find that 
some “calisthenics” are involved. I urge you not to avoid that work but to use it as a 
way to strengthen your mental discipline.

This mental discipline is itself worth striving for, as the world’s greatest thinkers 
have maintained since the beginning of recorded history. For example, Buddha held 
2500 years ago:

The mind is wavering and restless, difficult to guard and restrain: let the wise man 
straighten his mind as a maker of arrows makes his arrows straight.

Let a wise man remove impurities from himself even as a silversmith removes 
impurities from the silver: one after one, little by little, again and again.4

I urge you to recognize that the burn of annoyance when a computation does not work 
out is a sign of mental undiscipline, not the result of statistical ignorance, and to recog­
nize that such undiscipline can be overcome with consistent practice.

Click Algebra in the Personal Trainer for a quick review of concepts in basic 
algebra. Use the three paths Inequality, Squares, etc., and Signed Values.

Nothing is more frustrating than trying to understand a statistics concept only to 
find that the textbook contains an error. We have worked hard to make this textbook 
error-free, but errors may still occur. I maintain a website that contains an up-to-the-
minute listing of all errors that are reported. Please take a few minutes to correct those 
errors in your textbook—it may save you time later. In the Personal Trainer, click 
Errata. By the way, I and other students would greatly appreciate your reporting any 
new errors. There is an error report form on the Errata website.

Click ReviewMaster and then Chapter 1 in the Personal Trainer for an electronic 
interactive review of the concepts in Chapter 1.

Click Labs and then Chapter 1 in the Personal Trainer for interactive practice of 
the skills in Chapter 1 and a quiz to test your understanding.

Personal Trainer

Algebra

Personal Trainer

ReviewMaster

Personal Trainer

Errata

Personal Trainer

Labs

4 The Dhannnapada: The Path of Perfection, vv. 33 and 239. translated from the Pali by Juan Mascara 
(New York: Penguin Books, 1973).
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CHAPTER 1   E xerc i s es
Section A: Basic Exercises
(Answers in Appendix D, page 575)

	 1.	 Define inductive statement.

Exercise 1 Worked Out 
(Throughout the textbook, the first exercise of each 
chapter is worked out for the student.) Here, Exercise 1 
calls for a simple definition. Section 1.1 states that an 
inductive statement is a statement whose truth can be 
assessed by collecting and analyzing data.

	 2.	 Which of the following are inductive statements?
		  (a)	� More Democrats favor socialized medicine 

than do Republicans.
		  (b)	 That poem truly expresses how I feel.
		  (c)	� Taking vitamin C reduces the frequency of 

colds.
		  (d)	 I prefer new music to rap.

	 3.	� True or false: Statistical reasoning provides access 
to the ultimate truth.

	 4.	� Name the three major concepts to be mastered in 
this text.

	 5.	� What is the “Pygmalion effect”? What three char­
acteristics of the experimental/statistical method 
do experimental explorations of the Pygmalion 
effect illustrate?

	 6.	 Define sample and population.

	 7.	� The University of Nevada, Las Vegas (UNLV) has 
30,000 students, and I would like to know how 
much time UNLV students spend doing home­
work. My statistics class has 40 students in it, and 
I assume that they are representative of UNLV 
students in general. I ask students in my statistics 
class how many hours they spent doing homework 
during the last week. Is my statistics class a sample 
or a population? Why?

	 8.	� My statistics class has 40 students in it, and I would 
like to know how much time my students spend 
doing homework. I ask them how many hours they 
spent doing homework during the last week. Is my 
statistics class a sample or a population? Why?

	 9.	� A standard deck of cards has 52 cards in four 
suits: spades, hearts, diamonds, and clubs. Spades 
and clubs are black; hearts and diamonds are red. 
Each suit has 13 cards: 2 through 10, Jack, Queen, 
King, Ace. The “face cards” are the Jack, Queen, 
and King. Robby Billity shuffles a standard deck 
and draws one card. Then Robby replaces the card, 
shuffles again, and draws another card. He repeats 
this procedure for a total of 1000 draws. About 
how many times would we expect Robby to draw 
these cards?

		  (a)	 The ace of spades
		  (b)	 The 2 of clubs
		  (c)	 A face card in spades
		  (d)	 A face card in any suit

	10.	 (a)	� In the dice game called craps, the shooter rolls 
two dice and wins immediately if he rolls 
either 7 or 11 as the sum of two dice. What is 
P(an immediate win)?

		  (b)	� In craps, the shooter loses immediately if he 
“craps out”—that is, rolls 2, 3, or 12 as the sum 
of two dice. What is P(crapping out)?

	11.	� Suppose we wish to select a birthday from the year 
2005 “at random.” We take 365 Ping-Pong balls 
(2005 is not a leap year), put them in a barrel, and 
mix them thoroughly. Find these probabilities:

		  (a)	 P(selecting July 7)
		  (b)	 P(selecting any July day)
		  (c)	 P(selecting any February day)
		  (d)	� P(selecting any Friday) [Hint: The first day of 

2005 is a Saturday.]
		  (e)	 P(selecting any Saturday)

	12.	� If we draw a card from a standard deck, find these 
probabilities:

		  (a)	 P (drawing any king)
		  (b)	 P(drawing any king | the draw is a face card)
		  (c)	 P(drawing any king | the draw is a spade)

Section B: Supplementary Exercises
	13.	� South of Phoenix is the Ak-Chin Indian community. 

They own a casino called the Phoenix Ak-Chin 
Casino (I’m not making this up). Inside are roulette 
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wheels, circular wheels with 38 indentations equally 
spaced around the circumference. The indentations 
are numbered 1 through 36, with the remaining two 
indentations numbered 0 and 00. Half of the num­
bers 1 through 36 are colored red, whereas the other 
half are colored black. The 0 and 00 indentations 
are green. The wheel is rotated in one direction, 
and a ball is rolled in the opposite direction until 
it comes to rest in one of the indentations, which 
is the winner. Assuming the Ak-Chin wheels and 
balls are fair, find these values:

		  (a)	 P(spinning black)
		  (b)	 P(spinning red)
		  (c)	 P(spinning green)

		  (d)	 P(spinning “1”)
		  (e)	 P(spinning “23”)
		  (f)	 P(“3” | the outcome is odd)
		  (g)	 P(“3” | the outcome is even)
		  (h)	 P(“0” | the outcome is green)

	14.	� In roulette, what is the probability of spinning “3” 
on both of the next two spins?

	15.	� Suppose you approach a roulette table where the 
winner was just “3.” What is the probability that 
the next winner will also be “3”?

	16.	� The players win when the spin is either red or black; 
the house wins when the spin is green. Out of every 
1000 spins, about how often does the house win?
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