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An understanding of Probability and Statistics is necessary in most if not all 
work related to science and engineering.   

Statistics: the study of and the dealing with data.  

Probability: the study of the likeliness of result, action or event occurring.  

Often based on prior knowledge or the statistics of similar or past events! 

 

Terms: Random Variables, Random Processes or Stochastic Processes 

 

For any measured phenomenon there will be Uncertainty, Expected Variations, 
Randomness, or even Expected Errors included. 

 when an outcome is non-deterministic 

 where an exact value is subject to errors … e.g. noise, measurement 

 

Easy examples of such phenomenon include all games of chance 
 Flipping coins, rolling dice, dealing cards, etc. 

 

Engineering Applications include 
 Realistic signals – with noise or characteristic “unknown” parts 

 Signal-to-noise Ratios, Noise-Power Measurements, Background Noise 

 Expected Values, Variances, Distributions 

 Thermal Motion, Electron Movement 

 Reliability, Quality, Failure Rates, etc. 

 Thermal Motion, Electron Movement 

Probability theory is necessary for engineering system modeling and simulations. 
 unknown initial conditions (random) 

 noisy measurements, expected inaccuracies, etc. during operation 
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Textbook Intro Quote 

By Eugen Merzbacher: 

“The probability doctrine of quantum mechanics asserts that the 
indetermination ... is a property inherent in nature and not merely 
a profession of our temporary ignorance from which we expect to 
be relieved by a future better and more complete theory. “ 

“The conventional interpretation thus denies the possibility of an 
ideal theory that would encompass the innumerable experimentally 
verified predictions of quantum mechanics but would be free of its 
supposed defects, the most notorious "imperfection" of quantum 
mechanics being the abandonment of strict classical determinism. “ 
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Different kinds of Probability 

Suggested that there are essentially 4 types 

 Probability by Intuition 
o “Lucky Numbers” 

 
 Probability as the Ratio of Favorable to Total Outcomes (Classical Theory) 

o Measured Statistical Expectations 
 

 Probability as a Measure of the Frequency of Outcomes 
 

 Probability Based on Axiomatic Theory 
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Definitions of used in Probability 

Experiment 

 An experiment is some action that results in an outcome.  

 A random experiment is one in which the outcome is uncertain before the 
experiment is performed. 

Possible Outcomes 

 A description of all possible experimental outcomes.  

 The set of possible outcomes may be discrete or form a continuum.  

Trials 

 The single performance of a well-defined experiment. 

Event 

 An elementary event is one for which there is only one outcome. 

 A composite event is one for which the desired result can be achieved in 
multiple ways. Multiple outcomes result in the event described. 

 

 

 

Equally Likely Events/Outcomes 

 When the set of events or each of the possible outcomes is equally likely 
to occur.  

 A term that is used synonymously to equally likely outcomes is random.  
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Probability as the Ratio of Favorable to Total Outcomes 
(Classical Theory) – 2 Dice example 

 

There are 36 possible outcomes  

An elemental event can be defined as the total of the two die … 

The total number of outcome resulting in each unique event is known. 

The probability of each event can be computed and described  
 … if the die are “fair”. 

So … the “true odds” can be computed … and a gambling game with skewed odds in 
“the houses” favor can be created … 

 
from: https://en.wikipedia.org/wiki/Craps 
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Probability as the Ratio of Favorable to Total Outcomes 
(Classical Theory) – flipping two coins example 

Flip two coins: 

What are the possible outcomes {HH, HT, TH, TT} 

Define an event as the getting of getting at least one Tail. 

Probability is the favorable outcomes/total outcomes,  = 3/4 

 

Possible Outcomes with Probabilities: 

HH – probability 1/4 

HT – probability 1/4 

TH – probability 1/4 

TT – probability ¼ 

 

Possible events: one head, one tail, at least one head, at least one tail, at most one head, at 
most one tail, two heads, two tails no heads, or no tails.  
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Probability as a Measure of the Frequency of Outcomes 

Experiment: Selecting a sequence of random numbers.  
 The random numbers are between 1 and 100. 

Determining the relative frequency of a single number as from 01 to 10,000 numbers are 
selected.  

 The statistics of “observed events” is approaching 1/100 …. (infinite trials?) 

  

Figure 1.2-1 Event = {occurrence of number 5} 

(Numbers derived from website RANDOM.ORG). 

 

Figure 1.2-2 Event = {occurrence of number 23} 
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Probability Based on an Axiomatic Theory 

Develop the coherent mathematical theory: 

 Statistics collected data on random experiments 
o Possible outcomes, sample space, events, etc. 

 From the statistics, probability structure can be observed and defined 
o Random processes follow defined probabilistic models of 

performance. 

 Mathematical properties applied to probability derives derive new/alternate 
expectations 

o Probabilistic expectations can be verified by statistical measurement. 

This can be considered as modeling a system prior to or instead of performing an 
experiment. Note that the results are only as good as the model or “theory” match the 
actual experiment.  

 

Misuses, Miscalculations, and Paradoxes in Probability 

Old time quotation …  “There are three kinds of lies: lies, damned lies, and statistics!” 
https://en.wikipedia.org/wiki/Lies,_damned_lies,_and_statistics  

From the CNN headlines  … 

“Math is racist: How data is driving inequality”, by Aimee Rawlins, September 6, 2016 
http://money.cnn.com/2016/09/06/technology/weapons-of-math-destruction/index.html  

 

Another example …  

As a person, you are a unique individual and not a statistical probability … 

but future “chances” may be based on others like you that have come before. 

The class as a whole may exhibit statistical expectations … although it is made up of 
unique individuals.  

For Sci-Fi readers ….  

Issac Asimov’s Foundation Trilogy – “psychohistory” used to predict the future …. 
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Sets, Fields and Events 

Conceptually Defining a Problem 

 Relative Frequency Approach (statistics) 

 Set Theory Approach (formal math) 

 Venn Diagrams (pictures based on set theory) 

 

If you like “pictures” try to use Venn Diagrams to help understand the concepts. 

 

Figure 1.4-1 Venn diagrams for set operations. 
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Set Theory Definitions – (A review?!) 

Set 

 A collection of objects known as elements  

 naaaA ,,, 21   

Subset 

 The set whose elements are all members of another set (usually larger but 
possible the same size).  

 knaaaB  ,,, 21    therefore  AB   

Space 

 The set containing the largest number of elements or all elements from all 
the subsets of interest.  For probability, the set containing the event 
description of all possible experimental outcomes.  

SAi  , for all i subsets 

Null Set or Empty Set 

 The set containing no elements …  A  

 

Venn Diagrams can help when considering set theory … 

 A graphical (geometric) representation of sets that can provide a way to 
visualize set theory and probability concepts and can lead to an 
understanding of the related mathematical concepts. 

 

from: Robert M. Gray and Lee D. Davisson, An Introduction to Statistical Signal Processing, Cambridge University 
Press, 2004. A pdf file version can be found at http://www-ee.stanford.edu/~gray/sp.html  
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More Set Theory Definitions 

Equality 

 Set A equals set B if and only if (iff) every element of A is an element of 
B AND every element of B is an element of A. 

ABandBAiffBA   

Sum or Union (logic OR function) 

 The sum or union of sets results in a set that contains all of the elements 
that are elements of every set being summed. 

NAAAAS  321  

 Laws for Unions 

ABBA   

AAA   

AA   

SSA   

ABifABA  ,  

Products or Intersection (logic AND function) 

 The product or intersection of sets results in a set that contains all of the 
elements that are present in every one of the sets. 

S  

 Laws for Intersections 

ABBA   

AAA   

A  

ASA   

ABifBBA  ,  

Mutually Exclusive or Disjoint Sets 

 Mutually exclusive or disjoint sets of no elements in common. 

 BA  

 NOTE: The intersection of two disjoint sets is a set … the null set! 
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Complement 

 The complement of a set is the set containing all elements in the space that 
are not elements of the set. 

 AA  and SAA   

 Laws for Complement 

S  

S  

  AA   

ABifBA  ,  

ABifBA  ,  

 DeMorgan’s Law 

  BABA   

  BABA   

Differences 

 The difference of two sets, A-B, is the set containing the elements of A 
that are not elements of B.  

 BAABABA   

 Laws for Differences 

  BBBA   

   AAA  

  AAAA   

AA   

 SA  

AAS   
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Venn Diagram set theory concepts 
. (2D pictures that can help you understand set theory) 

 

from: Robert M. Gray and Lee D. Davisson, An Introduction to Statistical Signal 
Processing, Cambridge University Press, 2004. Pdf file version found at  
http://www-ee.stanford.edu/~gray/sp.html  
 

(a) The space 
(b) Subset G 
(c) Subset F 
(d) The Complement of F 
(e) Intersection of F and G 
(f) Union of F and G 
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More Venn Diagrams 

 

from: Robert M. Gray and Lee D. Davisson, An Introduction to Statistical Signal Processing, Cambridge University 
Press, 2004. Pdf file version found at http://www-ee.stanford.edu/~gray/sp.html  

(a) Difference F-G 

(b) Difference F-G Union with Difference G-F 

   FGGF   

 

If events can be describe in set theory or Venn Diagrams, then probability can directly 
use the concepts and results of set theory! 

What can be said about  GF Pr ? [ read as the probability of event F union event G ] 

     GFGFFGFGGFGF   

Therefore, 

       GFGFGF  PrPrPrPr  

 

Set algebra is often used to help define probabilities … 
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Equalities in Set Algebra 

 

from: Robert M. Gray and Lee D. Davisson, An Introduction to Statistical Signal Processing, Cambridge University 
Press, 2004. Appendix A, Set Theory. Pdf file version found at http://www-ee.stanford.edu/~gray/sp.html  
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Axiomatic Definitions Using Sets 

For event A 

  1Pr0  A  

  1Pr S  

  0Pr   

Disjoint Sets 

     BABAthenBAIf PrPrPr,   

Complement (complementary sets) (defining the complement may be easier sometimes) 

        1PrPrPrPr,  SAAAAthenAAIf  

    1Pr1Pr  AA  

Not a Disjoint Sets (solution) 

  ???Pr,  BAthenBAIf  

 Manipulation (1) 

 BAABA  , the union of disjoint sets 

        BAABAABA  PrPrPrPr  

 Manipulation (2) 

   BABAB  , the union of disjoint sets 

          BABABABAB  PrPrPrPr  

 Manipulation (3) 

     BABBA  PrPrPr , rearranging from (2) 

 Substitution for (1)  

           BABABAABA  PrPrPrPrPrPr  

Note that we can generally define a bound where  
           BABABABA PrPrPrPrPrPr   

  equality holds for A and B being disjoint sets! 
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Example: 6-sided die 

 
6

1
Pr i  

A: The probability of rolling a 1 or a 3, event    313,1 A  

     
3

1

6

1

6

1
3Pr1PrPr A  

 

B: The probability of rolling a 3 or 5, event    535,3 B  

     
3

1

6

1

6

1
5Pr3PrPr B  

 

C: The probability of event A or event B, event  BAC   

         BABABAC  PrPrPrPrPr  

 
2

1

6

1

3

1

3

1
Pr C  

Note:    5,3,1 BAC  

       
2

1

6

1

6

1

6

1
5Pr3Pr1PrPr C  

 

When in doubt, write it out to double check your results!  

 

A Venn diagram may also help. 
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Probability of A union of events (from section 1.5) 

An extension of the set theory for unions ….  

 

Figure 1.5-1 Partitioning  


7

1

3

1 j ji iE  into seven disjoint regions Δ1,...,Δ7.) 

 

If        BABABA  PrPrPrPr , what about   ???Pr  CBA  

       
     
 CBA

CBCABA

CBACBA






Pr

PrPrPr

PrPrPrPr

 

   
 

   
 


  

 









1

1

2

1

3

1

2

1

3

1

3

1321

Pr

Pr

PrPr

i ij jk kji

i ij ji

i i

EEE

EE

EEEE

 

Can you recognize a pattern …  

 “+”singles … “-“doubles … “+”triples … “-“quads … etc 

What about   ???Pr  FEDCBA  
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Section 1.6: More Definitions 

Probability, the relative frequency method: 

The number of trials and the number of times an event occurs can be described as 

 CBA NNNN  

the relative frequency is then 

 
N

N
Ar A  

note that 

      1


 


CrBrAr
N

NNN

N

N CBA  

When experimental results appear with “statistical regularity”, the relative frequency 
tends to approach the probability of the event.   

   ArA
N 

 limPr  

and 

      1PrPrPr  CBA  

Where  APr  is defined as the probability of event A. 

Mathematical definition of probability: 

1.   1Pr0  A  

2.       1PrPrPr  CBA , for mutually exclusive events 

3. An impossible event, A, can be represented as   0Pr A . 

4. A certain event, A, can be represented as   1Pr A . 

 

Odds or probabilities can be assigned to every possible outcome of a “future” trial, 
experiment, contests, game that has some prior historical basis of events or outcomes.  
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Joint Probability 

Defining probability based on multiple events … two classes for considerations. 

 Independent experiments: The outcome of one experiment is not affected by past 
or future experiments. 

o flipping coins 
o repeating an experiment after initial conditions have been restored 
o Note: these problems are typically easier to solve 

 
 Dependent experiments: The result of each subsequent experiment is affected by 

the results of previous experiments.  
o drawing cards from a deck of cards 
o drawing straws  
o selecting names from a hat 
o for each subsequent experiment, the previous results change the possible 

outcomes for the next event.  
o Note: these problems can be very difficult to solve (the “next experiment” 

changes based on previous outcomes!) 
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Conditional Probability 

Defining the conditional probability of event A given that event B has occurred.  

Using a Venn diagram, we know that B has occurred … then the probability that A has 
occurred given B must relate to the area of the intersection of A and B … 

     BBABA Pr|PrPr  , for   0Pr B  

or 

   
 B

BA
BA

Pr

Pr
|Pr


 , for   0Pr B  

For elementary events, 

   
 

 
 B

BA

B

BA
BA

Pr

,Pr

Pr

Pr
|Pr 


 , for   0Pr B  

 

Special cases for BA  , AB  , and  AB . 

 If A is a subset of B, then the conditional probability must be  

   
 

 
 B

A

B

BA
BA

Pr

Pr

Pr

Pr
|Pr 


 , for BA   

Therefore, it can be said that 

   
 

 
   A
B

A

B

BA
BA Pr

Pr

Pr

Pr

Pr
|Pr 


 , for BA   

 If B is a subset of A, then the conditional probability becomes 

   
 

 
  1

Pr

Pr

Pr

Pr
|Pr 




B

B

B

BA
BA , for AB   

 If A and B are mutually exclusive, 

   
    0

Pr

0

Pr

Pr
|Pr 




BB

BA
BA , for  AB  
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Independence 

Two events, A and B, are independent if and only if 

     BABA PrPrPr   

Independence is typically assumed when there is no apparent physical mechanism by 
which the two events could depend on each other. For events derived from independent 
elemental events, their independence may not be obvious but may be able to be derived. 

Independence can be extended to more than two events, for example three, A, B, and C. 
The conditions for independence of three events is 

     BABA PrPrPr        CBCB PrPrPr        CACA PrPrPr   

       CBACBA PrPrPrPr   

Note that it is not sufficient to establish pair-wise independence; the entire set of 
equations is required.  

For multiple events, every set of events from n down must be verified. This implies that 
 12  nn  equations must be verified for n independent events. 

 

 

Important Properties of Independence 

Unions – help in simplifying the intersection term – if events are independent! 

       BABABA  PrPrPrPr  

         BABABA PrPrPrPrPr   

Independent intersection with a Union 

      CBACBA  PrPrPr  

There will be some example problems where you must determine if events are 
independent in order to solve the problem.  

 switch problems in homework and skills 
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Total Probability 

For a space, S, that consists of multiple mutually exclusive events, the probability of a 
random event, B, occurring in space S, can be described based on the conditional 
probabilities associated with each of the possible events.  

Proof: 

nAAAAS  321  

and 

jiforAA ji  ,  

         nn ABABABABAAAABSBB   321321  

         nABABABABB  PrPrPrPrPr 321   

But 

     iii AABAB Pr|PrPr  , for   0Pr iA  

Therefore 

             nn AABAABAABB Pr|PrPr|PrPr|PrPr 2211    

 

 

Remember your math properties: distributive, associative, commutative etc. applied to set 
theory. 
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Experiment 1: A bag of marbles, draw 1 

A bag of marbles: 3-blue, 2-red, one-yellow 

 Objects: Marbles 

 Attributes: Color (Blue, Red, Yellow) 

 Experiment: Draw one marble, with replacement 

 Sample Space: {B, R, Y} 

 Probability (relative frequency method) 

 

The probability for each possible event in the sample space is …. 

 

Event Probability 

Blue 3/6 

Red 2/6 

Yellow 1/6 

Total 6/6 

 

This experiment would be easy to run and verify … after lots of trials.  

see Matlab Sec1_Marble1.m 
ntrials = 6 vs. 600 vs. 6000 (repeat execution a few times) 

(Another problem: if we ran 6 trials, what is the probability that we get events that 
exactly match the probability? 3-Blue, 2-Red, 1 Yellow -  a much harder problem)  
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Experiment 2: A bag of marbles, draw 2 

 Experiment: Draw one marble, replace, draw a second marble.  
“with replacement” 

 Sample Space: {BB, BR, BY, RR, RB, RY, YB, YR, YY} 

Define the probability of each event in the sample space …. 

Joint Probability 

 When a desired outcome consists of multiple events. (Read the joint 
probability of events A and B). 

 BA,Pr  

Statistically Independent Events 

 When the probability of an event does not depend upon any other prior 
events.  
If trials are performed with replacement and/or the initial conditions are 
restored, you expect trial outcomes to be independent.  

       BAABBA PrPr,Pr,Pr   

 The marginal probability of each event is not affected by prior/other 
events.  
The probability of event A given event B occurred is the same as the 
probability of event A and vice versa.  

   ABA Pr|Pr    and     BAB Pr|Pr   

 Applicable for multiple objects with single attributes and with 
replacement.  

Therefore 
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Next Concept 

Conditional Probability 

 When the probability of an event depends upon prior events.  
If trials are performed without replacement and/or the initial conditions are 
not restored, you expect trial outcomes to be dependent on prior results or 
conditions. 

   ABA Pr|Pr    when A follows B 

 The joint probability is. 

           AABBBAABBA Pr|PrPr|Pr,Pr,Pr   

 Applicable for objects that have multiple attributes and/or for trials 
performed without replacement.  

 

Experiment 3: A bag of marbles, draw 2 without replacement 

 Experiment: Draw two marbles, without  replacement 

 Sample Space: {BB, BR, BY, RR, RB, RY, YB, YR} 

Therefore 
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Matlab Marble Simulation Examples: 

Sec1_Marble1.m 

 example to show small versus large number of sample statistics vs. probability 

Sec1_Marble2.m 

 example to validate probability and/or small versus large number of trials 

Sec1_Marble3.m 

 example to validate probability and/or small versus large number of trials 
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Resistor Example: Joint and Conditional Probability 

Assume we have a bunch of resistors (150) of various impedances and powers… 
Similar to old textbook problems (more realistic resistor values) 

 50 ohms 100 ohms 200 ohms Subtotal 

¼ watt 40 20 10 70 

½ watt 30 20 5 55 

1 watt 10 10 5 25 

Subtotal 80 50 20 150 

Each object has two attributes: impedance (ohms) and power rating (watts) 

 

Marginal Probabilities: (uses subtotals) 

Pr(¼ watt) = 70/150 Pr(½ watt) = 55/150 Pr(1 watt) = 25/150 

Pr(50 ohms) = 80/150 Pr(100 ohms) = 50/150 Pr(200 ohms) = 20/150 

These are called the marginal probabilities … when fewer than all the attributes are 
considered (or don’t matter). 

 

Joint Probabilities: divided each member of the table by 150! 
 

 50 ohms 100 ohms 200 ohms Subtotal 

¼ watt 40/150=0.266 20/150=0.133 10/150=0.066 70/150=0.466 

½ watt 30/150=0.20 20/150=0.133 5/150=0.033 55/150=0.366 

1 watt 10/150=0.066 10/150=0.066 5/150=0.033 25/150=0.166 

Subtotal 80/150=0.533 50/150=0.333 20/150=0.133 150/150=1.0 

These are called the joint probabilities … when all unique attributes must be considered. 

(Concept of total probability … things that sum to 1.0) 
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Conditional Probabilities: 

When one attributes probability is determined based on the existence (or non-existence) 
of another attribute. Therefore,  

The probability of a ¼ watt resistor given that the impedance is 50 ohm.  

Pr(¼ watt given that the impedance is 50 ohms) = Pr(¼ watt | 50 ohms) = 40/80 = 0.50 
 

 50 ohms 

¼ watt 40/80=0.50 

½ watt 30/80=0.375 

1 watt 10/80=0.125 

Total 80/80=1.0 

Simple math that does not work to find the solution: (they are not independent) 

Pr(¼ watt) = 70/150 and Pr(50 ohms) = 80/150 

Pr(¼ watt) x Pr(50 ohms) = 70/150 x 80/150 = 56/225 = 0.249  NO!!! Not independent!! 

Math that does work 

   
 

 
  50.080

40

150
80

150
40

Pr

,Pr

Pr

Pr
|Pr 




B

BA

B

BA
BA  

 

What about Pr(50 ohms given the power is ¼ watt)  
 

 50 ohms 100 ohms 200 ohms Total 

¼ watt 40/70=0.571 20/70=0.286 10/70=0.143 70/70=1.0 

Pr(50 ohms | ¼ watt) = Pr(50 | ¼) = 40/70 = 0.571 

   
 

 
  571.070

40

150
70

150
40

Pr

,Pr

Pr

Pr
|Pr 




B

BA

B

BA
BA  
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Can you determine? 

Pr(100, ½) = Pr(100) = 

Pr(50, ½) = Pr(½ | 50) = 

Pr(50 | ½) = Pr( 1 ) = 

 

Using the “table” it is rather straight forward … 
 50 ohms 100 ohms 200 ohms Subtotal 

¼ watt 40 20 10 70 
½ watt 30 20 5 55 
1 watt 10 10 5 25 

Subtotal 80 50 20 150 

 

Joint Probabilities    BABA ,PrPr   

Pr(100, ½) = Pr(50, ½) =  

 

Conditional Probabilities    
 

 
 B

BA

B

BA
BA

Pr

,Pr

Pr

Pr
|Pr 


  

Pr(½ | 100) = Pr(200 | ½) = 

 

Marginal Probability          nn AABAABB Pr|PrPr|PrPr 11    

Pr( 1 ) =  Pr(100) = 

 

Are there multiple ways to conceptually define such problems? … Yes 
 Relative Frequency Approach (statistics) 
 Set Theory Approach (formal math) 
 Venn Diagrams (pictures based on set theory) 

All ways to derive equations that form desired probabilities ….  
 The Relative Frequency Approach is the slowest and requires the most work! 
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A Priori and A Posteriori Probability (Sec. 1.7 Bayes Theorem) 

The probabilities defined for the expected outcomes,  iAPr , are referred to as a priori 

probabilities (before the event). They describe the probability before the actual 
experiment or experimental results are known.  

After an event has occurred, the outcome B is known. The probability of the event 
belonging to one of the expected outcomes can be defined as 

 BAi |Pr  

or from before 

         BBAAABBA iiii Pr|PrPr|PrPr   

     
 B

AAB
BA ii

i Pr

Pr|Pr
|Pr


 , for   0Pr B  

Using the concept of total probability 

             nn AABAABAABB Pr|PrPr|PrPr|PrPr 2211    

We also have the following forms 

     
           nn

ii
i AABAABAAB

AAB
BA

Pr|PrPr|PrPr|Pr

Pr|Pr
|Pr

2211 





 

or 

     
   

   
 B

AAB

AAB

AAB
BA jj

n

i

jj
j Pr

Pr|Pr

Pr|Pr

Pr|Pr
|Pr

1
11












 

 

This probability is referred to as the a posteriori probability (after the event). 

It is also referred to as Bayes Theorem. 
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Example 

More Resistors 

 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 Subtotal 

10 ohm 500 0 200 800 1200 1000 3700 

100 ohm 300 400 600 200 800 0 2300 

1000 ohm 200 600 200 600 0 1000 2600 

Subtotal 1000 1000 1000 1600 2000 2000 8600 

What is the probability of selecting a 10 ohm resistor from a random bin? 

Given Bin marginal probability  
6

1
#Pr Bin  

 
1000

500
1|10Pr  Bin   

1000

0
2|10Pr  Bin   

1000

200
3|10Pr  Bin  

 
1600

800
4|10Pr  Bin   

2000

1200
5|10Pr  Bin   

2000

1000
6|10Pr  Bin  

             nn AABAABAABB Pr|PrPr|PrPr|PrPr 2211    
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  3833.0
6

1

10

23

6

1

10

5

6

1

10

6

6

1

10

5

6

1

10

2

6

1

10

0

6

1

10
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Pr B  

Assuming a 10 ohm resistor is selected, what is the probability it came from bin 3? 

     
           nn

ii
i AABAABAAB

AAB
BA

Pr|PrPr|PrPr|Pr

Pr|Pr
|Pr

2211 





 

     
       6Pr6|10Pr1Pr1|10Pr

3Pr3|10Pr
10|3Pr

BinBinBinBin

BinBin
Bin



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

 

  08696.0
3833.0

6
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10|3Pr 


Bin  
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Digital	Transmissions	

A digital communication system sends a sequence of 0 and 1, each of which are received 
at the other end of a link. Assume that the probability that 0 is received correctly is 0.90 
and that a 1 is received correctly is 0.90. Alternately, the probability that a 0 or 1 is not 
received correctly is 0.10 (the cross-over probability, ).  Within the sequence, the 
probability that a 0 is sent is 60% and that a one is sent is 40%.  [S is Send and R is 
Receive} 

  60.0Pr 0 S    40.0Pr 1 S  

   190.0|Pr 00 SR     190.0|Pr 11 SR  

   10.0|Pr 01 SR     10.0|Pr 10 SR  

 

Figure 1.7-1 

a) What is the probability that a zero is received? 

Total Probability:              nn AABAABAABB Pr|PrPr|PrPr|PrPr 2211    

         1100000 Pr|PrPr|PrPr SSRSSRR   

  40.010.060.090.0Pr 0 R  

  58.004.054.0Pr 0 R  

b) What is the probability that a one is received? 

         1110011 Pr|PrPr|PrPr SSRSSRR   

  40.090.060.010.0Pr 1 R  

  42.036.006.0Pr 1 R  
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Digital	Communications	(continued)	

  60.0Pr 0 S    40.0Pr 1 S  

  90.0|Pr 00 SR    90.0|Pr 11 SR  

  10.0|Pr 01 SR    10.0|Pr 10 SR  

c) What is the probability that a received zero was transmitted as a 0? 

Bayes Theorem

      
           nn

ii
i AABAABAAB

AAB
BA

Pr|PrPr|PrPr|Pr

Pr|Pr
|Pr

2211 





 

     
 

   
       110000

000

0

000
00 Pr|PrPr|Pr

Pr|Pr

Pr

Pr|Pr
|Pr

SSRSSR

SSR

R

SSR
RS







  

     
931.0

58.0

54.0

58.0

60.090.0

58.0

Pr|Pr
|Pr 000

00 






SSR

RS  

 

d) What is the probability that a received one was transmitted as a 1? 

Bayes Theorem

      
           nn

ii
i AABAABAAB

AAB
BA

Pr|PrPr|PrPr|Pr

Pr|Pr
|Pr

2211 





 

     
 

   
       111001

111

1

111
11 Pr|PrPr|Pr

Pr|Pr

Pr

Pr|Pr
|Pr

SSRSSR

SSR

R

SSR
RS







  

     
857.0

42.0

36.0

42.0

40.090.0

42.0

Pr|Pr
|Pr 111

11 






SSR

RS  
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Digital	Communications	(continued)	

  60.0Pr 0 S    40.0Pr 1 S  

  90.0|Pr 00 SR    90.0|Pr 11 SR  

  10.0|Pr 01 SR    10.0|Pr 10 SR  

e) What is the probability that a received zero was transmitted as a 1? 

Bayes Theorem

      
           nn

ii
i AABAABAAB

AAB
BA

Pr|PrPr|PrPr|Pr

Pr|Pr
|Pr

2211 





 

     
 

   
       110000

110

0

110
01 Pr|PrPr|Pr

Pr|Pr

Pr

Pr|Pr
|Pr

SSRSSR

SSR

R

SSR
RS







  

     
069.0

58.0

04.0

58.0

40.010.0

04.054.0

Pr|Pr
|Pr 110

01 







SSR

RS  

Note:      069.0931.01|Pr1|Pr 0001  RSRS  

 

f) What is the probability that a received one was transmitted as a 0? 

Bayes Theorem

      
           nn

ii
i AABAABAAB

AAB
BA

Pr|PrPr|PrPr|Pr

Pr|Pr
|Pr

2211 





 

     
 

   
       111001

001

1

001
10 Pr|PrPr|Pr

Pr|Pr

Pr

Pr|Pr
|Pr

SSRSSR

SSR

R

SSR
RS







  

     
143.0

42.0

06.0

42.0

60.010.0

42.0

Pr|Pr
|Pr 001

10 






SSR

RS  

Note:      143.0857.01|Pr1|Pr 1110  RSRS  
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Digital	Communications	(continued)	

  60.0Pr 0 S    40.0Pr 1 S  

  90.0|Pr 00 SR    90.0|Pr 11 SR  

  10.0|Pr 01 SR    10.0|Pr 10 SR  

e) What is the probability that a symbol is received in error? 

         001110 Pr|PrPr|PrPr SSRSSRError   

  10.006.004.060.010.040.010.0Pr Error  

Alternately, 

         001110 Pr|PrPr|PrPr RRSRRSError   

  100.0040.0060.058.0069.042.0143.0Pr Error  

Which way is easier?  

Notice that you were told originally that there was a 0.10 chance of receiving a symbol in 
error! 

Summary: 

A-priori Probabilities 
  60.0Pr 0 S    40.0Pr 1 S  

  90.0|Pr 00 SR    90.0|Pr 11 SR  

  10.0|Pr 01 SR    10.0|Pr 10 SR  

Computed Total Probability 
  58.0Pr 0 R    42.0Pr 1 R  

Bayes Theorem (A-posteriori Probabilities) 
  931.0|Pr 00 RS    857.0|Pr 11 RS  

  069.0|Pr 01 RS    143.0|Pr 10 RS  

 



 
Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random 

Processes for Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.  

B.J. Bazuin, Fall 2016 38 of 56 ECE 3800 

Example	1.7‐2:	Amyloid	test:	is	it	a	good	test	for	Alzheimer’s?	

An amyloid test for Alzheimer’s disease had reported results/information for people 65 
and older. 

 Alzheimer’s patients with disease = 90% had amyloid protein 
 Alzheimer’s free patients = 36% had amyloid protein 

General population facts for Alzheimer’s  
 Total Alzheimer’s probability = 10% 
 Total non-Alzheimer’s probability = 1-10% = 90% 

The setup – a-priori probabilities (given) 

  90.0|Pr Alzam   and    36.0|Pr nonAlzam  

  10.0Pr Alz   and    90.0Pr nonAlz  

What we want to know – if someone had the amyloid protein, what is the probability they 
have Alzheimer’s? 

  ???|Pr amAlz  

Using Bayes Theorem 

     
 am

AlzAlzam
amAlz

Pr

Pr|Pr
|Pr


  

But we need to know  amPr  … determine the total probability 

         nonAlznonAlzamAlzAlzamam Pr|PrPr|PrPr   

  414.090.036.010.090.0Pr am  

Therefore 

  2174.0
414.0

10.090.0
|Pr 


amAlz  

The diagnosis is better than 10%, but for completeness … what about the non-
Alzheimer’s population … too many for a good test 

  7826.0
414.0

90.036.0
|Pr 


amnonAlz  

… too high a probability for a good test 
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1.8 Combinatorics 

Some important math before doing more probability … 

From Merriam Webster’s Dictionary.  
http://www.merriam-webster.com/dictionary/combinatorial 

Combinatorial - of or relating to the arrangement of, operation on, and 
selection of discrete mathematical elements belonging to finite sets or 
making up geometric configurations. 

For a population of size n … the set contains n elements (a deck of 52 playing cards) 

A subpopulation of size r can be defined (draw 5 cards at random from the deck) 

How many unique subpopulations of r can we expects (notice that the same r elements 
can be selected in numerous ways). 

(i) Sampling with replacement is the easy way …  

Possible combinations  rnnnnn    

(ii) Sampling without replacement  

Possible combinations         !
!

121
rn

n
rnnnn


   

Next considerations … how many ways can the r things be selected … 

Possible selections      !121 rrrr    

Now we can consider the “unique” combinations 

Unique combinations    !!

!

rrn

n

lectionPossibleSe

mbinationPossibleCo


  

We have now defined an operator to determine unique values for “n choose r” 

  !!

!

rrn

n

r

n
C n

r 









   also sometimes shown as     !!

!
,

rrn

n
rnCCrn 
  

This is also called a binomial coefficient. There is also some important “definitions” 

  1
!0!

!

0











n

nn
C n

r   and    1
!0!

!











n

n

n

n
C n

r  
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Why are they called binomial coefficients? 

Binomial Powers  nx1   or   nyx   
-  the coefficients for the various power resulting from 2 summed elements to the nth 

power. 

  kkn
n

k

n yx
k

n
yx 








 




0

 

The coefficients can also be selected using Pascal’s Triangle also called Binomial 
Expansion. 

1 
1 1 

1 2 1 
1 3 3 1 

1 4 6 4 1 
1 5 10 10 5 1 

1 6 15 20 15 6 1 

Each row starts (and ends) with 1 and then sums the adjacent coefficients from the next 
higher row. 

So, by inspection    431221344 14641 bbababaaba  . 

 

 

Now, if a flip a coin 4 times, what are the possible combinations and how many times do 
they occur? 

What if a said that: a=Heads and b=Tails 

1 – H^4 4 – H^3xT^1 6 – H^2xT^2 4 – H^1xT^3 1 – T^4 

 

Also of note  n
n

k k

n
2

0











 

Letting x=y=1   kkn
n

k

n yx
k

n
yx 








 




0
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Multinomial Coefficients 

Theorem 1.8-1: Let n consists of multiple subsets, each of ri  elements such that 





K

i
irn

1

 

The number of ways in which the population of n elements can be partitioned into K 
subpopulations of which each contains ri element is 

!!!!

!

321 Krrrr

n

 
 

 

5‐Card	Draw	Combinatorial		

How many ways can 5 cards be drawn from a deck of 52 playing cards? 

  !!

!

rrn

n

r

n
C n

r 









  

  










!5!552

!52

5

52
2,598,960 

If you are poker player … see 

https://en.wikipedia.org/wiki/Poker_probability  
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1.9 Bernoulli Trials 

A repeated trial can take the form of: 

1. Repeated experiments where the relative frequency of occurrence is of interest 

2. The creation of a new experiment that consists of a defined number of elementary 
events 

Bernoulli Trials: Determining the probability that an event occurs k times in n 
independent trials of an experiment. 

For some experiment let:   pA Pr   and    qA Pr  

where 1 qp  

Then for an experiment where we get 2 event “A”s followed by 2 “not A” (i.e., 
 AAAAB  ) … 

          knk qpAAAAB  PrPrPrPrPr  

But what about the other ways to have 2 event A’s in 4 trials? Note that for each instance, 
the probability of occurring will be the same as just defined … so how many of them are 
there? 

 AAAAAAAAAAAAAAAAAAAAAAAA ,,,,,  

The number of occurrences can be defined using binomial coefficients and the Binomial 
Theorem. 

The number of instances is defined by the binomial coefficient, kn C  or 







k

n
. 

 the number of ways to select k elements out of a set of n elements ... 

Where  !!

!

knk

n

k

n











 

Therefore, to describe the desired outcome of 2 A’s in 4 trials, the probability is 

     
242242

4 !24!2

4

2

4
242Pr  











 qpqpptrialsintimesoccuringA  

Therefore … 
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Bernoulli Trials 

The probability that an event occurs k times in n independent trials of an experiment can 
be defined as 

    knk
n qp

k

n
kptrialsnintimeskoccuringA 








Pr  

Example	Flipping	Coins		

The probability for each outcome of flipping a coin 4 times, where Pr(H)= p and Pr(T)=q 
with 

2

1
 qp  

4 H :     
16

1

16

1
1

2

1

2

1

4

4

4

4
4Pr

04
444

4 






























 qppHHHH  

3 H & 1 T:    
16

4

16

1
4

2

1

2

1

3

4

3

4
3Pr

13
343

4 






























 qppHHHT  

2 H & 2 T:      
16

6

16

1
6

2

1

2

1

2

4

2

4
2Pr

22
242

4 






























 qppHHTT  

1 H & 3 T:      
16

4

16

1
4

2

1

2

1

1

4

1

4
1Pr

31
141

4 






























 qppHTTT  

4 T:       
16

1

16

1
1

2

1

2

1

0

4

0

4
0Pr

40
040

4 






























 qppTTTT  

What if p = 0.6 and q=0.4? An “unfair coin”!! 
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Example	Binary	Communications	

Example 1:  For a bit-error-rate (BER) of 310   in a binary data stream, what is the 
probability of 1 error in a 32-bit word? 

     31313
32 10110

1

32
1  








p  

   3133
32 10110321  p  

  0310.09695.010321 3
32  p  

Example 2:  For a bit-error-rate (BER) of 310   in a binary data stream, what is the 
probability of 0 errors in a 32-bit word? 

     32303
32 10110

0

32
0  








p  

   323
32 101110 p  

  9685.0132 p  

Example 3:  What is that probability of having one or more errors in 32 bits? 

     
























32

1

3233
32

1
32 10110

32

i

ii

i i
ip  

or      0315.09685.0101 32

32

1
32 



pip
i
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Power	Ball	Lottery	

The lottery is a 69 choose 5 game combined with a 26 choose 1 game.  

see MATLAB code 
Power Ball total combinations = 292201338. 
 
Prob of 0+0 balls is 1 in 1.53296 min payout is $0. 
Prob of 0+1 balls is 1 in 38.3239 min payout is $4. 
Prob of 1+0 balls is 1 in 3.6791 min payout is $0. 
Prob of 1+1 balls is 1 in 91.9775 min payout is $4. 
Prob of 2+0 balls is 1 in 28.0531 min payout is $0. 
Prob of 2+1 balls is 1 in 701.328 min payout is $7. 
Prob of 3+0 balls is 1 in 579.765 min payout is $7. 
Prob of 3+1 balls is 1 in 14494.1 min payout is $100. 
Prob of 4+0 balls is 1 in 36525.2 min payout is $100. 
Prob of 4+1 balls is 1 in 913129 min payout is $50000. 
Prob of 5+0 balls is 1 in 1.16881e+07 min payout is $1000000. 
Prob of 5+1 balls is 1 in 2.92201e+08 min payout is $40000000. 
 
Prob of winning something is 1 in 24.8671. 
 
Expected Winnings per $2 without Jackpot = $0.32 
Expected Winnings per $2 min $40M Jackpot = $0.46 
 
Single Winner Break Even Jackpot = $490,936,628.00 
Total computed without considering taxes. 
 
Max US tax rate 39.6%, MI tax rate 4.25%)!! 
Single Winner Break Even Jackpot with taxes= $848,886,670.24 
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Example	Baseball/Softball	Statistics	

Example 1:  A batter has a 0.250 batting average. What is the probability that the batter 
gets 1 hit in 4 at bats?  

    knk
n qp

k

n
kptrialsnintimeskoccuringA 








Pr  

     31
4 25.0125.0

1

4
1 








p  

        422.0
64

27

444

333

4

1
475.025.0

!14!1

!4
1 31

4 






p  

Example 2:  A batter has a 0.250 batting average. What is the probability that the batter 
gets 2 hit in 4 at bats?  

     22
4 25.0125.0

2

4
2 








p  

        211.0
128

27

44

33

44

11

2

34
75.025.0

!24!2

!4
2 22

4 













p  

Example 3:  A batter has a 0.250 batting average. What is the probability that the batter 
gets at least 1 hit in 4 at bats?  

         014321 44444 ppppp   

        684.0
256

175

256

81
1

4444

3333
1175.025.0

!04!0

!4
101 40

4 






 p  

Example 4:  A batter has a 0.250 batting average. What is the probability that the batter 
gets at most 1 hit in 4 at bats?  

               3140
44 75.025.0

!14!1

!4
75.025.0

!04!0

!4
10 





 pp  

    738.0
256

189

256

108

256

81

444

333

4

1
4

4444

3333
110 44 








 pp  

Defining a player having a hitting slump … how many at bats until it is a slump? 

How many at bats would the batter need to take  … 
  to have a 90% (or 99%) probability of getting at least one hit. 

Cabrera’s average in 2014 ….was 0.313 ? (see Excel Spread Sheet 

  900.001  mp    990.001  mp  

  9278.001 7  p    9924.001 13  p  
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Example 1-10.2 from Cooper-McGillem 

In playing an opponent of equal ability, which is more probable: 

    knk
n qp

k

n
kptrialsnintimeskoccuringA 








Pr  

a) To win 4 games out of 7, or to win 5 games out of 9? 

      374474
7 5.05.0

!3!4

!7

4

7
4  











 qpp  

    2734.0
128

1

6

210
5.0

23

567
4 7

7 



p  

 

      595595
9 5.05.0

!4!5

!9

5

9
5  











 qpp  

    2461.0
512

1

24

3024
5.0

234

6789
5 9

9 



p  

Therefore, winning 4 out of 7 is more probable. 

 

b) To win at least 4 games out of 7, or to win at least 5 games out of 9. 

         7
7777 5.0

7

7

6

7

5

7

4

7
7654 











































 pppp  

       
128

1

1

1

1

7

2

42

6

210
7654 7777 



  pppp  

          50.0
128

64

128

1
1721357654 7777  pppp  

 

           999999 5.0
9

9

8

9

7

9

6

9

5

9
98765 




















































 ppppp  

         
512

1
1

1

9

2

72

6

504

24

3024
98765 99999 



  ppppp  

            50.0
512

256

512

1
19368412698765 99999  ppppp  

The probabilities are the same! (You should have a 50-50 chance of winning or losing) ! 
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1.10 Asymptotic Behavior of the Binomial Law 

For “Bernoulli Trials” or “Binomial Law”  exactly k successes in n trials 

      knk
n qp

k

n
pnkbkptrialsnintimeskoccuringA 








 ,;Pr  

For “Summation Binomial Law”  k or fewer successes in n trials 

    
















k

i

ini
k

i

qp
i

n
pnibpnkB

00

,;,;  

When n gets large, there are some approximations that can be used … 

Why approximate, the combinatorial function can cause calculators and computers to 
loose numerical precision … and produce incorrect results if they produce results at all. 

 

 

Poisson probability mass function (pmf) and approximation from future chapters … 

Conditions: 1n ,  1p , nk  , but  pn  is a constant term, then 

   
kn

kknk
n nk

qp
k

n
kppnkb


 






 










 1
!

1
,;  

Then, if we consider an infinite number of trials … that is n  

    





 



exp
!

1
!

1
,;

knk
pnkb

kkn
k  
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Example 1.10-1. Computer Component Failure 

n = number of components = 10,000 

p = component failure rate per year  = 10-4  

Assuming the computer fails if 1 or more component fails. 

… using the approximation … 

What is the probability the computer will still be working one year from now ? 

    





 



exp
!

1
!

1
,;

knk
pnkb

kkn
k  

The probability of 0 failures is … 

     1exp
1

1
1010exp

!0

1
10,10;0 4444  b  

    368.01exp10,10;0 44 b  

 

Example 1.10-2. Random points in time 

Suppose n independent points (events) are placed randomly in time from 0 to T. 

We want to observe the interval for a short period. Ttt  210 . What is the 
probability of observing exactly k points (events) in the interval? 

Gut reactions to the exercise:  

For 12 tt   you would expect the number of points = 
T

n

  

Setup … binomial     





 



exp
!

1
!

1
,;

knk
pnkb

kkn
k  

Letting 
T

p

   and   pn  

    





 







 


T

n

kT

n

k
pnkb

k 
exp

!

1
exp

!
,;  
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Application of Poisson 

Physics: radioactive decay 

Telecommunications: planning the size of a telephone call center or server farm for the 
internet 

Biology: water pollution or organism monitoring 

Optics: designing optimal receivers based on photons received per second 

 

Example 1.10-4. Web Server 

On the average, assume there are 16 access request per minute. If the server can handle at 
most 24 accesses per minute, what is the probability that in any one minute interval that 
the web site would be saturated? 

     



 exp

!
,;

k
pnkb

k

 

16 pn   and  k = 0 to 24 

         






24

0

24

0

16exp
!

16
exp

! k

k

k

k

kk
onnosaturatiB 

 

         












2525

16exp
!

16
exp

! k

k

k

k

kk
saturationB 

 

See Matlab solution … it does not agree with the textbook result?! 

The prob of satuaration is 0.0223155. 

The prob of no satuaration is 0.977685. 
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1.11 Normal Approximation to the Binomial Law 
(DeMoivre-Laplace Theorem) 

This is an approximation of the binomial distribution when the number of trials (n of n 
choose k) is large and other assumptions are met. 

Assumptions: 1 qpn   and  qpnpnk   

   























 

qpn

pnk

qpn
qp

k

n
kp knk

n 2
exp

2

1 2


 

[Aside: we will be discussing the law of large numbers and that sums of larger numbers 
of events appear as a Gaussian distribution. This is the first example … and you haven’t 
been told what a Gaussian distribution is yet.] 

Text example: 100 coin tosses, equally likely head or tail, probability of k heads.  

   







 














50

50
exp

50

1
5.0

100 2
100

100

k

k
kp


 

Note: assumptions valid for 40 <= k <= 60. 

The probability for exactly 50 heads would be … 

   
 








 














50

1

50

5050
exp

50

1
5.0

50

100
50

2
100

100 kp  
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ECE Applications of Bernoulli Trials 

(1) Bit errors in binary transmissions:  

Degree of error detection and correction needed. The theoretical validation of 
performance of the system after “extra bits” for error correction have been added.  

 bit-error-rate may also increase if a greater bandwidth is needed because of the 
“extra bits” 

(2) Radar (or similar) signal detection: 

After setting a signal detection threshold, the expected signal should be above the 
threshold when being received for a fixed number of sample times. If the signal is above 
the threshold for m (or more) of n sample periods, one may also say the signal has been 
detected.  

     
















n

mk

kn
s

k
s

n

mk
s pp

k

n
knpDetection 1,Pr  

One can also define a noise threshold where the noise should not be above a particularly 
level more than m (or more) of n time samples.  

     
















n

mk
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a

k
a

n

mk
a pp

k

n
knpAlarmFalse 1,_Pr  

(3) System reliability improvement using redundancy.  

If a unit has a known failure rate, by incorporating redundant units, the system will have a 
longer expected lifetime.  

Important when dealing with systems that cannot be serviced, systems that may be very 
expensive to service, systems that require very high reliability, system with components 
with high failure rates, etc. . (e.g. satellites, computer hard-disk farms, internet order 
entry servers).  

Defining the probability that one of the redundant elements is still working … 

   FailedAllFunctional _Pr(1Pr   
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Hypergeometric	Distribution	–	related	information		

From:  http://en.wikipedia.org/wiki/Hypergeometric_distribution  

In probability theory and statistics, the hypergeometric distribution is a discrete 
probability distribution (probability mass function) that describes the number of 
successes in a sequence of n draws from a finite population without replacement. 

A typical example is the following: There is a shipment of N objects in which D are 
defective. The hypergeometric distribution describes the probability that in a sample of n 
distinctive objects drawn from the shipment exactly x objects are defective. 

 































n

N

xn

DN

x

D

nDNXx ,,,Pr  

for    DnxNnD ,min,0max   

The equation is derived based on a non-replacement Bernoulli Trials … 

Where the denominator term defines the number of trial possibilities, the 1st numerator 
term defines the number of ways to achieve the desired x, and the 2nd numerator term 
defines the filling of the remainder of the set.  
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Quality Control Example 

A batch of 50 items contains 10 defective items. Suppose 10 items are selected at random 
and tested. What is the probability that exactly 5 of the items tested are defective? 

The number of ways of selecting 10 items out of a batch of 50 is the number of 
combinations of size 10 from a set of 50 objects:  
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The number of ways of selecting 5 defective and 5 nondefective items from the batch of 
50 is the product N1 x N2 where N1 is the number of ways of selecting the 5 items from 
the set of 10 defective items, and N2 is the number of ways of selecting 5 items from the 
40 nondefective items.  
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Thus the probability that exactly 5 tested items are defective is the desired ways the 
selection can be made divided by the total number of ways selection can be made, or  
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Another Use: From “The Minnesota State Lottery” – a better description than 
Michigan 

There are N objects in which D are of interest. The hypergeometric distribution describes 
the probability that in a sample of n distinctive objects drawn from the total set exactly x 
objects are of interest. 

Lotteries …  

N= number of balls to be selected at random 
D = the balls that you want selected 
n = the number of balls drawn 
x = the number of desired balls in the set that is drawn 

https://www.mnlottery.com/games/figuring_the_odds/hypergeometric_distribution/   
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Example: Michigan’s Classic Lotto 47 

Prize Structure For Classic Lotto 47 (web site data) 

Match Prize Odds of Winning 

6 of 6 Jackpot 1 in 10,737,573 

5 of 6 $2,500 (guaranteed) 1 in 43,649 

4 of 6 $100 (guaranteed) 1 in 873 

3 of 6 $5 (guaranteed) 1 in 50 
Overall Odds: 1 in 47 

Matlab Odds 

Match Odds of Winning 1 in Percent Probability 

6 of 6 10737573 <1x10-5% 

5 of 6 43648.7 0.0023% 

4 of 6 872.97 0.1146% 

3 of 6 50.36 1.9856% 

2 of 6 7.07 14.1471% 

1 of 6 2.39 41.8753% 

0 of 6 2 41.8753% 
Chance of winning 2.1024% 

ROI per dollar without jackpot ~ $0.2711 

see Matlab simulation “MI_Lotto.m” 

Matlab Note: binomial coefficient = nchoosek(n,k) 

 

 

Keno anyone? Another Michigan gambling game 80 balls, 20 drawn, you need to match 
k of n selected for n=2 to 20.  
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MI Keno 

A Keno ticket with the payouts is shown! 

 

Another hypergeometric density function 

N= number of balls to be selected at random (80) 
D = the balls that you want selected (D) 
n = the number of balls drawn (20) 
x = the number of desired balls in the set that is drawn (0:D) 

 

In general, you get $0.65 back for every $1 played. I did not include a “kicker” bet. 
The overall odds of a Kicker (1, 2, 3, 4, 5, 10) number being 2 or higher are 1:1.67.  
see MI_Keno.m on the web site for more information and results.  

Examples for Chapter 1 …  more notes on line. 

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
MI Keno ROI and Pr[win]

 

 

ROI per $

Pr[win]


