Chapter 1

Matter and Measurement

I) Definition of Chemistry

Science which deals w. composition, structure and reactions of matter.
A) Matter

Anything that has mass
\& occupies space.

1) Mass
measure of the quantity of matter
2) Weight

Result of gravitational attraction between matter

B) Composition

What matter is made of and how much of each component is present.

1) Several Ways of Expressing

a) by weight (mass)
b) by volume
c) Percent
d) Number of Moles
e) Number of Atoms

2) Macroscopic Level

Amounts that can be seen and weighed
a) Ex: $1 / 4 \mathrm{lb}$. cheeseburger

1) By weight (mass)
$\begin{array}{ll}\text { meat } & 4.0 \mathrm{oz} \\ \text { cheese } & 0.8 \mathrm{oz} \\ \text { roll } & 1.7 \mathrm{oz} \\ & 6.5 \mathrm{oz}\end{array}$
b) Ex : 95\% ethanol
95% ethanol \& 5\% water
2) Submicroscopic Level
described by numbers \& types of atoms

Atoms: simple units of matter
Molecules: combinations of atoms

a) Qualitative

Ethanol consists of carbon, hydrogen \& oxygen

b) Quantitative

Ethanol: 2 C atoms, 6 H atoms 1 O atom

$$
\text { Formula: } \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}
$$

C) Structure

Arrangement of components \& how they are held together, or bonded

Ethanol

 Or
 $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

H H
$\begin{array}{cccc}\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{H} & \mathrm{H}-\mathrm{C}-\mathrm{O}-\mathrm{C}-\mathrm{H} \\ \mathrm{H} H & \mathrm{H} & \mathrm{H}\end{array}$

D) Reactions

Changes in composition \& structure.

1) What products are formed?
2) How much of each product?
3) How fast the change occurs?
4) What energy changes accompany the reaction?
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+$ heat

II) Scientific Method

A) Experiment (Record Observations)

1) Careful recordings \& analysis of data under controlled conditions

> 2) Reproducible - exp. never performed just once

B) Draw a Conclusion - Law

Concise statement about a basic relationship or regularity of nature drawn from observations.

- true for all cases examined

C) Model (Explanation)

Idea that explains or correlates a number of facts

- explains how and why

1) Hypothesis

Tentative model

- test with new experiments

2) Theory

Model that has been tested many times \& not disproved

> - best idea that agrees with all known facts.

III) States of Matter

Gas

No definite
volume or shape

Liquid

Constant
volume
shape of
container
takes its shape
fills container \&

Highly compressible

Slightly compressible
expands slightly expands very when heated

Solid

Definite
volume

Definite shape

IV) Physical and Chemical Properties

A) Physical Property
can be determined WITHOUT
changing the identity of the substance.
Ex : physical state, color, odor, m.p.,
b.p., density, specific heat
B) Chemical Property
describes a reaction with or conversion into another substance

Ex : flammability

C) Extensive \& Intensive Prop.

1) Extensive Property

Depends on sample size.
Ex: mass, volume, heat content
2) Intensive Property

Do NOT depend on sample size.

$$
\begin{aligned}
\text { Ex : } & \text { color, melting point, } \\
& \text { boiling point, density, } \\
& \text { specific heat }
\end{aligned}
$$

V) Physical \& Chemical Changes

A) Physical Changes

Change in appearance without change in identity

1) Ex: change in state

$$
\begin{array}{ll}
\text { Solid } & \text { Liquid } \\
\text { Liquid } & \begin{array}{c}
\text { mapering } \\
\text { Londensation } \\
\text { Solid } \\
\\
\\
\\
\text { sublimation } \\
\text { deposition }
\end{array}
\end{array}
$$

B) Chemical Changes (Reactions)

Converts a substance into a chemically different substance.

- change in composition \&/or structure
$2 \mathrm{~K}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\ell) \longrightarrow 2 \mathrm{KOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$

VI) Pure Substances and Mixtures

A) Pure Substances
uniform in properties throughout

1) Characteristics
a) constant (fixed) composition
b) distinct intensive properties
c) NOT separable by physical methods

Elements and Compounds

2) Elements

Substances that can NOT be decomposed into simpler substances by chemical means

118 known elements

Symbols used to identify

- 1 or 2 letters

C \equiv carbon

$$
\text { Co } \equiv \text { cobalt }
$$

$$
\mathrm{Ca} \equiv \text { calcium }
$$

a) Periodic Table

Elements arranged in order of increasing atomic number

- properties of elements correlate w. position in periodic table

1) Periods

horizontal rows

- gives information about atomic structure

2) Groups
vertical columns

- elements in groups have similar physical \& chemical properties

CHEMISTRY: THE CENTRAL SCIENCE by Brown/Le May/Bursten

3) Compounds

Composed of 2 or more elements, chemically combined

- separable into its elements
by chemical means
Ex: $\mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& 11.2 \% \text { hydrogen } \\
& 88.8 \% \text { oxygen }
\end{aligned}
$$

a) Law of Definite Proportions
elements in a compound are combined in definite proportions by mass

B) Mixtures

2 or more substances NOT chemically combined.

1) Characteristics

a) variable composition
b) separable by physical methods
c) components retain their own properties (chem. identities)

Ex: water-ethanol mixture

$$
\begin{aligned}
& 5 \% \text { - mostly water } \\
& 95 \% \text { - mostly ethanol } \\
& 50 \% \text { - equal amounts }
\end{aligned}
$$

2) Heterogenous Mixture

Consists of parts that are unlike

- do NOT have same composition, properties \& appearance throughout

Ex: sand \& salt
Raisin Bread

3) Homogenous Mixture

Prop. are uniform throughout - down to the molecular level

Solutions

a) Ex:
gaseous solution: Air liquid soln: 95% ethanol solid solution: brass

© 2012 Pearson Education, Inc.

VII) Units of Measurement

International System, SI units:

> - have base units from which all other units are derived

Table 1.4

mass	length	time	temp
kg	m	s	K

Base units for length \& mass are part of metric system

- employs factors of 10

Prefixes: indicate size of unit relative to base unit

Selected SI Prefixes

Prefix	Abbrev.	Meaning	Example
Mega-	M	10^{6}	1 megameter $(\mathrm{Mm})=1 \times 10^{6} \mathrm{~m}$
Kilo-	k	10^{3}	1 kilometer $(\mathrm{km})=1 \times 10^{3} \mathrm{~m}$
Deci-	d	10^{-1}	1 decimeter $(\mathrm{dm})=0.1 \mathrm{~m}$
Centi-	c	10^{-2}	1 centimeter $(\mathrm{cm})=0.01 \mathrm{~m}$
Milli-	m	10^{-3}	1 millimeter $(\mathrm{mm})=0.001 \mathrm{~m}$
Micro-	μ^{a}	10^{-6}	1 micrometer $(\mu \mathrm{m})=1 \times 10^{-6} \mathrm{~m}$
Nano-	n	10^{-9}	1 nanometer $(\mathrm{nm})=1 \times 10^{-9} \mathrm{~m}$
Pico-	p	10^{-12}	1 picometer $(\mathrm{pm})=1 \times 10^{-12} \mathrm{~m}$
Femto-	f	10^{-15}	1 femtometer $(\mathrm{fm})=1 \times 10^{-15} \mathrm{~m}$
${ }^{\text {a }}$ This is the Greek letter Mu (pronounced "mew")			

A) Mass

kilogram, kg

$$
1 \mathrm{~kg} \equiv 10^{3} \mathrm{~g}
$$

$$
1 \mathrm{~kg} \cong 2.205 \mathrm{lb}
$$

$$
1 \mathrm{lb} \cong 453.6 \mathrm{~g}
$$

B) Length
meter, m
$1 \mathrm{in} \equiv 2.54 \mathrm{~cm}$
$1 \mathrm{~m} \cong 1.0936 \mathrm{yd}$
C) Volume

SI unit is m^{3}
Commonly use liter, L

$$
\begin{gathered}
1 \mathrm{~L} \equiv 1 \mathrm{dm}^{3} \\
(1 \mathrm{dm} \equiv 10 \mathrm{~cm}) \\
1 \mathrm{~L}=(10 \mathrm{~cm})^{3}=10^{3} \mathrm{~cm}^{3} \\
1 \mathrm{~L} \equiv 10^{3} \mathrm{~mL} \\
\therefore 1 \mathrm{~mL}=1 \mathrm{~cm}^{3}
\end{gathered}
$$

D) Temperature

Must specify temp. when making quantitative measurements

1) Celsius Scale

${ }^{\circ} \mathrm{C}$ - commonly used

Fahrenheit, ${ }^{\circ} \mathrm{F}$, scale used in public (USA)

b.p. of $\mathrm{H}_{2} \mathrm{O}$

212
100.0
$98.6 \quad 37.0$
$32.0 \quad 0.0$

body temperature f.p. of $\mathrm{H}_{2} \mathrm{O}$

$y^{\circ} \mathrm{C}=\frac{100^{\circ} \mathrm{C}}{180^{\circ} \mathrm{F}}\left(x^{\circ} \mathrm{F}-32^{\circ} \mathrm{F}\right)$

$$
{ }^{\circ} \mathrm{C}=\frac{5^{\circ} \mathrm{C}}{9^{\circ} \mathrm{F}}\left(x^{\circ} \mathrm{F}-32^{\circ} \mathrm{F}\right)
$$

Or

$y^{\circ} \mathrm{F}=\frac{9^{\circ} \mathrm{F}}{5{ }^{\circ} \mathrm{C}}\left(x^{\circ} \mathrm{C}\right)+32^{\circ} \mathrm{F}$
a) Ex : Convert $25^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$

2) Kelvin Scale

SI base unit is kelvin, K
Must be used in most cases in chemistry

Absolute scale:
0 K : lowest possible temp.

$$
\begin{aligned}
& \Delta \mathrm{T}_{\mathrm{K}}=\Delta \mathrm{T}_{{ }^{\circ} \mathrm{C}} \quad \text { (unit same size) } \\
& 0{ }^{\circ} \mathrm{C}=273.15 \mathrm{~K}
\end{aligned}
$$

$$
\mathrm{K}={ }^{\circ} \mathrm{C}+273.15
$$

E) Density

Mass per unit volume

SI unit is $\mathrm{kg} / \mathrm{m}^{3}$
$\frac{\text { Solids }}{\mathrm{g} / \mathrm{cm}^{3}}$

$\frac{\text { Gases }}{\mathrm{g} / \mathrm{L}}$

1) Specific Gravity

Sp. Gr. $=\frac{D_{\text {substance }}(\mathrm{g} / \mathrm{mL})}{D_{\text {water }}(\mathrm{g} / \mathrm{mL})}$ No units

$\mathrm{H}_{2} \mathrm{O}: \quad \mathrm{D}=1.0 \mathrm{~g} / \mathrm{mL}$
Ethanol : D $=0.79 \mathrm{~g} / \mathrm{mL}$

$$
\text { sp. gr. }=0.79
$$

VIII) Measurement \& Significant Figures

Uncertainties always exist in measured quantities.
A) Precision

Degree of reproducibility of repeated measurements
i.e. - How close are to each other

Depends on skill of measurer

1) Ex: Measure width of notebook paper (in cm)
$21.32 \quad 21.33 \quad 21.32 \quad 21.31$
avg. width $=21.32 \mathrm{~cm}$
good precision
B) Accuracy

How close measurement is to true value

Paper's true width is 21.59 cm
Numbers in previous ex. have poor accuracy

Depends on quality of the

 measuring device1) Ex: remeasure paper with a "better" ruler (in cm)
$\begin{array}{llll}21.54 & 21.61 & 21.56 & 21.65\end{array}$

$$
\text { Avg. }=21.59 \mathrm{~cm}
$$

good accuracy, poor precision

Ex:

$\bullet-A$

A (•) - good precision poor accuracy

B (•) - poor precision poor accuracy

$$
C(\bullet) \quad \begin{gathered}
\text { - good precision } \\
\text { good accuracy }
\end{gathered}
$$

D (•) - "poor" precision good accuracy

C) Significant Figures

ALL digits we know exactly plus one we estimate.

Calibration of instrument determines number of significant figures (sig. fig.)

- previous measurements used a ruler marked in tenths of a $\mathrm{cm}(\mathrm{mm})$

D) Exact Numbers

Infinite number of sig. fig.

1) By Count

Count the number of people in the room

- Integers

2) By Definition

1 dozen $\equiv 12$ items
$1 \mathrm{yd} \equiv 3 \mathrm{ft}$
$1 \mathrm{lb} \equiv 16 \mathrm{oz}$

$$
1 \mathrm{in} \equiv 2.54 \mathrm{~cm}
$$

E) Significant Figures Rules

$$
\begin{aligned}
& \text { 1) ALL nonzero digits ARE sig. } \\
& 1,542 \quad 3.456
\end{aligned}
$$

2) Captive zeros: zeros between sig. digits ARE sig.

$$
20.6 \quad 20.06
$$

3) Leading zeros: zeros to left of first nonzero digit are NOT sig.

- locate decimal point
0.401
0.004

4) Trailing zeros: zeros to right of last non-zero digit
a) Number ends in zero to right of decimal point - zeros ARE sig.
0.040
400.0
b) Number ends in zero to left of decimal pt. - zeros generally NOT sig. 400

4100
f) Scientific Notation

Express a number as a coefficient times a power of 10 .

$$
\text { A } x \quad 10^{n}
$$

1 non-zero digit to left of decimal pt.

$$
400=4 \times 10^{2}
$$

$$
4.0 \times 10^{2}
$$

$$
4.00 \times 10^{2}
$$

Entering in calculators:

$4 \longdiv { E E }$ or EXP 2
F) Sig. Fig. in Calc. - Rounding Off

Result of a calc. must reflect accuracy of original measurements

1) Multiplication \& Division

Answer must contain same \# of sig. fig. as quantity w. least \# of sig. fig.
a) Ex 1: Divide 907.2 by 453.6

b) Ex 2: Determine volume of a

 box that measures 3.6 cm by 2.45 cm by 10.0 cm .
1) Rounding Rule 1 If leftmost number to be discarded is <5,

round down

$$
\begin{aligned}
& \text { i.e. - last number to be } \\
& \text { retained is unchanged }
\end{aligned}
$$

\therefore Answer should be:
2) Addition \& Subtraction Last place in answer is last place common to ALL numbers a) Ex 3: Add 4, 1.45, 12.4 \& express answer to correct number of sig. fig.

> | 4 |
| :---: |
| 1.45 |
| 12.4 |
| 17.85 |

1) Rounding Rule 2

If leftmost number to be discarded is >5 or 5 followed by non-zero digits,
round up
i.e. last number retained is inc. by 1
b) Ex 4: Find the difference between 12.4 and 4
12.4
$\begin{array}{r}-4 \\ \hline 8.4\end{array}$
c) Ex 5: Add 9.8 and 9.94 9.8
$+9.94$
19.74
d) Ex 6: Subtract 2.78 from 3.18 3.18
-2.78
0.40
e) Ex 7: Find diff. between 12.3 \& 1.45
12.3
$\begin{array}{r}-1.45 \\ \hline 10.85\end{array}$

1) Rounding Rule 3

If number to be discarded is 5 , or 5 followed by zeros,
round even
i.e. - leave last digit to be retained unchanged if even, increase by 1 if it is odd
\therefore Answer is:
f) Ex 8: Round each of the following to 2 sig. fig.

$$
1.45 \Rightarrow
$$

$1.550 \Rightarrow$
$1.452 \Rightarrow$
IX) Dimensional Analysis (Factor Unit Method)

Solve problems by carrying units throughout the calculations

- just converting units by using conversion factors

Conversion Factor

A number having two or more units associated with it

Numerically equivalent to 1
information given in one $X \underset{\text { factor }}{\text { conv. }}=$ a different type of unit
A) Ex 1: A local donut shop sells donuts for $\$ 4.49$ a dozen. You want 3 dozen donuts. How much will it cost?

change units
dozen
\Rightarrow
dollars

Can write 2 conv. factors
$\frac{1 \text { dozen }}{\$ 4.49}=1 \quad \frac{\$ 4.49}{1 \text { dozen }}=1$
Convert 3 dozen to ? dollars:
B) Ex 2: Convert 0.34 cm to $\mu \mathrm{m}$

\[

\]

$$
? \mu \mathrm{~m}=0.34 \mathrm{~cm} \times \frac{10^{-2} \mathrm{~m}}{1 \mathrm{~cm}} \times \frac{1 \mu \mathrm{~m}}{-------}
$$

Note: Conversions within a system are exact by definition.

C) More Complicated Conversions

1) Ex 1: A good pitcher can throw a fastball at a speed of $90.0 \mathrm{mi} / \mathrm{hr}$. How long will it take (in sec) to reach home plate 60.5 ft away?
$60.5 \mathrm{ft} \Rightarrow \quad ? \mathrm{sec}$

Have $90.0 \mathrm{mi} / \mathrm{hr}$
Must convert units in both numerator and denominator
$1 \mathrm{mi} \equiv 5280 \mathrm{ft} \quad 1 \mathrm{hr} \equiv 3600 \mathrm{~s}$
2) Ex 2: A pool measures 60.500 ft by 30.500 ft by 10.0000 ft . How many cubic meters of water can the pool hold?
3) Ex 3: What volume will 50.0 g of ether occupy? The density of ether is $0.71 \mathrm{~g} / \mathrm{mL}$

Density can be used as a conversion factor between mass and volume

