## Chapter 1 Introduction to Physics



- Physics and the Laws of Nature
- Units of Length, Mass, and Time
- Dimensional Analysis
- Significant Figures
- Converting Units
- Order-of-Magnitude Calculations
- Scalars and Vectors
- Problem Solving in Physics


## Why Study Physics?

Physics is the foundation of every science (astronomy, biology, chemistry...).

Many pieces of technology and/or medical equipment and procedures are developed with the help of physicists.

Studying physics will help you develop good thinking skills, problem solving skills, and give you the background needed to differentiate between science and pseudoscience.

Physics: the study of the fundamental laws of nature

- these laws can be expressed as mathematical equations
- much complexity can arise from relatively simple laws


## Physics Speak

Be aware that physicists have their own precise definitions of some words that are different from their common English language definitions.

Examples: speed and velocity are no longer synonyms; acceleration is a change of speed or direction.

## Definitions:

$$
y=m x+b
$$

$x$ is multiplied by the factor $m$.
The terms $m x$ and $b$ are added together.

## Example:

$$
y=\frac{x}{a}+c
$$

$x$ is multiplied by the factor $1 / a$ or $x$ is divided by the factor a. The terms $x / a$ and $c$ are added together.

## Percentages:

Example: You put $\$ 10,000$ in a CD for one year. The APY is $3.05 \%$. How much interest does the bank pay you at the end of the year?

## $\$ 10,000 \times 1.0305=\$ 10,305$

The bank pays you \$305 in interest.

Example: You have $\$ 5,000$ invested in stock $X Y Z$. It loses $6.4 \%$ of its value today. How much is your investment now worth?

$$
\$ 5,000 \times 0.936=\$ 4,680
$$

The general rule is to multiply by $\left(1 \pm \frac{n}{100}\right)$
where the $(+)$ is used if the quantity is increasing and $(-)$ is used if the quantity is decreasing.

## Proportions:

$$
A \propto B \quad \begin{aligned}
& \mathrm{A} \text { is proportional to } \mathrm{B} \text {. The value of } \mathrm{A} \text { is } \\
& \text { directly dependent on the value of } \mathrm{B} .
\end{aligned}
$$

$A \propto \frac{1}{B}$
$A$ is proportional to $1 / B$. The value of $A$ is inversely dependent on the value of $B$.

Example: For items at the grocery store:

## cost $\propto$ weight

The more you buy, the more you pay. This is just the relationship between cost and weight.

To change from $\propto$ to = we need to know the proportionality constant.

$$
\operatorname{cost}=(\text { cost per pound }) \times(\text { weight })
$$

Example: The area of a circle is $A=\pi r^{2}$.

The area is proportional to the radius squared. $A \propto r^{2}$

The proportionality constant is $\pi$.

Example: If you have one circle with a radius of 5.0 cm and a second circle with a radius of 3.0 cm , by what factor is the area of the first circle larger than the area of the second circle?

The area of a circle is proportional to $r^{2}$ :

$$
\frac{A_{1}}{A_{2}}=\frac{r_{1}^{2}}{r_{2}^{2}}=\frac{(5 \mathrm{~cm})^{2}}{(3 \mathrm{~cm})^{2}}=2.8
$$

The area of the first circle is 2.8 times larger than the second circle.

## §1.4 Scientific Notation \& Significant Figures

This is a shorthand way of writing very large and/or very small numbers.

## 1-4 Significant Figures

- accuracy of measurements is limited
- significant figures: the number of digits in a quantity that are known with certainty
- number of significant figures after multiplication or division is the number of significant figures in the leastknown quantity


## Example:

A tortoise travels at $2.51 \mathrm{~cm} / \mathrm{s}$ for 12.23 s . How far does the tortoise go?

Answer: 2.51 cm/s $\times 12.23 \mathrm{~s}=30.7$ cm (three significant figures)

Example: The radius of the sun is $700,000 \mathrm{~km}$.

Write as $7.0 \times 10^{5} \mathrm{~km}$.


When properly written this number will be between 1.0 and 10.0

Example: The radius of a hydrogen atom is 0.0000000000529 m . This is more easily written as $5.29 \times 10^{-11} \mathrm{~m}$.

Scientific Notation

- Leading or trailing zeroes can make it hard to determine number of significant figures: 2500, 0.000036
- Each of these has two significant figures
- Scientific notation writes these as a number from 1-10 multiplied by a power of 10 , making the number of significant figures much clearer:
$2500=2.5 \times 10^{3}$
$0.000036=3.6 \times 10^{-5}$

Round-off error:
The last digit in a calculated number may vary depending on how it is calculated, due to rounding off of insignificant digits

Example:
\$2.21 + 8\% tax = \$2.3868, rounds to \$2.39
$\$ 1.35+8 \%$ tax $=\$ 1.458$, rounds to $\$ 1.46$
Sum: \$2.39 + \$1.46 = \$3.85
\$2.21 + \$1.35 = \$3.56
\$3.56 + 8\% tax = \$3.84

Dimensions are basic types of quantities that can be measured or computed. Examples are length, time, mass, electric current, and temperature.

A unit is a standard amount of a dimensional quantity. There is a need for a system of units. SI units will be used throughout this class.

## Units of Length, Mass, and Time

SI units of length (L), mass (M), time (T):
Length: the meter
Was: one ten-millionth of the distance from the North Pole to the equator
Now: the distance traveled by light in a vacuum in
$1 / 299,792,458$ of a second
Mass: the kilogram
One kilogram is the mass of a particular platinum-iridium cylinder kept at the International Bureau of Weights and Standards, Sèvres, France.

Time: the second
One second is the time for radiation from a cesium-133 atom to complete $9,192,631,770$ oscillation cycles.

## The quantities in this column are based on an agreed upon standard.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

*Not used in this book

## 1-2 Units of Length, Mass, and Time

## TABLE 1-1 Typical Distances

| Distance from Earth to the nearest large galaxy <br> (the Andromeda galaxy, M31) | $2 \times 10^{22} \mathrm{~m}$ |
| :--- | ---: |
| Diameter of our galaxy (the Milky Way) | $8 \times 10^{20} \mathrm{~m}$ |
| Distance from Earth to the nearest star (other than the sun) <br> One light year <br> Average radius of Pluto's orbit <br> Distance from Earth to the Sun <br> Radius of Earth <br> Length of a football field <br> Height of a person <br> Diameter of a CD <br> Diameter of the aorta <br> Diameter of a period in a sentence <br> Diameter of a red blood cell <br> Diameter of the hydrogen atom <br> Diameter of a proton | $1.46 \times 10^{15} \mathrm{~m}$ |
| $10^{12} \mathrm{~m}$ |  |
| $10^{11} \mathrm{~m}$ |  |
| $10^{6} \mathrm{~m}$ |  |

## 1-2 Units of Length, Mass, and Time



## 1-2 Units of Length, Mass, and Time

| TABLE 1-3 Typical Times |  | $\begin{aligned} & =63.4 \text { years } \\ & (60 \times 60 \times 24 \times 365 \times 63.4) \end{aligned}$ |
| :---: | :---: | :---: |
| Age of the universe | $5 \times 10^{17} \mathrm{~s}$ |  |
| Age of the Earth | $1.3 \times 10^{17} \mathrm{~s}$ |  |
| Existence of human species | $6 \times 10^{13} \mathrm{~s}$ |  |
| Human lifetime | $2 \times 10^{9} \mathrm{~s}$ |  |
| One year | $3 \times 10^{7} \mathrm{~s}$ |  |
| One day | $8.6 \times 10^{4} \mathrm{~s}$ |  |
| Time between heartbeats | 0.8 s |  |
| Human reaction time | 0.1 s |  |
| One cycle of a highpitched sound wave | $5 \times 10^{-5} \mathrm{~s}$ |  |
| One cycle of an AM radio wave | $10^{-6} \mathrm{~s}$ |  |
| One cycle of a visible light wave | $2 \times 10^{-15} \mathrm{~s}$ |  |

## 1-2 Units of Length, Mass, and Time

| TABLE 1-4 | Common Prefixes |  |
| :--- | :--- | :--- |
| Power | Prefix | Abbreviation |
| $10^{15}$ | peta | P |
| $10^{12}$ | tera | T |
| $10^{9}$ | giga | G |
| $10^{6}$ | mega | M |
| $10^{3}$ | kilo | k |
| $10^{2}$ | hecto | h |
| $10^{1}$ | deka | da |
| $10^{-1}$ | deci | d |
| $10^{-2}$ | centi | c |
| $10^{-3}$ | milli | m |
| $10^{-6}$ | micro | $\mu$ |
| $10^{-9}$ | nano | n |
| $10^{-12}$ | pico | p |
| $10^{-15}$ | femto | f |

A derived unit is composed of combinations of base units.

Example: The SI unit of energy is the joule.


## 1-5 Converting Units

Converting feet to meters:
$1 \mathrm{~m}=3.281 \mathrm{ft} \quad$ (this is a conversion factor)
Or: 1 = 1 m / 3.281 ft
$316 \mathrm{ft} \times(1 \mathrm{~m} / 3.281 \mathrm{ft})=96.3 \mathrm{~m}$
Note that the units cancel properly - this is the key to using the conversion factor correctly!

Units can be freely converted from one to another. Examples:

12 inches $=1$ foot
1 inch $=2.54 \mathrm{~cm}$

Example: The density of air is $1.3 \mathrm{~kg} / \mathrm{m}^{3}$. Change the units to slugs/ft ${ }^{3}$.

> 1 slug $=14.59 \mathrm{~kg}$
> $1 \mathrm{~m}=3.28$ feet

$$
1.3 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\left(\frac{1 \mathrm{slug}}{14.59 \mathrm{~kg}}\right)\left(\frac{1 \mathrm{~m}}{3.28 \text { feet }}\right)^{3}=2.5 \times 10^{-3} \text { slugs } / \mathrm{ft}^{3}
$$

## Dimensional Analysis

Dimensions are basic types of quantities such as length [L]; time [T]; or mass [M].

The square brackets are referring to dimensions not units.

## Dimensional Analysis

- Any valid physical formula must be dimensionally consistent - each term must have the same dimensions


## TABLE 1-5 Dimensions of Some <br> Common Physical Quantities

Quantity
Distance
Area
Volume
Velocity
Acceleration
Energy

Dimension
[L]
[L²]
[L³]
[L]/[T]
[L]/[T²]
$[\mathrm{M}]\left[\mathrm{L}^{2}\right] /\left[\mathrm{T}^{2}\right]$

From the table:
Distance $=$ velocity $\times$ time
Velocity $=$ acceleration $\times$ time
Energy $=$ mass $\times(\text { velocity })^{2}$

Example: Estimate the number of times a human heart beats during its lifetime.

Estimate that a typical heart beats $\sim 60$ times per minute:

$$
\begin{gathered}
\left(\frac{60 \text { beats }}{1 \text { minute }}\right)\left(\frac{60 \text { minutes }}{1 \text { hour }}\right)\left(\frac{24 \text { hours }}{1 \text { day }}\right)\left(\frac{365 \text { days }}{1 \text { year }}\right)\left(\frac{75 \text { years }}{1 \text { lifetime }}\right) \\
=2.4 \times 10^{9} \text { beats } / \text { lifetime }
\end{gathered}
$$

## Graphs

Experimenters vary a quantity (the independent variable) and measure another quantity (the dependent variable).


Independent variable here

Be sure to label the axes with both the quantity and its unit. For example:


Example: A nurse recorded the values shown in the table for a patient's temperature. Plot a graph of temperature versus time and find (a) the patient's temperature at noon, (b) the slope of the graph, and (c) if you would expect the graph to follow the same trend over the next 12 hours? Explain.

The given data:

| Time | Decimal time | Temp $\left({ }^{\circ} \mathrm{F}\right)$ |
| :---: | :---: | :---: |
| 10:00 AM | 10.0 | 100.00 |
| 10:30 AM | 10.5 | 100.45 |
| 11:00 AM | 11.0 | 100.90 |
| 11:30 AM | 11.5 | 101.35 |
| 12:45 PM | 12.75 | 102.48 |


(a) Reading from the graph: $101.8^{\circ} \mathrm{F}$.
(b) slope $=\frac{T_{2}-T_{1}}{t_{2}-t_{1}}=\frac{101.8^{\circ} \mathrm{F}-100.0^{\circ} \mathrm{F}}{12.0 \mathrm{hr}-10.0 \mathrm{hr}}=0.9^{\circ} \mathrm{F} / \mathrm{hour}$
(c) No .

## Scalars and Vectors

Scalar - a numerical value. May be positive or negative. Examples: temperature, speed, height

Vector - a quantity with both magnitude and direction. Examples: displacement (e.g., 10 feet north), force, magnetic field

Important for motion:

- difference between speed and velocity
- difference between distance and displacement


## Problem Solving in Physics

No recipe or plug-and-chug works all the time, but here are some guidelines:

1. Read the problem carefully
2. Sketch the system
3. Visualize the physical process
4. Strategize
5. Identify appropriate equations
6. Solve the equations
7. Check your answer
8. Explore limits and special cases

## Summary of Chapter 1

- Physics is based on a small number of laws and principles
- Units of length are meters; of mass, kilograms; and of time, seconds
- All terms in an equation must have the same dimensions
- The result of a calculation should have only as many significant figures as the least accurate measurement used in it


## Summary of Chapter 1

-Convert one unit to another by multiplying by their ratio

- Order-of-magnitude calculations are designed to be accurate within a power of 10
- Scalars are numbers; vectors have both magnitude and direction
- Problem solving: read, sketch, visualize, strategize, identify equations, solve, check, explore limits

