
Chapter 1
Material Design Considerations Based
on Thermoelectric Quality Factor

Heng Wang, Yanzhong Pei, Aaron D. LaLonde and G. Jeffery Snyder

Abstract In this chapter several aspects of the electronic and phonon structure are
considered for the design and engineering of advanced thermoelectric materials. For
a given compound, its thermoelectric figure of merit, zT, is fully exploited only when
the free carrier density is optimized. Achieving higher zT beyond this requires the
improvement in the material quality factor B. Using experimental data on lead chalco-
genides as well as examples of other good thermoelectric materials, we demonstrate
how the fundamental material parameters: effective mass, band anisotropy, defor-
mation potential, and band degeneracy, among others, impact the thermoelectric
properties and lead to desirable thermoelectric materials. As the quality factor B is
introduced under the assumption of acoustic phonon (deformation potential) scat-
tering, a brief discussion about carrier scattering mechanisms is also included. This
simple model with the use of an effective deformation potential coefficient fits the
experimental properties of real materials with complex structures and multi-valley
Fermi surfaces remarkably well—which is fortunate as these are features likely found
in advanced thermoelectric materials.

1.1 Introduction

At the material level of thermoelectric research, the overriding goal is to achieve
higher figure of merit zT = S2σ T/κ . It is easy to show for semiconductors
using the simple transport model for semiconductors, that most of these properties:
the Seebeck coefficient S, the electric conductivity σ and the electronic compo-
nent of thermal conductivity κe for a given material are each functions of carrier
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Fig. 1.1 zT at 800 K as a
function of carrier density
for a few lead chalcogenides.
The highest zT is achieved
at a specific carrier density,
which is different even for
such similar compounds or
the same compound with
different doping type

concentration (or more fundamentally, chemical potential ζ ). This means the full
potential of a material as thermoelectrics or, the highest zT, will only be exploited
when the carrier concentration is optimized (Fig. 1.1).

The merit of a semiconducting compound as a thermoelectric material can be
evaluated without exploring the entire carrier density range but through several fun-
damental parameters. Through history of thermoelectrics the combination of such
parameters has been pointed out in similar forms by different researchers. It has
first been discussed in 1959 by Chasmar and Strattton [1, 2] and refered to as the
“material factor” β where:

β = (kB/e)2T σc/κL ∝ m∗3/2μcT/κL (1.1)

It was rewritten by Goldsmid [3] and Nolas et al. [4] as (in SI units):

β = 5.745 × 10−6m∗3/2μc/κL T 5/2 (1.2)

The same quantity has been called the “B factor” by Mahan [5]. Additionally, since
the electronic properties and lattice thermal conductivity are often considered inde-
pendently tunable, the electronic part of β or B is also stressed for example by Slack
[6] when discussing the criteria for good thermoelectric materials as the “weighed
mobility” U

U = μ0m∗3/2 (1.3)

In each of the above expressions, m∗ is the effective mass (in me) μc is the mobility
value at nondegenerate, classical limit and μ0 is the mobility value in the purest
samples, i.e. when the material is defect free, the carrier concentration is low and the
chemical potential ζ � 0.

These expressions, having their merit in focusing on fundamental material proper-
ties, have been serving as a guideline for searching for new thermoelectric materials.
The best thermoelectric compounds used at high temperatures have the largest B of
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Fig. 1.2 zT as a function of
reduced chemical potential
η(ζ/kBT) for different quality
factor B

Fig. 1.3 Quality factor B
for a few thermoelectric
compounds at their respective
application temperatures

around 1, whereas for room temperature or cryogenic applications the best materials
only have B below half of this value (Figs. 1.2, 1.3).

There are however a few ambiguities in the above expression of β (or B or U)
that can possibly be improved for thermoelectric research. First, one underlying
assumption that connects these material parameters to highest zT is that the car-
rier scattering mechanism is unchanged [1, 6]. Since all practical thermoelectrics
are heavily doped, degenerate semiconductors, the scattering mechanism of carri-
ers in this doping region is not necessarily the same as when the crystal lattice is
perfect. In other words, to accurately evaluate β, μ0 should be extrapolated from
mobilities of properly doped materials of thermoelectric interest to its classical limit
rather than using the highest measured mobility on an undoped sample. Otherwise β

would be underestimated if the nondegenerate mobility were limited by other mech-
anisms whose influence would fade away as the carrier concentration is increased
(for instance the bipolar effect).
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Second, the appearance of β being a product of μ0 and m∗3/2 may lead to the
wrong impression that larger effective mass m∗ is beneficial for thermoelectrics,
while actually for most scattering mechanisms μ0 is also a function of m∗. Most
importantly when acoustic phonon scattering is dominant, which is usually a good
assumption for all good thermoelectric materials above room temperature, μ0 will
decrease with m∗5/2, which clearly indicates that for similar compounds, a smaller
m∗ actually will lead to a larger U (and β or B) [7]. In fact such conclusion had been
made by Chasmar and Stratton [1] as well as Goldsmid [2]. But still the current form
of β is used to keep it valid under more general circumstances.

Here we propose to rewrite B (or β) under the acoustic phonon scattering assump-
tion (we will later discuss how this assumption is valid in different thermoelectric
materials), which we call the quality factor since B is the combination of material
properties of a semiconductor that directly relates to the maximum material perfor-
mance, zT, when the carrier concentration is optimized.

For materials with conduction from a single spherical Fermi surface, the mobility
at the classical limit, when dominated by acoustic phonon scattering can be written as:

μcl = (8π)1/2
�

4eCl

3m∗5/2(kB T )3/2�2
(1.4)

And hence quality factor B is defined as:

B =
(

kB

e

)2 2e(kB T )3/2

(2π)3/2�3

μ0m∗3/2

κL
T = 2k2

B�

3π

C11

m∗�2κL
T (1.5)

Here C11 is the longitudinal elastic constant, and � is the deformation potential.
Equation (1.5) reveals that a small effective mass m∗, small deformation potential
�, together with small lattice thermal conductivity κL as favorable features for good
thermoelectric materials.

The importance of reducing lattice thermal conductivity, κL has been widely
accepted and employed in research and will not be further discussed here. In the
following sections we will discuss the influence of the other parameters and what is
preferred for best thermoelectric performance.

1.2 Effective Mass

In the simple case of a single, parabolic and isotropic band, the Fermi surfaces are
spherical and the second derivatives of electron energy with respect to its wave
vector, which by a common definition is the effective mass m∗, is a constant scalar.
The conduction band of most III–V compounds follows this feature. In many other
semiconductors the extremes of bands are off the center of Brillouin Zone and the
band structure in this case is referred to as being composed of degenerate valleys,
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the number of which is called valley degeneracy Nv. This aroused the necessity of
distinguishing the (density of state) effective mass of a single valley mb

∗ from the
total density of state (DOS) effective mass md

∗. They are defined so that the carrier
density:

n = (2m∗
dkB T )3/2

2π2�3 F1/2(ζ ) (1.6)

where
m∗

d = N 2/3
V m∗

b (1.7)

In most multi-valley structures each valley, or carrier pocket in the view of Fermi
surfaces, is not spherical. The effective mass is thus a tensor m∗

i j = 1
�2 ( d2ε

dki dk j
)−1. To

the first order these valleys are often approximated as ellipsoids, and effective masses
along two principle directions are used. In semiconductors like silicon, germanium,
and lead chalcogenides they are defined as transverse and longitudinal components
m∗

1 = m∗
2 = m∗⊥, m∗

3 = m∗‖. The DOS effective mass of a single valley is thus
averaged as

m∗
b = (m∗2⊥ m∗‖)1/3 (1.8)

meanwhile, a different average is defined and called inertial effective mass by Herring
[8] and Goldsmid [2]:

m∗
I = 3

(
2

m∗⊥
+ 1

m∗‖

)−1

(1.9)

m∗
I is also referred to as the conductivity effective mass or susceptibility effective

mass [9].
Equation (1.4) for multi-valley systems now becomes:

μcl = 23/2π1/2
�

4eCl

3m∗
I (m

∗
bkB T )3/2�2 (1.10)

C11 in Eq. (1.4) is replaced with average longitudinal elastic modulus Cl , which is
a combination of elastic moduli depending on the lattice structure and position of
carrier pockets [10]. The quality factor B now becomes:

B = 2k2
B�

3π

C/NV

m∗
I �

2κL
T (1.11)

A large md
∗, which usually leads to large Seebeck coefficients and hence appar-

ently is preferred for thermoelectrics, can rise from large effective mass of each valley
mb

∗, or from the large number Nv of degenerate valleys with small mb
∗. Since large

mb
∗ also means large m I

∗, the first scenario actually leads to smaller B and lower
zT, whereas the second scenario (large Nv) truly increases B and zT.
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Fig. 1.4 a Seebeck coefficient
as a function of carrier density
for La and I doped PbTe,
where heavier m∗

b in La
doped samples leads to higher
S values. b Mobility as a
function of carrier density for
La and I doped PbTe, where
heavier mb

∗ in La doped
samples also leads to lower
mobility. c The net effect is
a lower power factor in La
doped samples compared with
I doped PbTe

(c)

(a)

(b)

A good demonstration [7] of this has been made in n type PbTe system by using
different dopants La and I. The sample doped with La tends to have a higher Seebeck
coefficient for the same Hall carrier concentration as I doped sample (Fig. 1.4a),
which can be traced to the larger effective mass mb

∗ with La doping, as is also
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suggested by theoretical calculation [11]. However, the La doped samples have
reduced Hall mobilities (Fig. 1.4b) compared to the I doped samples, which again
can be fully explained by the larger mb

∗. In the end the net effect is a lower zT in La
doped samples (Fig. 1.4c).

The larger effective mass mb
∗ can also partially explain why n type PbS has lower

zT than PbSe. PbS is known to have a larger mb
∗, at 800 K, it is 0.23 me compared

with 0.15 me for PbSe. The deformation potential coefficient � is found at 800 K
around 28 eV for both compounds. This means the lower mobility in PbS can largely
be attributed to the larger mb

∗, which accounts for an important reason for inferior
thermoelectric performance of PbS (Fig. 1.5).

Good thermoelectric materials such as Bi2Te3, lead chalcogenides, SiGe and BiSb,
have small single-valley effective mass mb

∗. The total DOS effective mass md
∗ tend

to be larger due to their multi-valley feature. At the same time there are several other
systems such as CoSb3, Yb14MnSb11, and Half Heusler ZrNiSn compound, which
have very large md

∗ > 2 me as suggested by reported results, and the zT values
are still very promising. Although further studies may reveal that the single-valley
effective mass m∗

b are not as large as indicated by their md
∗, this implies that the

effective masses, especially md
∗ alone, is in general not enough as a indicator of

good thermoelectric materials.

1.3 Band Anisotropy/Shape of Carrier Pockets

The effective mass along different directions m⊥∗ and m‖∗ can be different in the
same valley (band extremum), which is characterized by the band anisotropy factor
K = m‖∗ / m⊥∗. Unless with additional evidence to the contrary, the carrier scatter-
ing rate in such bands are considered isotropic and the difference in relaxation time
is solely due to the difference in effective mass. Thus, as long as the macroscopic
properties are isotropic the quality factor B discussed above, which is isotropic in
nature, is still valid.

If a spherical electron pocket is distorted and elongated in one direction while the
density of state effective mass stays the same, the direction with smaller effective
mass would contribute to conduction more greatly than the directions with heavier
masses. The conduction effective mass m I

∗ is thus different even though md
∗ is

the same. When the (drift) mobility is plotted against carrier density for different
K = m‖∗ / m⊥∗ higher mobilities are found when K differs from 1 (Fig. 1.6), which
leads to increased power factor and zT since md

∗ and hence S is unchanged. The
electron pockets in PbTe are more anisotropic than in PbSe while the md

∗ are very
close to each other, this helps n type PbTe to achieve a higher mobility and zT
compared to PbSe.

K also has its influence on the Hall factor A(K , ζ ) which relates the Hall mobility
μH with the drift mobility μ through μH = Aμ. Such influence is on the order
of 10 % when K is increased to 5 or decreased to 0.2 from 1. When taking this
into account, the directly observed relationship between Hall mobility μH and Hall
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Fig. 1.5 a Seebeck coefficient
as a function of carrier density
in PbSe and PbS at 800 K.
b Mobility as a function of
carrier density in PbSe and
PbS at 800 K, the difference
is mainly due to the larger
m∗

b in PbS. c zT as a function
of carrier density at 800 K,
which is partly due to the
larger m∗

b in PbS, the other
reason being the higher lattice
thermal conductivity

(a)

(b)

(c)

carrier density nH from Hall measurement has a distorted and different appearance
(Fig. 1.7). Since m I

∗, through mobilityμ, influences the thermoelectric quality factor,
it can be drawn from Fig. 1.6 that distorted electron pockets (K �= 1) would have
better thermoelectric transport properties than spherical ones given the same density
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Fig. 1.6 Drift mobility as
a function of carrier density
assuming the same density
of state effective mass mb

∗
but different band anisotropy.
All parameters used in the
calculation are taken from n
type PbSe. Distorted electron
pockets have higher mobility
compared with spherical ones

Fig. 1.7 The result of Fig. 1.6,
when plotted with directly
observed Hall mobility and
Hall carrier density, are dis-
torted and seem to have
“different” dependence of K

of state effective mass. More fundamentally this can be regarded as another specific
case of smaller conduction effective mass being more favorable for thermoelectrics.

In some semiconductor systems mb
∗ is temperature dependent. For example in

lead chalcogenides, the following relation is found d ln mb
∗/d ln T = 0.4−0.5. How

K would change with mb
∗ is not well understood yet. The k·p perturbation theory

suggests both longitudinal and transverse components of mb
∗ are affected by the

interaction between the conduction and valence band and thus should be temperature
dependent [9]. But to our knowledge no conclusion has been made that they would
change in the same manner. Still to the first order, it should be a good approximation
by using constant K from calculation or low temperature data and keeping in mind
that such approximation might not be as accurate at high temperature.
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Fig. 1.8 Schematic carrier-
phonon interaction via defor-
mation potential scattering.
Lattice was deformed by
phonon waves, which produce
the potential energy fluctua-
tion in each band, resulting in
scattering of carriers. In PbSe
such fluctuation is smaller in
the conduction band than that
in the valence band, the elec-
tron mobility is thus higher
than that of holes

1.4 Deformation Potential Coefficient

As an acoustic phonon wave propagates through a crystal it causes compression and
dilation of the local lattice which introduces a perturbation of the potential energy of
bands and hence the scattering of carriers. Such a process is called the deformation
potential scattering from acoustic phonons, or more commonly, acoustic phonon
scattering in short (Fig. 1.8). The concept of “deformation potential” was first used
by Bardeen and Shockley [12] and can be regarded as a measure of the strength of
carrier-phonon interaction and is therefore sometimes referred to as the electron–
phonon coupling constant [13, 14].

The relaxation time of acoustic phonon scattering can be written as [9, 12]:

τac = �C1 NV

πkB T �2 g(ε)−1 f (ε) (1.12)

Where ε = E/kB T is the reduced energy of carriers, g(ε) is the density of states, �

is the deformation potential, and the form of f(ε) depends on the band model. In the
simplest case with a single extreme at the center of the Brillouin Zone, and using the
single parabolic band model:

τac = π�
4C11

21/2m∗3/2(kB T )3/2�2 ε−1/2 (1.13)

so that the drift mobility for arbitrary chemical potential is given by:

μ = 21/2π�
4eC11

3m∗5/2(kB T )3/2�2

F0(η)

F1/2(η)
(1.14)
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η = ζ/kBT is the reduced chemical potential, Fλ(η) are the Fermi integrals:

Fλ(η) =
∫ ∞

0

ελ

1 + Exp(ε − η)
dε (1.15)

In multi-valley semiconductors, the longitudinal elastic constant C11 is replaced by
the average longitudinal elastic constant [10, 15] Cl , the single effective mass is
replaced by an inertial effective mass m I

∗ and a DOS effective mass of a single
valley mb

∗. � (called here the deformation potential coefficient) is a combination of
two deformation potential components �d, �u defined by energy shifts caused by
different strain elements (for details about the definition see ref. [9, 10, 16, 17]). For
small gap systems, a nonparabolic Kane band model is usually more accurate than
the single parabolic band model. In lead chalcogenides the Kane model has even
been developed to take into account the energy dependence of interaction matrix.
Thus Eqs. (1.13) and (1.14) above are replaced by:

τac = π�
4C1

21/2 mb
∗3/2(kB T )3/2�2 (ε + ε2α)−1/2(1 + 2εα)−1

[
1 − 8α(ε + ε2α)

3(1 + 2ε ∗ α)2

]−1

(1.16)

μ = 2π�
4eC1

m I
∗ (2 mb

∗ kB T )3/2�2

30 F1−2

0 F3/2
0

(1.17)

here α = kB T/ΔE,ΔE is the gap between the interacting conduction and valence
band. The generalized Fermi integral is defined as:

nFm
I (η) =

∫ ∞

0

(
−∂ f

∂ε

)
εn(ε + ε2α)m[(1 + 2εα)2 + 2]1/2dε (1.18)

In either model the deformation potential coefficient� significantly influences mobil-
ity as this term is squared. A smaller � is always desirable for thermoelectrics.

In PbTe and PbSe, the conduction band and the valence band at the L point have
almost identical effective mass, but the conduction band is found to have a smaller
deformation potential coefficient � than the (light) valence band. smaller � gives
these n type lead chalcogenides similarly high zT [18] as the p type doped materials,
where the presence of a highly degenerate secondary valence band plays an essential
role for their good thermoelectric properties.

Despite its importance to thermoelectrics, little is known or studied by researchers
in this field about the deformation potential coefficient. Data are only available for a
few thermoelectric semiconductors that have broader interests for other fields also.
Evaluating the deformation potential for each band of a compound is also very
difficult and large discrepancy exists in the experimental result for �d and �u, which
add another factor to the difficulty of comparing � from mobility data with those
from other measurements.
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In principle � can be obtained by calculating the quantum mechanic electron-
phonon interaction matrix. Such calculation was developed and explained by Bir
and Pikus [19, 20].

The deformation potential component �u can also be obtained from the piezore-
sistence tensors of intrinsic samples [9, 10]. Consistency is poor among reports from
different groups. For n type Ge and Si, �u is found to be between 16–19 eV, and
7–10 eV, respectively [10, 17, 21]. For PbTe this number is between 2 and 4 eV for
the conduction band and 4–8 eV for the valence band [9, 16]. Based on the available
literature to us there is no reliable experimental result on �d, For lead chalcogenides
there is even discrepancy on whether the value is larger (from mobility data) or
smaller (from calculation) than the magnitude of �u.

The deformation potential under hydrostatic pressure (3�d +�u), especially the
difference between the conduction and valence band, is more commonly estimated.
This is usually called the optical isotropic deformation potential Diso = (3�d +
�u)c − (3�d + �u)v.

For example Bardeen and Shockley [12] suggested several methods to determine
Diso of Si and Ge based on the change of band gap with temperature or pressure.
Ferreira [16] compared Diso of PbTe estimated from the temperature and pressure
dependence of the band gap with that determined from APW calculation. Diso varies
only between 10 and 15 eV among these methods. Zasavitskii obtained a similar result
of 10 eV from magneto-optical absorption data [22]. In his work Diso for PbSe was
also determined to be 14 eV, while Wu’s optical spectroscopy result [23] on quantum
well structure of PbSe was 17 eV (more comparison is given by Zasavitskii in his
paper). But still, these numbers are quite different from the results we get from the
mobility of n type and p type PbSe (∼10 eV) and PbTe (∼5 eV).

Besides the difficulty in measurements, another factor contributing to the poor con-
sistency between deformation potential values from mobility data and other methods
lies in the basic assumption that acoustic phonon scattering is the only (predomi-
nant) carrier scattering mechanism. In the following section we provide a detailed
discussion about why, in most cases, this assumption is qualitatively valid and how
it is adjusted in systems where other similar scattering mechanisms also exist.

Our conclusion from the following discussion in Sects. 1.5 and 1.7 is that the
best way to determine the deformation potential coefficient � in the expression of
quality factor is by fitting the mobility data from several samples with nH close to
the optimum range. In this way, the result is actually a combined effective value
taking into account the most studied deformation potential scattering from acoustic
phonons (correspondingly �ac), the deformation potential scattering from optical
phonons whose magnitude is characterized by �op [see Eq. (1.23)], and additionally
the inter-valley scattering for complex band structures when allowed (see Sect. 1.7).

In the Table 1.1 we list the � data estimated from mobility for a few systems that
are, or can be, approximated as, single band systems with relevant data available.
Due to the lack of systematic study some of the values are rough estimation and
caution is needed when using these results.

A direct demonstration of different deformation potential � affecting mobility,
and thus zT, is rare since other parameters might be different at the same time.
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Fig. 1.9 a Seebeck coefficient
as a function of carrier density
for n-type and p-type PbSe,
the same effective mass is
indicated by the same S-nH
dependence. b Mobility as a
function of carrier density in n-
type and p-type PbSe, mobility
in n-type PbSe is higher due
to a smaller deformation
potential coefficient �. c zT in
n type PbSe is found higher
than in p type as a result of
smaller �

(a)

(b)

(c)

However, such an example [18] can be found between the n-type and p-type PbSe.
The second maxima of the valence band in PbSe is deep enough (∼0.3 eV) so that for
a wide range of carrier concentrations both the n-and p-type samples can be regarded
as having a single (degenerate) band (the L band). The conduction band and valence
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band are almost identical: the DOS effective mass md
∗ is the same as supported

by the single Pisarenko (S vs nH ) relation observed for both n- and p-type samples
(Fig. 1.9). The shape of the carrier pockets (K value) is also the same as revealed
by cyclotron resonance [9]. The speed of sound, representing the elastic properties,
is also found independent of dopant type. Thus the observed difference in mobility
can only be due to different deformation potential coefficients �, which can also be
concluded from the direct measurement of Diso discussed above. As a result, n-type
PbSe shows higher zT than the p-type material having the same carrier concentration.

1.5 Carrier Scattering from Optical Phonons

Mobility in semiconductors is partially determined by scattering between carriers and
various scattering centers. The magnitude of each scattering mechanism is usually
both energy and temperature dependent. Even though the mobility (or the relaxation
time) is, strictly speaking, a combined contribution from all mechanisms there are
only a few, if not one, of them that dominate the total relaxation time within a certain
temperature and carrier concentration range.

Scattering by impurities (both neutral and ionized), dislocations and boundaries
are weak in magnitude and do not increase with temperature. They are therefore usu-
ally noticeable only at low temperatures. For thermoelectrics the behavior of heavily
doped bulk semiconductors around or above room temperature is of most interest,
where the interaction between electrons and phonons is of the most importance.

Besides the most stressed and studied acoustic phonon scattering, in systems with
more than one atom per unit cell there are also optical phonons. And for complex
structures, where many good thermoelectric materials are found, optical phonon
branches are prevalent. Optical phonons interact with charge carriers in two ways:
one is the deformation potential scattering from optical phonons that is analogous to
that of acoustic phonons, the other is the polar scattering seen in polar semiconductors
which is from the electrostatic force due to the opposite phase of oscillation between
the neighboring differently charged lattice ions.

1.5.1 Deformation Potential Scattering from Optical Phonons

Electron-phonon interaction involving optical phonons is generally inelastic due to
their high energy. This means the basic assumption of relaxation time approximation
used to derive expressions for transport parameters from the Boltzmann transport
equation is not valid [3, 17, 32] and there will not strictly be a universal expression
for τ . Nevertheless, a relaxation time τ so defined, is however approximated given
that certain requirements are met [9, 17, 33].

For the deformation potential scattering by optical phonons, Seeger [17] gives a
clear derivation and his expression (which Askerov [32] called the nondegenerate
form) for momentum relaxation time τodp for a single parabolic, and isotropic band is:
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τodp = 21/2πρ�
2kB�

m∗3/2(kB T )1/2�op
2

× [exp(�/T ) − 1][(ε + �/T )1/2 + exp(�/T )Re{(ε − �/T )1/2}]−1

(1.19)

where ρ, �, and �op are the density, optical phonon Debye temperature and defor-
mation potential for optical phonon scattering (in unit of eV/cm), respectively. the
terms (ε + �/T )1/2 and (ε − �/T )1/2 represent the absorption and emission of a
optical phonon, respectively, and the real part of the latter one is taken since emitting
a phonon with energy higher than the electron is prohibited. A similar form of the
same equation is also used by Chin et al. [34]. From Eq. (1.19) when �/T � 1
one get:

τodp ∝ m∗−3/2T −3/2ε−1/2 (1.20)

This is exactly the same dependence found for acoustic phonon scattering (Eq. 1.16,
see Fig. 6.14 in ref. [17]).

For degenerate semiconductors another form of τodp is used [32, 35]. In the Kane
band model with energy dependent interaction matrix:

τodp = 2�
2a2ρ(kB�)2

π(2 mb
∗ kB T )3/2�2

op
(ε + αε2)−1/2(1 + 2αε)−1

×
[(

1 − αε(1 − Km)

1 + 2αε

)2

− 8α(ε + αε2)Km

3(1 + 2αε)2

]−1

(1.21)

This equation is lengthy because it accounts for very detailed knowledge about
lead chalcogenides’ band structure (Km = �op

v/�op
c for electrons, or �op

c/�op
v

for holes) together with the Kane model. In general the last term can be neglected
without altering the final result much. Equation (1.21) (the unit of �op is in eV) can
be transformed into a form analogous to that for τac with the same level of detail
only by replacing � with �op(

π�

akB�
)(

Cl
ρ

)1/2, See Eq. (1.23).
A third version of τodp (for lead chalcogenides) is given by Morgovskii and

Ravich [36]:

τodp = π M�
4ω2

l

(2 mb
∗ kB T )3/2�C2 (ε + αε2)−1/2(1 + 2εα)−1

[
αε(1 + αε)

(1 + 2εα)2

]−1

(1.22)

where M/�, ωl , C are the atomic mass/volume of a unit cell, the frequency of longi-
tudinal optical phonons (assuming constant) and an interaction constant equivalent
to deformation potential (in unit of eV/m), respectively. Again, this equation shares
all the key terms with Eq. (1.16) (consider the last term in each as a minor correction).

There are few reports on the value of deformation potential for optical phonons.
For n type Ge Jacoboni [37] suggested this value to be 5.5 × 108 eV/cm, which is
equivalent to 3.3 eV when rewriting Eq. (1.19) in a analogous form of Eq. (1.16),

http://dx.doi.org/10.1007/978-3-642-37537-8_6
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comparing with about 10 eV for �ac from acoustic phonon scattering in this material.
Deformation potential scattering from optical phonons is negligible in n type Si [38].
For III–V compounds Takeda [39] gives �op around 1.4×1010 eV/cm for GaAs and
InP, which is considerably larger than the value in n type Ge.

Wiley [40, 41] and Costato [42] have formulated �op in terms of material para-
meters and compared the calculated results with p-type IV or III–V semiconductors.
However, in these materials the conduction behavior has multiple-band character,
making the reported results phenomenological instead of reflecting the nature of
electron-phonon interaction in a given band.

Using an effective deformation potential coefficient�eff in Eq. (1.16), the influence
of deformation potential from optical phonons is inherently considered (Eq. 1.23).

τ−1
eff = τ−1

ac,0τ
−1
ε (ε)(Eq.1.6) + τ−1

odp,0τ
−1
ε (ε)(Eq.1.21)

= 21/2(m∗
bkB T )3/2�2

ac

π�4Cl
τ−1
ε (ε) + 21/2π(m∗

bkB T )3/2�2
op

�2α2ρ(kB�)2 τ−1
ε (ε) (1.23)

= 21/2(m∗
bkB T )3/2

π�4Cl

(
�2

ac + �2
op

(
π2

�
2Cl

α2ρ(kB�)2

))
τ−1
ε (ε)

= 21/2(m∗
bkB T )3/2�2

eff

π�4Cl
τ−1
ε (ε), �eff =

[
�2

ac + �2
op

(
π2

�
2Cl

α2ρ(kB�)2

)]1/2

1.5.2 Polar Scattering from Optical Phonons

If the lattice contains more than one species of atoms, carriers can also be scattered by
the changing polarity due to optical vibration. There are two important quantities for
polar optical scattering. The first is the dimensionless polar coupling constant αpo,
which governs the magnitude of interaction between carriers and polarization of
optical phonons [17, 43, 44]:

αpo = e2

4π�

(
m∗

2�ωl

)1/2

(ε−1∞ − ε−1
0 )(SI units) (1.24)

where ε0, ε∞ are the static and high frequency dielectric constant (with unit F/m,
not relative values).

The second is the optical phonon temperature kBΘ = �ωl (close to the Debye
temperature).

For general cases τ can not be defined due to the inelastic nature of the polar scat-
tering, and the transport parameters are calculated using numerical methods. Detailed
calculations have been done by researchers such as Howarth and Sondheimer [33],
and Ehrenreich [45]. In III–V [34, 39, 46] and II–VI [47, 48] semiconductors due to
their high Θ and the major interest in lightly doped samples, the polar scattering by
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optical phonons is considered important and such calculations and results are widely
used.

For most good thermoelectric materials with potential application in energy
recovery, when T > Θ , which is usually the temperature range of most interest, a
relaxation time can be defined. Since these materials are heavily doped, the screening
of polarity vibration by free electrons must also be considered. Ravich’s derivation
[9, 43, 49] takes into account this together with the band nonparabolicity in lead
chalcogenides, which gives (all parameters in SI units):

τpo = 4π�
2ε1/2

21/2(kB T )1/2e2 mb
∗1/2(ε−1∞ − ε−1

0 )
(1 + 2εα)−1(1 + εα)1/2

{[
1 − δln

(
1 + 1

δ

)]
− 2αε(1 + εα)

(1 + 2εα)2

[
1 − 2δ + 2δ2ln

(
1 + 1

δ

)]}−1

(1.25)

δ(ε) = e2mb
∗1/2 NV

21/2ε(kB T )1/2π�ε∞
(1 + εα)−10 F1/2

1 (1.26)

Each parameter in the expression of τpo can be determined from direct measurements.
Equation (1.25) has been used by other researchers when studying the scattering

mechanism in PbTe [35, 50, 51] and Bi2Te3 [25]. It should also be a reasonable
expression for such scattering mechanism in other systems with Kane band behavior,
such as CoSb3 at high temperature (Θ for CoSb3 is ∼300 K). Qualitatively from
Eq. (1.25):

τpo ∝ m∗−1/2T −1/2ε1/2 (1.27)

Compared to Eq. (1.16) for acoustic phonon scattering, relaxation time governed by
polar scattering from optical phonons has a weaker dependence on temperature and
effective mass [−1/2 for each compared to −3/2 in Eq. (1.16)]. It will increase,
instead of decrease as for the case of acoustic phonon scattering, with carrier energy
ε. This implies it would be less important for most thermoelectric materials above
room temperature. In more general case, the exponent r in τpo ∝ εr is plotted against
Θ/T by Ehrenreich [17, 45], r changes greatly with T and there is a singularity around
T = Θ/2.

For PbS the calculated mobility governed by the acoustic phonon scattering and
polar scattering from optical phonons is plotted in Fig. 1.10. Data shown in Fig. 1.10
are taken from results reported by Petritz [52], Johnsen [53], Allgaier [54], Zhao
[55] and Wang [56]. The polar scattering is found to be important when the carrier
density is below 1019 cm−3. In fact, polar scattering is responsible for the devia-
tion of measured mobility from that calculated under the acoustic phonon scattering
assumption at low carrier densities. It can be also seen that if the mobility of purest
PbS is taken as μ0 to evaluate B the quality factor of PbS would be greatly under-
estimated at 300 K (the calculated mobility value at classical limit under acoustic
phonon scattering assumption should be used). While leading to lower mobilities,
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Fig. 1.10 a Mobility and
b Seebeck coefficient of PbS
at 300 K as a function of carrier
density. Curves are calculated
results from acoustic phonon
scattering (dashed), polar
scattering (dotted) and the two
combined (solid)

(a)

(b)

the polar scattering would also result in higher Seebeck coefficient in the low doping
region. As the carrier density increases, the influence from polar scattering decreases
and at 300 K when the carrier density is above 1019 cm−3 the polar scattering can
be neglected and acoustic phonon scattering becomes predominant. Moreover the
polar scattering has a weaker temperature dependence, which means that the carrier
density at which acoustic phonon scattering becomes predominant would further
decrease as the temperature increase.

Lead chalcogenides are unique compounds in term of their extraordinarily large
static dielectric constants. For instance for PbTe, ε0 around 400 has been reported by
different groups from different measurement techniques [57, 58]. In contrast, ε0 for
most III–V and II–V compounds [24] are usually from 10 to 20. Considering the low
Debye temperatures in lead chalcogenides, large polar coupling constants αpo would
be expected in these compounds (Eq. 1.24). In the table below αpo is compared for
a few semiconductors (data from the Landolt-Börnstein Database unless otherwise
cited). Lead chalcogenides are seen to have larger αpo compared to other typical
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Table 1.2 The polar coupling constant for a few compound semiconductors

ε0 ε∞ � αpo Comment

PbTea 414 33 160 0.29 � from optical phonon frequency
from ref. [9], m∗ use 300 K
value from Seebeck data

PbSea 204 23 190 0.36
PbSa 169 17 300 0.45
CoSb3 42 calb 32 calb 306d 0.07 For p type, m∗ use 0.15 me

25 expc

Bi2Te3 290 (//c) 85 (//c) 164 0.13 (//c) m∗ from Seebeck data from CRC
handbook

75 (c) 50 (c) 0.07 (c)
GaAs 13 11 344 0.08
InSb 17 16 203 0.01
ZnOe 8 4 660 1.02
CdTe 10 7 158 0.41
aref. [59], bref. [60], cref. [61], dref. [62], eref. [48]

thermoelectric materials as well as III–V compounds, whereas some II–V compounds
show the largest αpo, which stems from their small yet different dielectric constants.

From the result shown in Fig. 1.10 and Table 1.2 the polar scattering is important
around room temperature in lightly doped lead chalcogenides. Its magnitude in other
compounds would be less as can be judged from the values of αpo. For most heavily
doped thermoelectric materials neglecting the contribution of polar scattering from
optical phonons should not lead to drastic error in modeling and the acoustic phonon
scattering assumption can be considered valid.

1.6 Band/Valley Degeneracy

The band/valley degeneracy Nv or, the number of bands/valleys contributing to the
carrier transport, is in the numerator of the quality factor B and therefore larger Nv

is desirable for thermoelectrics.
Considering the Seebeck coefficient S as only a function of the chemical potential

ζ (S is linked to m∗
d through chemical potential ζ ), with a constant S, a larger Nv

will lead to a larger carrier concentration n. Since μ is not a function of Nv [When
inter-valley scattering is negligible, Eq. (1.16)], the net effect will be an increase in
electrical conductivity and zT.

In Fig. 1.11 the calculated zT (800 K) of a system with two conduction bands
(or analogously, valence bands) is plotted against both η(= ζ/kBT ) and Δε(=
�E/kBT , the reduced energy gap between the two bands). The calculation is based
on parabolic, isotropic bands dominated by acoustic phonon scattering. The bipolar
conduction and possible inter-band scattering is not considered. Typical parameters
found in thermoelectric materials are used for these two bands: m∗ = 0.2 and 1,
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Fig. 1.11 Calculated zT at
800 K in a two-band system as
function of chemical potential
η and band offset Δε. Highest
zT is achieved when the two
bands are aligned

� = 15, Nv = 1, Cl = 91 GPa and κL = 0.8 W/mK. The highest zT is achieved
when Δε = 0, i.e., when the two bands are aligned. The band alignment results in
an increased effective Nv.

In fact, most good thermoelectric materials are of multi-valley feature: The con-
duction band of Si has 6 degenerate valleys and Ge has 4, which is an important
reason for their superior electronic properties (and SiGe alloys make good thermo-
electric materials when the thermal conductivity is suppressed). In the half-Heusler
compound NiTiSn (ZrNiSn) the conduction band [63, 64] has Nv = 3 and the com-
pound when doped n-type has shown good thermoelectric properties [65, 66]. In
Bi2Te3 both the conduction and valence band are of Nv = 6. For lead chalcogenides,
Nv = 4 for the conduction band and the primary valence band, additionally there is a
secondary valence band with Nv= 12 making the effective Nv exceptionally large. In
some other systems, this multi-valley feature manifests as additional bands separated
from the primary band edge by a small energy. High zT is also found in these systems
such as [30] La3Te4 and n type filled [67] CoSb3.

An important aspect of band structure engineering is the idea of converging bands
[68], where one manages to manipulate the position of a certain band extreme in the
material to enable the multi-band/valley conduction.

In lead chalcogenides, the primary maximum of the valence bands is found at the
L point of the First Brillouin Zone (FBZ) and a secondary maximum along the �

line. The energy position of the L band depends on temperature and as T increases it
shifts down. Thus the p type compounds will enter a multi-band conduction region
where the highly degenerate (Nv = 12) � band plays an important role. This is based
on the rigid band assumption which is found valid for p-type PbTe [69]. The complex



24 H. Wang et al.

Fig. 1.12 The schematic carrier pockets and band structure in p type PbTe. The calculation of zT
indicates the zT of L and � band combined exceeds that of any single of them, which is believed to
be the effect of higher Nv

valence band structure explains why high zT > 1 can be achieved in p type PbTe [70]
and PbSe [71]. Moreover, the energy difference between L and � bands decreases
when going from PbS to PbTe. Thus by alloying PbTe with other chalcogenides,
the converging temperature can be manipulated so that the two bands are able to
converge at a higher temperature. In this way, a higher zT of 1.8 was achieved in
PbTe0.85Se0.15 alloy [68] (Figs. 1.12).

The conduction band of Mg2X (X: Si, Ge, Si) is composed of a primary minimum
at the X point of the FBZ. A secondary minimum is found above it at (roughly) the
same k-point. In Mg2Si the gap between its primary light band and the secondary
heavy band [72] is ∼0.4 eV. In Mg2Sn, the heavy band is lower in energy by ∼0.2 eV.
These binary compounds are decent thermoelectrics with zT ∼0.6 (0.7 reported [73]).
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X
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Nv = 3
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Nv = 3
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Fig. 1.13 The schematic band structure of Mg2Si-Mg2Sn alloys
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Fig. 1.14 The schematic band structure of Si-Ge alloys

In Mg2SixSn1−x alloys the energy position of each band changes with x and converges
when x is around 0.3 (Fig. 1.13) [72, 74, 75]. And it has been found [74, 76] that
the highest zT is achieved for alloy with x value between 0.3 and 0.4 when the two
band minimums are closed up. zT of 1.0 – 1.1 around 750 K has been reported by
different groups [72, 77] (1.3 at 700 K according to recent report [74]). Even though
the alloying would reduce thermal conductivity and increase zT such effect is less
significant at high temperatures and tends to be compensated through the increased
scattering of charge carriers. The two-band conduction is then a very important factor
to achieve high zT in the Mg2SixSn1−x alloy.

Si1−xGex provides another example of band convergence that increases Nv. Si
and Ge, though similar in structure, are different in band configurations. The primary
minimum of the conduction band in silicon is found along the zone center and X
point (�) and the second minimum is at the L point (L). In germanium the band at
the L point is the primary minimum while the � band is found at a higher energy.
Alloying silicon with germanium changes the energy position of L and � valleys
relative to the top of valence band and it has been found via both calculation [78]
and transmission electron energy-loss spectroscopy [79] that they cross each other
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around the composition of Si0.7Ge0.3 (Fig. 1.14). This should be one of the reasons
why Si0.8Ge0.2 is useful as a good n type thermoelectric material [80–83].

1.7 Inter-band/Inter-valley Carrier Scattering

When Eqs. (1.11) and (1.16) were used to draw the conclusion that higher Nv is
favorable for thermoelectrics, the scattering of carriers between different valleys (or
bands when not equivalent in k space) was not taken into account. This could lead to
a noticeable deviation between the actual zT and the zT one might expect from the
simple model.

Depending on the position in k space of the initial and final states the scattering of
carriers between them could have different nature. When two bands are located at the
same k point, such as is the case in Mg2X (X: Si, Ge, Sn), the scattering requires little
change in electron wave vector, and thus, is of similar nature as intra-band scattering
by acoustic phonons. Such inter-band scattering is accounted for in the framework of
isotropic, parabolic band by Fedorov et al. [84, 85] in a form analogous to intra-band
scattering:

τac,1 = π�
4C11

21/2m∗3/2
1 (kB T )3/2�2

1

ε−1/2 when ε < �ε

⎡
⎣

(
π�

4C11

21/2m∗3/2
1 (kB T )3/2�2

1

ε−1/2

)−1

+
(

π�
4C11

21/2m∗3/2
2 (kB T )3/2 D2

(ε − �ε)−1/2

)−1
⎤
⎦

−1

when ε > �ε

(1.28)

τac,2 =
⎡
⎣

(
π�

4C11

21/2m∗3/2
2 (kB T )3/2�2

2

(ε − �ε)−1/2

)−1

+
(

π�
4C11

21/2m∗3/2
1 (kB T )3/2 D2

ε−1/2

)−1
⎤
⎦

−1

when ε > �ε (1.29)

where τac,1 and τac,2 represents the relaxation time of carriers in the primary valley
“1” and secondary valley “2”, separated by a reduced energy of Δε (relative to the
edge of the primary band, see Fig. 1.11), each is characterized by an effective mass
of m∗

1 and m∗
2 and an intra-band acoustic phonon scattering deformation potential

of �1 and �2. The inter-band acoustic phonon scattering deformation potential D
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is the same regardless of the initial/final valley, has the same unit as � and can be
determined from functional calculation of interaction matrix elements.

The second term in Eqs. (1.28) and (1.29) has the same temperature and energy
dependence as Eq. (1.16). As long as the inter-band deformation potential D is small
compared to � (roughly <30 %), Eqs. (1.28) and (1.29) can be very well approxi-
mated using Eq. (1.16) with a slightly different � value. However, it is difficult to
estimate D in a compound without calculating the interaction matrix, thus it might
be questionable to ensure that such an assumption is generally valid. Fedorov [84]
estimated this inter-band scattering in Mg2Si1−xSnx alloys and found that up to
400 K the rate of inter-band scattering is on the order of 10−3 of that of intra-band
scattering, indicating the above assumption should hold for most cases.

Another case is for the scattering of carriers between equivalent valleys when the
band extreme are not located at the center of FBZ. In this case a large change of
the carrier’s k vector is needed and the scattering process thus resembles that of the
optical phonon scattering and is inelastic in nature [8, 17, 36, 38]. Herring studied
the transport properties of semiconductors with multi-valley structure [8] and his
result has been adopted by most of the relevant discussions. Herring wrote the total
relaxation time τ (under isotropic, parabolic band assumption) as:

τ =
{

w1

(
E

�ω

)1/2 (
kB T

�ω

)
+ w2

[ ( E
�ω

+ 1
)1/2

exp( �ω
kB T ) − 1

+ Re

( ( E
�ω

− 1
)1/2

1 − exp(− �ω
kB T )

)]}−1

(1.30)
The first term represents the intra-valley scattering process. The second term further
contains two parts that represents the inter-valley phonon absorption and emission,
respectively. �ω is the energy of phonons that participate the inter-valley scatter-
ing (hereinafter called inter-valley phonons). The momentum conservation requires
these phonons to have large and (mostly) fixed wave vectors, which means the most
contribution comes from high energy optical phonons that can be approximated
with a constant energy �ω. Correspondingly there is a characteristic temperature
�int = �ω/kB which is lower than the optical phonon temperature (or Debye tem-
perature). The factors w1 and w2 contains all the parameters that are not explicitly
dependent on temperature or carrier energy, and the ratio w2/w1 is used to character-
ize the relative intensity of inter-valley scattering to that of the intra-valley process.

Rewriting Eq. (1.30) and one can get:

τ =
{

w1

(kBθint)3/2 ε1/2(kB T )3/2 + w2(kB T )1/2
[

exp

(
θint

T

)
− 1

]−1

[(ε + θint/T )1/2 + exp(θint/T )Re((ε − θint/T )1/2)]
}−1

(1.31)

In this form the second term can be easily recognized as an analog of Eq. (1.19) for the
deformation potential scattering from optical phonons. And the first part shows the
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same energy and temperature dependence as Eq. (1.16) for intra-band deformation
potential scattering from acoustic phonons.

With the discussion above and within the context of high temperature (T > �) and
heavily doped thermoelectrics (the temperature restriction would not be necessary
if the degenerate limit is met), the influence of inter-valley scattering, same as the
deformation potential scattering from optical phonons, will be included in Eq. (1.16)
by using an effective deformation potential coefficient �eff [similar to the deriva-
tion of Eq. (1.23)]. It can be further predicted that when the intra-band deformation
potential scattering from acoustic phonons dominates the other two mechanisms, this
�eff shouldn’t change much from �ac for the intra-band acoustic phonon scattering,
which can be measured and related to �d and �u.

The magnitude of inter-valley transition can be probed by acoustic-electrical
(piezoresistence) measurements [17], but convincing studies with comparison to the
intra-valley process are very rare. Prediction of w2/w1is otherwise difficult without
evaluating the interaction matrix. Nevertheless some important facts regarding the
inter-valley process can be drawn from two relatively simple estimates: (1) whether
the transition is allowed or forbidden, and (2) the characteristic temperature of
the inter-valley phonons, which is comparable to the longitudinal optical phonon
temperature or Debye temperature.

According to Fermi’s golden rule, when the wave function of the initial and final
electron state of a given transition are both odd (or even) functions the interaction
matrix vanish and such a transition is forbidden. As an example, the primary con-
duction/valence band extreme of lead chalcogenides at the L point is described by
the odd/even wave function [59] of L−

6 /L+
6 so that the inter-valley transition between

equivalent L valleys is forbidden (however such restriction is weakened [36] when
the nonparabolicity is taken into account and the corresponding states become a
mixture of L−

6 and L+
6 ).

In a general context, a similar story is found in n-type germanium where the
transition between conduction band minimums at the L point is found to be negligible
[10, 86, 87].

The case of n-type silicon is rather complicated. One widely used result is that
inter-valley scattering is important and [17, 88–90] w2/w1 = 2. The direct support
of such claim is from the observed (drift) mobility μ ∼ T −2.5in high purity n type
Si [38, 86, 89, 91, 92] while the acoustic phonon scattering should only give a
T −1.5 dependence. Based on Herring’s theory, such a difference could be explained
by considering inter-valley process with w2/w1 = 2. However, the original mea-
surements done by Long, Morin, and Ludwig, where this T −2.5relation is observed,
were on very lightly doped (with dopant on order of 1013cm−3) Si within the tem-
perature range 30–400 K. Without ruling out the possibility of excitation of minority
carriers (near room temperature) and the partial ionization of dopants (at low tem-
perature) it may be risky to use the observed temperature dependence as evidence
of inter-valley scattering. Moreover, Long [89] and Aubrey [90] concluded that the f
type inter-valley scattering rate is two times that of the intra-valley scattering, which
forms the main contribution for inter-valley scattering. These authors however also
admitted that the characteristic temperature of inter-valley phonons for this f type
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scattering is around 700 K, yet it is unexplained why the temperature dependence
of mobility would change significantly even below room temperature when most of
inter-valley phonon states are not populated. On the other hand, the mobilities found
in Si with carrier density equal to [24] or above [83] 1017cm−3at room temperature
and above actually have the T −1.5(T −1.3) dependence, which is just as expected
from intra-valley deformation potential scattering processes.

Several more recent studies [37, 93–96] have calculated the inter-valley defor-
mation potential of n type Si and the results vary from 2 to 7 × 108 eV/cm. If the
pre-factors in Eq. (1.21) are rewritten into the same form as in Eq. 1.16 (See Eq. 1.23)
so that the values can be directly compared with �ac, these results will be equivalent
to 1.3–4.6 eV, whereas the intra-valley acoustic phonon deformation potential is sug-
gested [10, 37, 82, 83, 88] to be 7–9 eV (correspondingly the ratio w2/w1would be
between 0.1 and 0.7, instead of 2). Such result indicates the inter-valley scattering is
important but not dominant. For instance, assuming the “actual” inter-valley defor-
mation potential is 6 × 108 eV/cm and the intra-valley acoustic phonon deformation
potential is 8 eV, then for degenerate samples the total relaxation time will still be
well described using Eq. (1.16) with an effective deformation potential �eff = 9 eV
(Eq. 1.23).

In the more specific case of thermoelectric SiGe alloys, extensive modeling work
[81–83, 88] has been able to excellently explain the observed transport properties of
heavily doped SiGe alloys, without taking into account inter-valley scattering, and
the deformation potentials � used in these modeling are in good agreement with
measured values. Which is another indication that the scattering from inter-valley
and optical process is not comparable with the intra-valley acoustic process. Through
first principle calculation, Murphy-Armando [97] predicted that for SiGe alloys with
Si content up to 50 % the former two processes combined only contribute to 1 % of
the total mobility at 300 K.

In the most conservative estimate, for the Si0.7Ge0.3 alloy taking the inter-valley
scattering into account and assuming w2/w1 = 2, Rowe [98] suggested a 40 %
reduction of the ratio zTmv/zTsv( zTmv: maximum zT of a multi-valley system, zTsv:
maximum zT from a single valley of the same system) at 300 K caused by inter-valley
scattering. This percentage would increase at higher temperature (70 % at 1000 K
estimated). To our knowledge there have not been any experimental or theoretical
study that suggests a total compensation of the benefit from higher Nv due to the
onset of inter-valley (inter-band) scattering.

1.8 Conclusion

The above sections present our recent understanding of the different physical para-
meters that go into the quality factor B that determines a material’s maximum
zT. Identifying new structures with favorable combination of these parameters is
one strategy of advancing thermoelectric research. For known materials, material
engineering that leads to the improvement of B is important [99]. Most researchers
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are familiar with the merit of κL reduction but aiming at other parameters should
be equally promising. In PbTe there have been demonstrations of the concept of
band structure engineering in various ways such as the valence band convergence
tuning in the PbTe-PbSe alloy [68], the L valence band position manipulation in
the PbTe-MgTe alloy [100] and the Fermi surface distortion in Tl contained PbTe or
its alloys [101, 102].

Exploring the more fundamental linkage between the parameters in B is also
important as these parameters are usually inter-related and the freedom of indepen-
dently tuning one parameter without changing the others are likely limited. κL is
often believed to be independently tunable, which is true when optimizing carrier
density for maximum zT is the only concern. Such a view becomes plausible when
further improvement is the target. An all-encompassing consideration of B is required
towards achieving the state-of-the-art thermoelectric materials.
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