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Chapter 1. Introduction to Nonlinear Space Plasma Physics 

 
The goal of this course, Nonlinear Space Plasma Physics, is to explore the formation, 

evolution, propagation, and characteristics of the large amplitude quasi-stationary nonlinear 

waves, structures, or turbulences commonly observed in the space plasmas and in numerical 

simulations of space plasmas.  Familiar with theoretical solutions of these nonlinear plasma 

waves can help us to analyze and to properly explain these observed nonlinear phenomena. 

 

Differences between linear plasma waves and nonlinear plasma waves are discussed below:  

 

By definition, a function 

€ 

f (x)  is a linear function, if and only if, 

€ 

f (ax + by) =  

€ 

af (x) + bf (y) .  Thus, if 

€ 

f (ax + by) ≠ af (x) + bf (y) , then the function 

€ 

f (x)  is a nonlinear 

function, and 

€ 

f (x) = 0  is a nonlinear equation. 

 

A linear perturbation in space plasma can be considered as a linear combination of the eigen 

wave modes, which can be obtained from the linear wave dispersion relations of the space 

plasma.  Under linear superimposition assumption, there is no interaction between these 

eigen wave modes.  Thus, the coefficients of the linear combinations should not vary with 

time.  We can predict the linear evolution of a linear perturbation based on the 

characteristics of these linear eigen wave modes.   

 

The superimposition assumption is not applicable to nonlinear structures.  Even if it is still 

possible to decompose a nonlinear wave into a linear combination of all the linear eigen wave 

modes of the background plasma, the coefficients of the linear combinations should vary with 

time.  Thus, it is impossible to predict the evolution of the nonlinear wave based on the 

characteristics of these linear eigen modes.   

 

Several methods have been introduced in literatures for the studying of the nonlinear waves 

in the space plasma.  We shall discuss these methods in Section 1.1.  Basic nonlinear 

equations of space plasmas are reviewed in Section 1.2.  Generations of these nonlinear 

waves are discussed in Section 1.3. 
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Remarks on linear wave dispersion relations: 

 

A plasma system can be described by a set of nonlinear partial differential equations 

(PDEs).  The first step to study such a system is to linearize the set of nonlinear PDEs by 

Taylor expansion.  Keeping only first order terms in the Taylor expansions, one can 

reduce the set of nonlinear PDEs into a set of linear PDEs.  After Fourier transform and 

Laplace transform, the set of linear PDEs can be converted into a set of algebra equations.  

Linear dispersion relations can be obtained as a set of eigen states of these algebra 

equations.   

 

Linear dispersion relations provide not only information on linear waves at different 

wavelength, they can also help us to classify nonlinear wave solutions obtained by other 

methods to be discussed in Section 1.1 and the rest chapters of this course.  
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1.1. Methods for Studying Nonlinear Waves 

 

Quasi-linear Approximation 

Quasi-linear approximation is a useful tool to study small but finite amplitude nonlinear 

waves.  Quasi-linear approximation keeps first and second order terms in Taylor expansion 

of a nonlinear equation.  Quasi-linear approximation is commonly used to study nonlinear 

phenomena due to wave-wave interactions.  Quasi-linear approximation allows us to study 

nonlinear phenomena in multiple spatial and time scales.  Solution of quasi-linear 

approximation may be a time-independent structure at a long timescale, but become a 

time-dependent structure at a short timescale. 

 

Pseudo Potential Method 

Pseudo potential method is commonly used to study one-dimensional steady-state nonlinear 

wave solutions.  Pseudo potential method can help us to find analytical solutions of 

nonlinear equations with or without quasi-linear approximation.  Unlike quasi-linear 

approximation, there is no standard procedure to determine pseudo potential of fully 

nonlinear equations.  Fortunately, in nonlinear plasma physics, the pseudo potential can be 

obtained based on the conservation of energy flux.   

 

Jump Conditions of Shocks and Discontinuities Obtained Based on Conservation of Fluxes 

From conservation of mass flux, momentum flux, energy flux, and Maxwell’s equations, one 

can obtain nonlinear jump conditions of shocks and discontinuities in collisionless plasma.  

Knowing solution space of jump conditions is the first step to study these nonlinear 

phenomena.  Advanced studies of these nonlinear phenomena include, but not limit to, (1) 

study of generation mechanism of these nonlinear waves, (2) study of possible instabilities 

that might occur in the transition region, and (3) study of collisionless dissipation process in 

the transition region.   

 

Numerical Simulation 

Numerical simulation is a powerful tool to study evolutions of nonlinear waves in a 

self-consistent manner.  Combination of numerical simulations and analytical solutions can 

help us to understand nonlinear wave behavior and underline physical processes in a 

complicated nonlinear system. 
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Probability Approach 

Chaos, fractal, and turbulence are popular ways to describe different stages of nonlinear 

phenomena.  Nonlinear wave solutions obtained analytically by pseudo-potential method 

can be considered as a chaos type of nonlinear phenomena.  Waves found in shock transition 

region and instabilities occurred along the discontinuity surface often show turbulent 

nonlinear structures.  These Chaos, fractal, and turbulence can also be studied based on a 

probability or statistic approach.  The probability approach can be achieved by adding 

random noises onto a well-defined nonlinear structure or an analytic solution to model those 

small effects, which were neglected in the process of obtaining the simplified analytic 

solution.  Various types of statistic tests provide another way to examine the characteristics 

of the observed turbulent structures. 

 

The first method, quasi-linear approximation, and the last method, probability approach, will 

not be addressed in this course. Results obtained from numerical simulations will be served 

as an example to demonstrate the powerfulness of combining the jump conditions, the pseudo 

potential method, and the numerical simulations to study nonlinear waves in space plasma. 

 

1.2. Basic Equations of Space Plasmas 

 

In this study, we consider a simplified plasma system, which is collisionless and 

non-relativistic.  Gravitational force is considered to be much smaller than the Lorentz force 

and the observational frame is considered to be an inertial frame.  Under these assumptions, 

we can use Vlasov plasma model, two-fluid plasma model, or one-fluid MHD or quasi-MHD 

plasma model to describe the variations of plasmas and fields at different spatial and temporal 

scales.  Basic nonlinear equations of these plasma models are listed below. 

 

To study kinetic plasma phenomena, the basic equations are Vlasov-Maxwell equations: 

 

€ 

∂ fα
∂ t

+ v ⋅ ∂ fα
∂x

+
eα
mα

(E + v ×B) ⋅ ∂ fα
∂v

= 0           (1.1) 

€ 

∇ ⋅E =
1
ε0

eα fαdv∫
α

∑              (1.2) 

€ 

∇ ⋅B = 0                (1.3) 
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€ 

∇ ×E = −
∂B
∂ t

               (1.4) 

€ 

∇ ×B = µ0 eαv fαdv∫
α

∑ + µ0ε0
∂E
∂ t

           (1.5) 

where subscript 

€ 

α  denotes the 

€ 

αth  species. 

 

To study fluid plasma phenomena, the basic equations are fluid-Maxwell equations: 

€ 

∂
∂ t
(nα ) +∇ ⋅ (nαVα ) = 0              (1.

€ 

6α ) 

€ 

∂
∂ t
(mαnαVα ) +∇ ⋅ (mαnαVαVα +Pα ) = eαnα (E + Vα ×B)       (1.

€ 

7α ) 

€ 

∂
∂ t
(1
2
mαnαVα

2 +
3
2
pα ) +∇ ⋅ [(1

2
mαnαVα

2 +
3
2
pα )Vα +Pα ⋅Vα + qα ] = enαVα ⋅E  (1.

€ 

8α ) 

€ 

∇ ⋅E =
1
ε0

eαnα
α

∑               (1.9) 

€ 

∇ ⋅B = 0                (1.10) 

€ 

∇ ×E = −
∂B
∂ t

               (1.11) 

€ 

∇ ×B = µ0 eαnα
α

∑ Vα + µ0ε0
∂E
∂ t

           (1.12) 

 

Exercise 1.1 

(a) Derive Eqs. (1.

€ 

6α ), (1.

€ 

7α ), and (1.

€ 

8α ) from Eq. (1.1).   

(b) Define 

€ 

nα ,Vα,Pα , pα , and 

€ 

qα  based on distribution 

€ 

fα . 

 

Eqs. (1.

€ 

6α )~(1.12) are basic equations of a two-fluid or multiple-fluid system.   

 

We can obtain one-fluid mass continuity equation, momentum equation, and energy equation 

from

€ 

mα (1.6α
α

∑ ) ,

€ 

(1.7α
α

∑ ) , and 

€ 

(1.8α
α

∑ ) , respectively, which yield 

€ 

∂
∂ t
( mαnα
α

∑ ) +∇ ⋅ ( mαnαVα
α

∑ ) = 0           (1.13) 

€ 

∂
∂ t
( mαnαVα
α

∑ ) +∇ ⋅ [ (mαnαVαVα +Pα )
α

∑ = ρcE + J ×B      (1.14) 
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€ 

∂
∂ t

(1
2
mαnαVα

2 +
3
2
pα )

α

∑ +∇ ⋅ [(1
2
mαnαVα

2 +
3
2
pα )Vα

α

∑ +Pα ⋅Vα + qα ] = J ⋅E   (1.15) 

Making use of Maxwell’s equations, we can rewrite the above equations (1.13)~(1.15) into 

the following conservation forms: 

€ 

∂
∂ t
ρ +∇ ⋅ (ρV) = 0              (1.13') 

€ 

∂
∂ t
[ρV +

1
c 2
(E ×B

µ0
)]+∇ ⋅ [ρVV +P +1(ε0E

2

2
+
B2

2µ0
) −ε0EE −

BB
µ0
] = 0   (1.14') 

€ 

∂
∂ t
[1
2
ρV 2 +

3
2
p +

ε0E
2

2
+
B2

2µ0
]+∇ ⋅ [(1

2
ρV 2 +

3
2
p)V +P ⋅V + q+

E ×B
µ0

] = 0  (1.15') 

One-fluid charge continuity equation, and generalized Ohm’s Law can be obtained 

from

€ 

eα (1.6α
α

∑ ) , and 

€ 

eα
mα

(1.7α
α

∑ ) , respectively.  They are 

€ 

∂
∂ t
ρc +∇ ⋅ J = 0              (1.16) 

€ 

∂
∂ t
J +∇ ⋅ [ (eαnαVαVα +

eα
mα

Pα )
α

∑ = (e
2nα
mα

)
α

∑ E + (e
2nαVα
mα

)
α

∑ ×B     (1.17) 

 

Eqs. (1.9)~(1.17) are useful equations for studying low frequency waves in one-fluid plasma. 

 

Exercise 1.2 

(a) Derive Eqs. (1.13'), (1.14'), and (1.15') from Eqs. (1.13), (1.14), (1.15), and Eqs. 

(1.9)~(1.12).  

(b) Define 

€ 

ρc, J, ρ, V, P, p , and 

€ 

q  in terms of 

€ 

mα , nα , Vα , Pα , pα , and 

€ 

qα . 

 

 

1.3. Generation of Nonlinear Waves 

 

For a given equilibrium state, one can linearize the above nonlinear equations to obtain linear 

dispersion relation in a Vlasov-Maxwell system or in a fluid-Maxwell system.  If there is a 

linear wave mode with positive growth rate 

€ 

ω i > 0 , then the linear disturbance will grow into 

finite or large amplitude waves.  The linearized equations are no longer applicable to the 

nonlinear large amplitude waves.  We have to use the original nonlinear equations to 

describe these nonlinear waves’ behavior.  Saturation of wave amplitude in the nonlinear 
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stage is an important research topic in study nonlinear plasma physics.   

 

A system with linear stability, i.e., 

€ 

ω i = 0 , for all wave modes, may still be unstable by an 

external nonlinear disturbance.  Again, we have to use the original nonlinear equations to 

describe these nonlinear waves’ behavior.  To find out generation mechanism of such 

nonlinear waves is another interesting subject in space research. 

 

Figure 1.1 illustrates different types of equilibrium states. Case (a) is an unstable equilibrium 

state.  Case (b) is a stable equilibrium state.  Case (c) is an equilibrium state, which is 

stable under small amplitude perturbation, but unstable if the perturbation amplitude is large 

enough.  Case (d) is an equilibrium state, which is unstable under linear approximation, but 

the wave amplitude will be saturated in the nonlinear stage.   Case (e) shows a typical 

example of global coupling between a linear-stable equilibrium state and a linear-unstable 

equilibrium state.  In this case, a linear-stable equilibrium state 

€ 

A  is likely to be disturbed 

nonlinearly by a near-by linear-unstable equilibrium state 

€ 

B.  But both states 

€ 

A  and 

€ 

B 

will be confined under the dashed line and to fulfill the nonlinear saturation conditions. 

 

 
 

Figure 1.1. Different types of equilibrium states.  See text for detail discussion. 


