Chapter 1

Matter and Measurement

I) Definition of Chemistry

Science which deals w. composition, structure and reactions of matter.

A) Matter

Anything that has mass & occupies space.

1) Mass

measure of the quantity of matter

2) Weight

Result of gravitational attraction between matter

B) Composition

What matter is made of and how much of each component is present.

- 1) Several Ways of Expressing
 - a) by weight (mass)
 - b) by volume
 - c) Percent
 - d) Number of Moles
 - e) Number of Atoms

2) Macroscopic Level

Amounts that can be seen and weighed

- a) Ex: 1/4 lb. cheeseburger
 - 1) By weight (mass)

```
meat 4.0 oz cheese 0.8 oz roll 1.7 oz 6.5 oz
```

b) Ex: 95% ethanol 95% ethanol & 5% water

3) Submicroscopic Level described by numbers & types of atoms

Atoms: simple units of matter

Molecules: combinations of atoms

a) Qualitative

Ethanol consists of carbon, hydrogen & oxygen

b) Quantitative

Ethanol: 2 C atoms, 6 H atoms 1 O atom

Formula: C_2H_6O

C) Structure

Arrangement of components & how they are held together, or bonded

D) Reactions

Changes in composition & structure.

- 1) What products are formed?
- 2) How much of each product?
- 3) How fast the change occurs?
- 4) What energy changes accompany the reaction?

$$2 H_2 + O_2 \longrightarrow 2 H_2O + heat$$

II) Scientific Method

- A) Experiment (Record Observations)
 - 1) Careful recordings & analysis of data under controlled conditions
 - 2) Reproducible exp. never performed just once
- B) Draw a Conclusion Law

Concise statement about a basic relationship or regularity of nature drawn from observations.

- true for all cases examined

Law of Gravity
$$F = G \frac{m_1 m_2}{r^2}$$

C) Model (Explanation)

Idea that explains or correlates a number of facts

- explains how and why

1) Hypothesis

Tentative model

- test with new experiments

2) Theory

Model that has been tested many times & not disproved

- best idea that agrees with all known facts.

III) States of Matter

Liquid **Solid** Gas Constant No definite **Definite** volume volume volume or shape Definite fills container shape of container & shape takes its shape Highly Slightly Incompressible compressible compressible Great expansion expands slightly expands very when heated when heated slightly when heated

IV) Physical and Chemical Properties

A) Physical Property

can be determined *WITHOUT* changing the identity of the substance.

Ex: physical state, color, odor, m.p., b.p., density, specific heat

B) Chemical Property

describes a reaction with or conversion into another substance

Ex: flammability

C) Extensive & Intensive Prop.

1) Extensive Property

Depends on sample size.

Ex: mass, volume, heat content

2) <u>Intensive Property</u>

Do NOT depend on sample size.

Ex: color, melting point, boiling point, density, specific heat

V) Physical & Chemical Changes

A) Physical Changes

Change in appearance without change in identity

1) Ex: change in state

B) Chemical Changes (Reactions)

Converts a substance into a chemically different substance.

- change in composition &/or structure

$$2 \text{ K(s)} + 2 \text{ H}_2\text{O}(\ell) \longrightarrow 2 \text{ KOH(aq)} + \text{H}_2(g)$$

VI) Pure Substances and Mixtures

A) Pure Substances

uniform in properties throughout

- 1) Characteristics
 - a) constant (fixed) composition
 - b) distinct intensive properties
 - c) NOT separable by physical methods

Elements and Compounds

2) Elements

Substances that can NOT be decomposed into simpler substances by chemical means

118 known elements

Symbols used to identify

- 1 or 2 letters

 $C \equiv carbon$

 $Co \equiv cobalt$

Ca = calcium

a) Periodic Table

Elements arranged in order of increasing atomic number

properties of elements
 correlate w. position in periodic table

1) Periods

horizontal rows

- gives information about atomic structure

2) Groups

vertical columns

elements in groups have
 similar physical &
 chemical properties

Transparency 13 Figure 2.16 Periodic table divided into metals, nonmetals, and semimetals

							1
8A	2 He	Ne 10	18 Ar	36 Kr	54 Xe	86 Rn	
	7A	9 FI	17 CI	35 Br	53 I	85 At	
	6A	& O	16 S	34 Se	52 Te	84 Po	-
	5A	L Z	15 P	33 As	51 Sb	83 Bi	
	44	9	14 Si	32 Ge	50 Sn	82 Pb	
	3A	5 B	13 Al	31 Ga	49 In	81 TI	
			2B	30 Zn	48 Cd	80 Hg	
			118	29 Cu	47 Ag	79 Au	
		,		28 Ni	46 Pd	78 Pt	
			—8B—	27 Co	45 Rh	77 Ir	[109]
				26 Fe	44 Ru	76 Os	[108]
			7B	25 Mn	43 Tc	75 Re	[107]
			6B	24 Cr	42 Mo	74 W	[106]
	5B			23 V	41 Nb	73 Ta	· 105 Ha
	4B			22 Ti	40 Zr	72 Hf	104 Rf
	. 8		3B	21 Sc	39 Y	57 La	89 Ac
91	2A	4 Be	12 Mg	20 Ca	38 Sr	56 Ba	88 Ra
14	1 H	3 Li	11 Na	19 K	37 Rb	55 Cs	87 Fr

68 69	100 101
Er Tm	Fm Md
67	99
Ho	Es
99	98
Dy	Cf
19 e3	97 Bk
Gd 64	96 Cm
63	95
Eu	Am
62	94
Sm	Pu
61	93
Pm	Np
90	92
Nd	U
59	91
Pr	Pa
88	90 Th

Semimetals

Metals

Nonmetals

103 Lw

102 No

22

79 XP

• 1991 by Prentice Hall A Division of Simon & Schuster Englewood Cliffs, New Jersey 07632

CHEMISTRY: THE CENTRAL SCIENCE by Brown/Le May/Bursten

3) Compounds

Composed of 2 or more elements, chemically combined

- separable into its elements by chemical means

 $Ex: H_2O$

11.2% hydrogen 88.8% oxygen

a) Law of Definite Proportions
elements in a compound are
combined in definite proportions
by mass

B) Mixtures

2 or more substances NOT chemically combined.

1) Characteristics

- a) variable composition
- b) separable by physical methods
- c) components retain their own properties (chem. identities)

Ex: water-ethanol mixture

5% - mostly water

95% - mostly ethanol

50% - equal amounts

2) Heterogenous Mixture

Consists of parts that are unlike

do NOT have same
 composition, properties & appearance throughout

Ex: sand & salt
Raisin Bread

3) Homogenous Mixture

Prop. are uniform throughout

- down to the molecular level

Solutions

a) <u>Ex</u>:

gaseous solution: Air liquid soln: 95% ethanol

solid solution: brass

© 2012 Pearson Education, Inc.

VII) Units of Measurement

International System, SI units:

- have base units from which all other units are derived

Table 1.4

mass length time temp kg m s K

Base units for length & mass are part of metric system

- employs factors of 10

Prefixes: indicate size of unit relative to base unit

Selected SI Prefixes

Prefix	Abbrev.	Meaning	Example
Mega-	M	10^{6}	$1 \text{ megameter (Mm)} = 1 \times 10^6 \text{ m}$
Kilo-	k	10^3	1 kilometer (km) = $1 \times 10^3 \text{ m}$
Deci-	d	10^{-1}	1 decimeter (dm) = 0.1 m
Centi-	c	10^{-2}	1 centimeter (cm) = 0.01 m
Milli-	m	10^{-3}	1 millimeter (mm) = 0.001 m
Micro-	$\mu^{\rm a}$	10^{-6}	1 micrometer (μ m) = 1 x 10 ⁻⁶ m
Nano-	n	10^{-9}	1 nanometer (nm) = 1×10^{-9} m
Pico-	p	10^{-12}	1 picometer (pm) = 1×10^{-12} m
Femto-	f	10 ⁻¹⁵	1 femtometer (fm) = 1×10^{-15} m

^a This is the Greek letter Mu (pronounced "mew")

A) Mass

kilogram, kg

$$1 \text{ kg} \equiv 10^3 \text{ g}$$

$$1 \text{ kg} \cong 2.205 \text{ lb}$$

$$1 \text{ lb} \cong 453.6 \text{ g}$$

B) Length

meter, m

$$1 \text{ in} \equiv 2.54 \text{ cm}$$

$$1 \text{ m} \cong 1.0936 \text{ yd}$$

C) Volume

SI unit is m³

Commonly use liter, L

$$1 L \equiv 1 \text{ dm}^3$$

$$(1 \text{ dm} \equiv 10 \text{ cm})$$

$$1 L = (10 \text{ cm})^3 = 10^3 \text{ cm}^3$$

$$1 L \equiv 10^3 \text{ mL}$$

 \therefore 1 mL = 1 cm³

D) <u>Temperature</u>

Must specify temp. when making quantitative measurements

1) Celsius Scale

°C - commonly used

Fahrenheit, °F, scale used in public (USA)

°F	$^{\circ}C$	
212	100.0	b.p. of H ₂ O
98.6	37.0	body temperature
32.0	0.0	f.p. of H_2O

$$y^{\circ}C = \frac{100 \, ^{\circ}C}{180 \, ^{\circ}F} (x^{\circ}F - 32^{\circ}F)$$

$$y^{\circ}C = \frac{5^{\circ}C}{9^{\circ}F} (x^{\circ}F - 32^{\circ}F)$$

or

$$y^{\circ}F = \frac{9^{\circ}F}{5^{\circ}C} (x^{\circ}C) + 32^{\circ}F$$

a) Ex: Convert 25°C to °F

2) Kelvin Scale

SI base unit is kelvin, K

Must be used in most cases in chemistry

Absolute scale:

0 K : lowest possible temp.

$$\Delta T_{K} = \Delta T_{^{\circ}C}$$
 (unit same size)

$$0 \, ^{\circ}C = 273.15 \, \mathrm{K}$$

$$K = {}^{\circ}C + 273.15$$

E) **Density**

Mass per unit volume

$$D = \frac{m}{V}$$

SI unit is kg/m³

1) Specific Gravity

Sp. Gr. =
$$\frac{D_{\text{substance}} (g/mL)}{D_{\text{water}} (g/mL)}$$

No units

$$H_2O: D = 1.0 \text{ g/mL}$$

Ethanol:
$$D = 0.79 \text{ g/mL}$$

sp.
$$gr. = 0.79$$

VIII) Measurement & Significant Figures

Uncertainties always exist in measured quantities.

A) Precision

Degree of reproducibility of repeated measurements

i.e. - How close are to each other

Depends on skill of measurer

1) Ex: Measure width of notebook paper (in cm)

21.32 21.33 21.32 21.31

avg. width = 21.32 cm good precision

B) Accuracy

How close measurement is to true value

Paper's true width is 21.59 cm

Numbers in previous ex. have poor accuracy

Depends on quality of the measuring device

1) Ex: remeasure paper with a "better" ruler (in cm)

21.54 21.61 21.56 21.65

Avg. = 21.59 cm

good accuracy, poor precision

Ex:

- A (•) good precision poor accuracy
- B (•) poor precision poor accuracy
- C (•) good precision good accuracy
- D (•) "poor" precision good accuracy

C) Significant Figures

ALL digits we know exactly plus one we estimate.

Calibration of instrument determines number of significant figures (sig. fig.)

- previous measurements used a ruler marked in tenths of a cm (mm)

D) Exact Numbers

Infinite number of sig. fig.

1) By Count

Count the number of people in the room

- Integers

2) By Definition

1 dozen ≡ 12 items

 $1 \quad yd \equiv 3 \quad ft$

 $1 1b \equiv 16 oz$

 $1 \text{ in } \equiv 2.54 \text{ cm}$

E) Significant Figures Rules

1) ALL nonzero digits ARE sig.

1,542

3.456

2) <u>Captive zeros</u>: zeros between sig. digits ARE sig.

20.6

20.06

- 3) <u>Leading zeros</u>: zeros to left of first nonzero digit are NOT sig.
 - locate decimal point

0.401

0.004

- 4) <u>Trailing zeros</u>: zeros to right of last non-zero digit
 - a) Number ends in zero to right of decimal point
 - zeros ARE sig.

0.040

400.0

- b) Number ends in zero to left of decimal pt.
 - zeros generally NOT sig.

400

4100

f) Scientific Notation

Express a number as a coefficient times a power of 10.

$$\mathbf{A} \times 10^{\mathrm{n}}$$

1 non-zero digit to left of decimal pt.

$$400 = 4 \times 10^{2}$$

$$4.0 \times 10^{2}$$

$$4.00 \times 10^{2}$$

Entering in calculators:

F) Sig. Fig. in Calc. - Rounding Off

Result of a calc. must reflect accuracy of original measurements

1) Multiplication & Division

Answer must contain same # of sig. fig. as quantity w. least # of sig. fig.

a) Ex 1: Divide 907.2 by 453.6

b) Ex 2: Determine volume of a box that measures 3.6 cm by 2.45 cm by 10.0 cm.

1) Rounding Rule 1
If leftmost number to be discarded is < 5,

round down

- i.e. last number to be retained is unchanged
- : Answer should be:

- 2) Addition & Subtraction

 Last place in answer is last

 place common to ALL numbers
 - a) Ex 3: Add 4, 1.45, 12.4 & express answer to correct number of sig. fig.

4 1.45 12.4 17.85

- 1) Rounding Rule 2

 If leftmost number to be discarded is > 5 or 5 followed by non-zero digits, round up
 - i.e. last number retained is inc. by 1

e) Ex 7: Find diff. between 12.3 & 1.45

 $\begin{array}{r}
 12.3 \\
 -1.45 \\
 \hline
 10.85
 \end{array}$

1) Rounding Rule 3
If number to be discarded is 5, or 5 followed by zeros, round even

i.e. - leave last digit to be retained unchanged if even, increase by 1 if it is odd

: Answer is:

f) Ex 8: Round each of the following to 2 sig. fig.

IX) <u>Dimensional Analysis</u> (Factor Unit Method)

Solve problems by carrying units throughout the calculations

- just converting units by using conversion factors

Conversion Factor

A number having two or more units associated with it

Numerically equivalent to 1

A) Ex 1: A local donut shop sells donuts for \$4.49 a dozen. You want 3 dozen donuts. How much will it cost?

$$dozen \Rightarrow dollars$$

$$1 \text{ dozen} \equiv \$4.49$$

Can write 2 conv. factors

$$\frac{1 \text{ dozen}}{\$4.49} = 1$$
 $\frac{\$4.49}{1 \text{ dozen}} = 1$

Convert 3 dozen to ? dollars:

B) Ex 2: Convert 0.34 cm to µm

$$? cm = 1 \mu m$$

$$1 \text{ cm} \equiv 10^{-2} \text{ m}$$
 $1 \text{ } \mu\text{m} \equiv 10^{-6} \text{ m}$ or or $10^{2} \text{ cm} \equiv 1 \text{ m}$ $10^{6} \text{ } \mu\text{m} \equiv 1 \text{ m}$

?
$$\mu m = 0.34 \text{ cm x}$$
 $\frac{10^{-2} \text{ m}}{1 \text{ cm}}$ $\frac{1 \mu m}{10^{-6} \text{ m}}$

Note: Conversions within a system are exact by definition.

C) More Complicated Conversions

1) Ex 1: A good pitcher can throw a fastball at a speed of 90.0 mi/hr. How long will it take (in sec) to reach home plate 60.5 ft away?

$$60.5 \text{ ft} \Rightarrow ? \text{ sec}$$

Have 90.0 mi/hr

Must convert units in both numerator and denominator

$$1 \text{ mi} = 5280 \text{ ft} \qquad 1 \text{ hr} = 3600 \text{ s}$$

2) Ex 2: A pool measures 60.500 ft by 30.500 ft by 10.0000 ft. How many cubic meters of water can the pool hold?

3) Ex 3: What volume will 50.0 g of ether occupy? The density of ether is 0.71 g/mL

Density can be used as a conversion factor between mass and volume