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“The straight line, a respectable optical illusion which ruins many a man.” 
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Abstract. We explore the application of MBSE for conceptual sys-
tem architecting. Choosing an architecture is a fundamental activity. 
Our Model-Based System Architecting (MBSA) framework facili-
tates the specification of an architecture as a reasoning process – a 
series of conceptualization and decision-making activities, backed-up 
by an MBSE environment. Our framework captures both the ontol-
ogy of a stakeholder-driven and solution-oriented system architec-
ture, and the process of growing the architecture as a series of con-
ceptualization steps through five ontological domains: the 
stakeholder domain, the solution-neutral environment, the solution-
specific environment, the integrated concept, and the concept of op-
erations. Our MBSA approach shifts the modeling focus from record-
ing to conceptualizing, exploring, decision-making, and innovating. 
In comparison to an “offline” architecting process, our approach may 
initially require a bigger effort but should enable stronger stakeholder 
engagement, clearer architectural decision point framing, quicker ex-
ploration, better long-term viability, and increased model robustness. 

Keywords. Model-Based System Architecting, Model-Based Sys-
tems Engineering, Architectural Decision-Making, Object-Process 
Methodology, Concept Representation. 
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1.1. Introduction 

Choosing an architecture for a complex system, sometimes called the 
“fuzzy front end” of design, is a task rife with ambiguity. Traditional ap-
proaches have relied on a federated mixture of informal, semiformal, and 
formal methods. The growing challenge systems face today has made these 
“offline” approaches  largely obsolete. Model-Based Systems Engineering 
(MBSE) [1] is gradually becoming a mainstream approach for practicing 
systems engineering. However, while traditional systems engineering works 
to capture missing connections between subsystems, MBSE today is fo-
cused on the descriptive recording of concepts in models [2]. This concept 
representation is essential for further processing, analysis, and presentation, 
but it is only one aspect of systems engineering. Current practice and re-
search are overweight with the representational effort in MBSE, and under-
weight on analysis and decision-making. Similarly, software engineers are 
expected to deliver operational, functional, secure, and efficient software 
regardless of the programming languages and software development envi-
ronment they use; mechanical engineers are expected to deliver valid, veri-
fied, buildable, and maintainable part and component designs, regardless of 
the design technology they design with, etc. Nevertheless, in the current 
landscape of digital engineering [3], no one imagines that software, hard-
ware, or mechanical engineers will not employ the latest software to man-
age, design, implement, test, and deploy their deliverables. Systems engi-
neering should be no exception. 

We explore the ways in which MBSE can be used to support system ar-
chitecting, and to ensure that the process remains rigorous and insightful.  
Reaching a good system architecture must be inherent in any MBSE ap-
proach. Accordingly, our model-based system architecting (MBSA) ap-
proach uses models and analysis of MBSE to choose an architecture. It is 
not a detached adaptation or variation of MBSE to system architecting.  

Much has been written about the descriptive aspects of MBSE, whether 
it be in cataloging functional flow or in defining potential system states. 
However, this documentation does not necessarily support architectural de-
cision-making unless it presents decision points. A decision point could be 
an opportunity to choose a solution from at least two options. We define 
what we consider architectural, in order to evaluate how and where MBSE 
supports decision-making about architecture. 

The effort involved in building an MBSE environment and the associated 
cultural transformation imply that the scope and purpose must be crisply 
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defined, so as to rationalize the investment in MBSE. One of these purposes 
(but by no means the only one) is to support architectural decision-making. 
MBSA includes the following cycle of activities in scope: 

1. representing potential architectures with models, 

2. identifying architectural decisions, 

3. conducting analysis in support of emerging architectural decisions, 

4. making architectural decisions based on model analysis results, and 

5. capturing decisions in the model for the next architecting iteration.  

Model-Based Conceptual Design (MBCD) resembles MBSA. MBCD is 
the application of MBSE to tradespace exploration during the conceptual 
stages of systems engineering [4]. The activities performed during the con-
ceptual stages of system engineering are defined as architecting, and their 
main outcome is an architecture – a holistic view of the entire system. By 
contrast, activities performed to realize the architecture, particularly plan-
ning solutions with engineering and scientific knowhow – are considered as 
designing – where the main outcome is the design: a blueprint for developers 
to implement or build the system. A complex component’s design may con-
stitute architecting for that component as a bona fide system, e.g., the jet 
engine in an airplane, or a communication network that connects many sen-
sors and controllers. 

MBSA has also been used as an acronym for Model-Based System Ar-
chitecture [5], in a framework which uses the Systems Modeling Language 
(SysML) [6]. That approach focused on providing a repository of artifacts, 
which facilitate communicating with stakeholders, assuring requirements 
traceability, and specifying systems and sub-systems. We employ the MBSE 
paradigm as a reasoning mechanism, and not only as a documentation ap-
proach, because we believe that it generates additional value to stakeholders. 

Previously, the Model-Based System Architecting and Software Engi-
neering (MBASE) approach [7] advocated a holistic process for software 
architectures, software lifecycle guidance. The MBASE approach was in-
fact document-centric. The model-based ecosystems were not yet mature 
enough to accommodate a complete system architecting, design, develop-
ment, deployment, and operation thread. Therefore, MBASE started with an 
Operational Concept Description (OCD), but focused on generating docu-
ments like the System and Software Requirements Definition (SSRD), Sys-
tem and Software Architecture Description (SSAD), Life Cycle Plan (LCP), 
and Feasibility Rationale Description (FRD) [8]. It also concerned some 
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critical aspects in software deployment such as iterative development, fol-
lowing the Spiral paradigm [9], transition, and software support. 

The discussion on the necessity, relevance, and sufficiency of system ar-
chitecting, particularly in software-intensive systems, has been ongoing es-
pecially with the appearance of short-cycle iterative and continuous devel-
opment and deployment approaches [10]. The key argument remains, and 
gets validated in many famous failures [11] that holistic system architecting 
increases confidence in the ability to meet stakeholder needs, develop a ro-
bust architecture that can adapt to changes, and reduce the amount of tech-
nical debt as the system evolves [12]. 

Many of the building blocks described in this chapter originate from pre-
vious holistic frameworks for system architecting [13], in which modeling 
played a key role in concept description, but could not yet be regarded as a 
fully model-based approach.  

Bahill and Madni introduce a model-based approach known as the 
SIMILAR process, which stands for: a) Stating the Problem, b) Investigat-
ing Alternatives, c) Modeling the System, d) Integrating Components, e) 
Launching the System, f) Assessing Performance, and g) Re-evaluating the 
System [14]. The MBSA approach that we proposed focuses and extends on 
the early stages in the SIMILAR framework and especially on early itera-
tions in which the conceptual architecture is the main artifact, and little or 
no physical components are available.  

1.1.1. Model-Based System Architecting: Crossing a 
Mental Grand Canyon 

MBSA often begins with concept brainstorming in response to some need 
or set of needs, and ends with a formalized review and sign off of a well-
defined and buildable architecture. In between, there is a series of concep-
tualizations and decisions: The leap from stakeholder needs to a well-de-
fined organization of structural and behavioral elements does not happen 
overnight. This mental ‘Grand Canyon’ is simply too wide to jump all at 
once, and a series of intermediate steps is necessary. The question is: how 
can we wisely plan these steps that will lead us safely to the other side? This 
idea is illustrated in Error! Reference source not found..  
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Figure 1. Crossing the mental Grand Canyon from needs to operationally-viable 
solutions, through a series of system architecture decisions, using a model as the 
knowledge base and primary reasoning engine. 

A system architecture is a description of the structure and behavior of a 
system that jointly provide one or more functions to serve the needs of sys-
tem stakeholders. MBSA relies on a formal modeling language to capture, 
present, and reason about the system architecture, but the deliverables are 
essentially the same as those of the traditional (not model-based) process: a 
specification of the system architecture, which can serve as the basis for 
further requirement specification, design, development, testing, and opera-
tion. This high-level concept of MBSA is illustrated in Figure 2. We shall 
be using Object-Process Methodology (OPM) [1] as a model for this Chap-
ter, due its relative simplicity (using OPCloud, and its automatically gener-
ated text specifications1 [15]). The complete reference model for our MBSA 
framework is included in [16]. In Figure 2 the objects (such as “Stakeholder” 
and “System Architect”) are denoted by rectangles, whereas the process 
(“Model-Based System Architecting”) is denoted by oval. The filled in 
black triangle inside a triangle means that the “Need” is the attribute of 
“Stakeholder”. The link with arrow informs about the consumption of the 
attribute “Need” by the “Model-Based System Architecting” process. The 
link with filled in circle at the end is the agent link (“System Architect”), 
whereas the link with the open circle at the end is the instrument link 
(“Model-Based Systems Engineering Environment”). The full description 
of the OPM symbols can be found in [1]. 

 
1 Figure 2’s title is directly drawn from the text specification that OPCloud generates for this diagram, making it an unambiguous  

description of the diagram. 
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Figure 2. Model-Based System Architecting: Stakeholder exhibits Need. Model-
Based System Architecting consumes Need of Stakeholder. System Architect han-
dles Model-Based System Architecting. Model-Based System Architecting requires 
Model-based Systems Engineering Environment. Model-Based System Architect-
ing yields System Architecture. 

1.1.2. A Tango of Conceptualizations and Decisions 

A concept is an initial mapping of what we want to accomplish to the 
form that will be used to accomplish it. For example, “the rocket will land 
upright using stabilizer fins”, “the vehicle will work on both fuel and elec-
trical power”, or “all the communications will go through the central mes-
sage hub”. The concept is part of the system architecture and should be spec-
ified appropriately within the scope of the MBSA process.  

A concept maps function to form [13]. The function of a system is a pro-
cess (an activity), which typically affects one or more operands (the objects 
that are changed by the activity). The form is a set of elements that support 
this function. This is analogous to the three core parts of all languages being 
the noun (instrument of the action), verb (activity that describes the action), 
and noun (the object of the action) [17]. Figure 3 illustrates the basic pattern 
of a concept and the association among the concept, function, form, and ar-
chitecture. 

The highest-level concept of the entire architecture should be a short 
phrase or sentence. For example, “Self Driving Car handles Transporting of 
up to 4 Passengers to a distance of 500km”. In this short example we clearly 
see a) the process: Transporting, b) the form: Self Driving Car, c) the oper-
and: Passenger (up to 4). Additionally, this statement includes an optional 
attribute: Distance (up to 500km), which may be drawn from some need. 
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Figure 3. Concept: Form enables Function; Function = Process that affects an Op-
erand. The allocation of Function to Form leads to an Architecture [13]. 

The long journey from needs to solutions passes through a series of steps 
and is by no means a straight line. Many of these steps go back and forth in 
what could be imagined as a tango dance. Many mental models have been 
proposed for this series of steps, most notably the V model and other exam-
ples [18], which mostly advocate a procedure of activities. We present a 
generic classification. We argue that at each point, architecting is either one 
of two cognitive tasks: conceptualizing or deciding. Conceptualizing is de-
scribing or specifying concepts, while deciding is selecting concepts from 
the available candidate pool. After deciding, the decision becomes part of 
the solution. Conceptualizing and deciding are collectively referred to as 
reasoning. Each architecting step is a reasoning step, and MBSA is a series 
of reasoning steps, as shown in Figure 4. Both types of reasoning – concep-
tualization and deciding – can benefit from a model-based approach. 
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1. Model-Based System Architecting zooms into Conceptualization, Concept Selec-

tion, and Concept Development, which occur in that time sequence. 
2. Stakeholder exhibits Need. 
3. Conceptualization requires Need of Stakeholder and System Architecture. 
4. Conceptualization yields Candidate Concept. 
5. Concept Selection requires Candidate Concept. 
6. Concept Selection yields Concept. 
7. Concept Development requires Concept. 
8. Concept Development yields System Architecture. 

Figure 4. Model-Based System Architecting in-zoomed 

1.2. Model-Based Concept Representation 

In this section, we discuss a conceptualization process, built around a con-
cept representation framework, supported by OPM modeling language. In 
sub-section 1.2.1 we define an ontology for system architecting with five 
domains. Sub-sections 1.2.2 to 1.2.6 sequentially reveal each one of the on-
tological domains through a conceptual reference model. The iterative na-
ture of the system design process is demonstrated through the interplay be-
tween the domains. The Scope of an MBSA Application is explained in sub-
section 1.2.7. We then use this framework to examine how MBSA changes 
the system architecting process.  
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1.2.1. System Architecture Framework 

An ontology is a formal vocabulary of domain concepts. It is critical to 
adopt and formalize an ontology for a coherent discussion about concept 
representation, particularly for system architectures. Our ontology is illus-
trated in Figure 5. This ontology underpins a framework that introduces the 
core entries within the system architecture concept representation, and pro-
poses ways to encode these entries, preferably in a modeling environment. 
The ontology consists of five domains: Stakeholders (D1), Solution-Neutral 
Environment (D2), Solution-Specific Environment (D3), Integrated Con-
cept (D4), and Concept of Operations (D5). A concept domain is a subset of 
the ontology, which focuses on a specific aspect of the architecture, and has 
a mapping to other. Domains are distinguished by color. We list 28 entries 
within these domains, based on a concept representation framework intro-
duced in [19, 20]. We reference these 28 entries using {EXX}, such as 
{E15} referring to Specific Form.  

The first three domains, D1-D3, represent the simplest formulation of a 
concept. The fourth and fifth domains lie downstream to reflect a latent ter-
mination, i.e., extending D1-D3 as long as it is still appropriate to continue 
detailing the architecture. The exact timing for terminating varies with solu-
tion types and contexts [19, 20]. D1-D3 are distinguished from D4-D5 in the 
abstract vs specific levels of discussion. The system architect should be 
comfortable with switching from the abstract discussion (D1, D2, and D3) 
to a more concrete level of detail (covered by D4 and D5). Moreover, itera-
tive system architecting means that D5 can impact D1, in a cycle of revising, 
diverging, and converging. Figure 6 shows the system architecture as a com-
position of the domains. 
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Figure 5. A System Architecture Ontology and a Concept Representation Frame-
work, adapted from [19, 20]. 

 
Figure 6. A System Architecture ontology with five concept domains. 

1.2.2. The Stakeholder Domain (D1) 

The Stakeholder domain (D1) captures stakeholders and their needs. A 
stakeholder {E01} is “any group or individual who can affect or is affected 
by the achievement of the system’s objectives” [21]. In other words, many 
groups and individuals can be stakeholders in the broadest sense, depending 
on the context. This emphasized the importance of a broad operational con-
text in which the system is intended to operate. Consider the European 
“Green Deal” [22]: according to the given definition, all humans on Earth 
are Green Deal stakeholders.  
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Stakeholder needs {E02} are defined as answers to the question ‘What 
problems are we trying to solve?’” [23]. Needs should be problem-oriented 
and not solution-oriented. Needs are often specified before the system ar-
chitect gets involved. Needs are often fuzzy, ambiguous statement by stake-
holders. This fuzziness challenges system architects to clearly formulate the 
essence of the need, e.g., what is the expected capability, or expected out-
come, or expected change to the current state. The special importance of the 
stakeholder needs is that they are used to formulate functional requirements 
in a solution-neutral environment.  

The stakeholder needs might come from the variety of the sources. The 
first of them is the stakeholders themselves: this is the task of the system 
architect to frame the discussion with stakeholders in such a way that would 
help formulating those needs. Another potential sources of needs are the Use 
Cases, constraints, requirements that might come from extensive literature 
review. 

The system architect's goal is to formulate the functional intent in each 
stakeholder need. Needs are associated with the problem statement first, ex-
pressed in the solution-neutral environment and realized through the pro-
cess. Figure 7 illustrates the Stakeholders domain (D1) in which the stake-
holders are denoted by rectangle and need is defined as an attribute (denoted 
by a black triangle inside a triangle) of stakeholders. 

 
Figure 7. The Stakeholders Domain (D1): Stakeholder {E01} exhibits Need {E02}. 

1.2.3. The Solution-Neutral Environment (D2) 

The need for a solution-neutral environment is a fundamental design prin-
ciple [24]. The solution-neutral environment (D2) facilitates the elicitation 
of functional requirements, which must be free of any bias towards prospec-
tive solution approaches, specific technical disciplines, or implementation 
strategies [25]. Therefore, the system architect specifies the essential infor-
mation about the solution-neutral process before solution concept 
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development. The functional intent (such as “transporting passengers”, 
“transferring money”, or “playing music”) should be formulated before the 
possible alternative solutions are set up. 

Figure 8 encodes the solution-neutral environment (SNE) and its entries. 
The solution-neutral operand (SNO) {E03} is an object of interest that will 
undergo some transformation by the solution-neutral process (SNP) {E06}. 
The solution-neutral process manifests the dynamic nature of the function: 
it reflects the action. The SNP and SNO should be abstract so that a variety 
of alternatives will emerge and an informed decision-making process will 
take place. The SNE entries may have attributes, which are appropriate to 
start elaborating at this stage. 

SNP {E06} maps to the need {E02}, which is specified in D1, as shown 
in Figure 8. Need is realized via the performance of some process – the SNP 
and the consumption, transformation, or generation of some operand – the 
SNO. Changes in need are likely to entail changes in SNP.  

 
Figure 8. The Solution-Neutral Environment (D2): Need {E02} exhibits Solution-
Neutral Process (SNP) {E06}. Solution-Neutral Process (SNP) {E06} affects Solu-
tion-Neutral Operand (SNO) {E03}. Solution-Neutral Operand (SNO) {E03} ex-
hibits SNO Value Attribute {E04} and SNO Attribute {E05}. Solution-Neutral Pro-
cess (SNP) {E06} exhibits SNP Attribute {E07}. 
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1.2.4. The Solution-Specific Environment (D3) 

The solution-specific environment (D3) encodes alternative architectures. 
A solution entry defines how the system is going to perform the solution-
neutral functions. Solution-specific processes (SSPs) and solution-specific 
operands (SSOs) are mapped to their solution-neutral counterparts (which 
were presented in D2), such that it is clear which solution-specific entry at-
tempts to realize each solution-neutral one. For example, “Transporting by 
Air (Flying)”, “Transporting by Land (Rolling)”, and “Transporting by Sea 
(Sailing)” are SSPs refining the SNP “Transporting”. 

The solution-specific environment is derived from the solution-neutral 
one via the generalization-specialization relation (drawn as a blank triangle 
in OPM, as shown in Figure 9). The SNO “person” generalizes the SSO 
“passenger” in a transportation context, “patient” in a medical context, and 
“user” in a technological context. Domain jargon can better describe the ar-
tifacts, entities, and human roles (e.g., the SSO “exoplanet” in deep space 
exploration). 

The number of possible solutions is a product of the number of D3 entries 
per D2 entries, therefore it increases with every additional solution-specific 
entry. However, the specification of solutions also narrows down the funnel 
of possible solutions. While the solution-neutral environment leaves room 
open for as many solutions as possible, solution-specific entries identify spe-
cific ways that realize the solution-neutral intent to choose from, and close 
the door to other unlisted ideas.  

The solution-specific environment may also be associated with the prin-
cipal solution – the deliverable of conceptual design [26]. A principal solu-
tion is a concept, and the early outline of an architecture. The key purpose 
of the solution-specific environment is to discover the architecture by spec-
ifying those forms as principal solutions. This is achieved by specifying Ge-
neric Form entities {E13} and associating them with the SSOs they enable 
or support. Every SSP has several optional Generic Forms that may imple-
ment it. This is a fundamental conceptual design principle, which, to some 
extent, further extends the solution space. For example, the SSP “Flying” 
can be implemented by several Generic Forms, e.g., Airplane, Helicopter, 
and Drone.  

Each Generic Form can be specialized into Specific Forms (SFs) {E15} 
within the scope of the Generic Form. For example, “Jet Airplane”, “Turbo-
Prop Airplane”, and “Propeller Airplane” are three SFs of the Generic Form 
“Airplane”. The Vertical Take-off and Landing (VTOL) Aircraft concept, 
which is featured by Lockheed Martin’s V-22 “Osprey”, is a form with 
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lineage to two Generic Forms: Airplane and Helicopter. Therefore, a Spe-
cific Form which is a combination of several Generic Form can be a valid 
concept. In fact, converging multiple dimensions of Generic Form into a 
minimal set of specific forms is desired, if it reduces the tradespace into a 
smaller set of comprehensive, integrated solutions. 

 
Figure 9. Solution-Specific Environment (D3): Solution-Specific Process (SSP) 
{E11} affects Solution-Specific Operand (SSO) {E08}. Generic Form (GF) {E13} 
enables Solution-Specific Process (SSP) {E11}. Solution-Specific Operand (SSO) 
{E08} exhibits SSO Value Attribute {E09} and SSO Attribute {E10}. Solution-
Specific Process (SSP) {E11} exhibits SSP Attribute {E12}. Generic Form (GF) 
{E13} exhibits GF Attribute {E14}. Specific Form (SF) {E15} exhibits SF Attrib-
ute {E16}. 

1.2.5. The Integrated Concept (D4) 

An integrated concept fuses multiple concepts into a cohesive architec-
ture. Two integrated concepts should be distinguishable from each other at 
a relatively high-level of abstraction (i.e., following a relatively small num-
ber of abstraction steps, such as the listing of internal processes or the break-
down into components). The integrated concept must also reach a sufficient 
level of granularity that allows for the critical transition from system 
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architecture to subsystem design [27]. The integrated concept actually re-
sults from decomposition, rather the composition, i.e. by increasing the 
granularity of the architecture. 

The Integrated Concept Domain (D4) encodes the internal processes, op-
erands, structures, and relations, as illustrated in Figure 10. Digital thread 
flows from the specific form {E15} in D3. Each function is compounded 
from an Internal Process {E20} and an Internal Operand {E17}. Internal 
Element of Form {E22} enables the functions. The structure (physical inter-
action of elements of form) and interactions (functional relationship of ele-
ments of form) between the system concept’s entities are demonstrated at 
the bottom of  Figure 10.  

 
Figure 10. The Integrated Concept Domain (D4): Internal Process {E20} affects 
Internal Operand {E17}. Their attributes are specified {E21}, {E18}, {E19}, re-
spectively. The internal elements of form {E22} is used to execute the function. 
IEoF’s attribute is {E23}. The lower part specifies structural and interaction rela-
tions {E24} and interactions {E25} among instances of IEoFs {E22}. 

A system architecture captures vertical and horizontal relations [28]. The 
vertical relations capture the decomposition or breakdown of systems into 
subsystems. The horizontal relations capture interactions between elements, 
such as flows of material, energy, or information. D4 caters to both the 
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vertical relations – encoded in the upper part of Figure 10, and the horizontal 
ones, encoded in the lower part of Figure 10. 

The multiplicity of potential vertical breakdowns and horizontal interac-
tions gives rise to the concern that the architecture of the integrated concept 
will become too complicated and messy. We should therefore set bounds on 
the amount of information to specify at this stage. Miller’s Law states that 
an average human can hold 7±2 objects in short-term memory [29]. It has 
since become common to assert that 7±2, Miller’s Magical Number, is a 
good limit for complexity, because constructs that include more than 7±2 
items are likely to become difficult to grasp.  

Completeness and complexity go together in our approach. That is to say: 
a complete integrated concept at the first level of decomposition (from a 
specific concept to the set of internal structures), is complete in the sense 
that it utilizes its complexity quota, so to speak: A view that comprises no 
more than 7±2 elements make a good candidate for completeness of speci-
fication. That is not to say that there cannot be more elements. More ele-
ments should be clustered with the existing 7±2 elements. Thus, 7±2 is in 
fact an estimate for sufficiency and a constructive measure of complexity, 
in the sense that it encourages the architect to converge on this range for 
complexity management. We can therefore say that a problem that does not 
converge on a 7±2 element scale at any given level of hierarchy, may not 
qualify for this approach. 

1.2.6. The Concept of Operations (D5) 

The Concept of Operations (ConOps) domain (D5) specifies the overall 
high-level idea of how the system will be used to meet stakeholder expecta-
tions [23]. The Department of Defense Architecture Framework (DoDAF) 
refers to the ConOps as a high-level abstraction graphic that captures how 
the system will operate, how it will work out together to help the operational 
stakeholders achieve their goals [30]. We have shown a similar model-based 
approach for analyzing the DoDAF Operational Viewpoint, which covers 
the ConOps [31].  The ConOps ties the system concept with the environ-
ment, and over time. The ConOps is important as it informs all stakeholders 
with the context and integrative operation of the system: what processes are 
to be performed, in which sequence, and how they will be executed by com-
ponents of the architecture. Eventually, the purpose of the ConOps is to il-
lustrate how the architecture delivers value. ConOps should include both the 
system of interest, and the accompanying systems that are necessary to con-
sider during the system design process. 
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D5 focuses on the context represented through the whole product system 
{E28}, as shown in Figure 11. It includes the accompanying systems, sys-
tem enterprise which is responsible for the system of interest {E15}, and 
operator {E27}. An operator is a person or group of people who operate the 
system. There is always one higher level in which an architecture resides, 
unless we aim to architect a universe, which, to the best of our knowledge, 
is the most inclusive architecture of all.  

 
Figure 11. The Concept of Operations Domain (D5) 

The context defines how the system interacts with its environment. The 
same architecture can perform perfectly in one context and poorly in an-
other. For example, a Formula 1 racer will be amazing on the racing tarmac 
but less adept on the loose surfaces of the Dakar Rally. Even if the architec-
ture remains the same, the context provides the boundaries and constraints 
in which the solution architecture must operate successfully. 

While it might make sense to consider the ConOps earlier in the process, 
it can also be harmful because setting too many constraints and restrictions 
limits our ability to come up with good solutions. Consider, for example, 
that operational stakeholders will impose a ConOps that heavily relies on 
manual or cognitive actions, while the whole solution can be autonomous or 
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semi-autonomous. We would rather explore multiple options and validate 
autonomous solutions by finding an appropriate ConOps, rather than try to 
fit it into a human-intensive environment. Thanks to a paradigm shift in the 
automotive industry, many more functions are delegated to automation and 
relieve the driver of the cognitive load rather than intensify the burden. 

It is still possible to specify ConOps upfront for an already well-defined 
operational architecture in which the architect has to integrate a new capa-
bility or functionality. The specification of legacy elements, platforms, and 
reusable assets can be helpful both for solution-specific concept viability 
and for further-up elicitation of needs. In some cases, a critical analysis and 
challenging of existing operational concepts may help elicit the true under-
lying needs of operational stakeholders, which may open up the door to 
other major architectural enhancements.   

ConOps has connections with the other domains, which is illustrated in 
Figure 11. The iterative nature of the system design process is embodied in 
the clear digital thread that starts with stakeholders and their needs and cul-
minates in D5. Figure 11 demonstrates the role of D5 in context representa-
tion, as well as inclusion of the system design process in a coherent way in 
which the domains are interwoven to deliver a value from system operation 
to meet stakeholders needs. 

1.2.7. The Scope of an MBSA Application 

The scope of an MBSA project may be a subset of our framework. The 
system architect may choose to focus only on some domains, depending on 
how broad or narrow an exploration they desire. Ideally, we would try to 
model just enough to have a reasonable evaluation of our architectural op-
tions, identify evaluation criteria, and move forward with an architecture. 
MBSA should capture sufficient detail to support the detailed design. Un-
fortunately, the broader the architectural decisions under consideration, the 
more general the models must be to account for the breadth of options. The 
presented framework assumes that the fixed effort available in the architect-
ing phase is a tradeoff between breadth and depth of architectures evaluated.  

MBSA is designed to minimize unnecessary effort. If, for instance, a so-
lution-specific environment (D3) is already defined due to various con-
straints (for instance, implementing some functionality using specific hard-
ware type), we may skip the divergence from solution-neutral environment 
(D2) and attempt to match the solution-specific environment (D3) with 
stakeholder needs (D1). Solution-neutral and solution-specific functionali-
ties are defined in a way that clarifies and simplifies the MBSA effort. This 
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approach also helps systems architects focus on those functionalities that are 
most critical to constitute decision points that would direct the architecture 
one way or another.  

System architecture, like civil architecture, is both science and art [32]. 
This scope should answer the following questions, including explicitly spec-
ifying what lies outside the boundary of MBSA:  

1. Which functions must, should, should not, and must not be captured?  
2. Could introspecting on the functions of interest yield a re-formulation 

of the problem? If so, how general must the model be?  
3. Which components should and should not be captured? 
4. How do we determine if someone is a stakeholder and whether they 

should be included? 
5. How do we evaluate synergies or conflicts in a given architecture?  
6. What are the insights derived from the process of architecting beside 

the outline of a selected architecture, and how do we preserve those 
insights in order to further inform the design process?  

7. At which level of granularity is it sufficient to decompose the system 
of interest in relation to context and specific needs of stakeholders? 

MBSA allows for recording the answers to these questions within the ar-
chitecture model, and within the context of our concept representation 
framework – thus extending and empowering the cognitive process done by 
the system architect in order to consider and answer these questions. Indeed, 
just like a painting is an artifact of the artistic process, a model can record 
the emergent propositions that we include in a system architecture, such as 
elegance, empowerment, holism, and inspiration – all of which are subjec-
tive perceptions that we hope stakeholders will experience when presented 
with the selected system architecture. 

1.3. MBSA And Architectural Decision-Making 

In this section we focus on the value of a model-based process for archi-
tectural decision-making. Architectural decisions are those reasoning steps 
that affect the direction in which an architecture evolves. Decisions are made 
throughout the process, and some are based on the model. We focus on how 
model-based system architecting would be different from a traditional “of-
fline” system architecting process. It has been generally asserted that models 
promote easier design reuse, evaluating more options, and automating de-
sign space exploration. We are interested in a deeper question of how we 
might expect decision-making to change. The mere availability of models 
has not broadly changed the decision-making process. We ask what is it 
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about MBSE capabilities that would lead us to believe that the process of 
choosing among potential architectures is different, and better?  

R&D stakeholders often make incremental decisions on large programs, 
before detailed solution comparison tables are available. The front end of 
design is often ambiguous, and there is a gulf to be crossed between the 
concept-as-a-napkin-sketch and detailed specifications. We need more rig-
orous bridges than the traditional ones – slideshow illustrations and overly 
complex draft box-and-line drawings.  

The ability to visualize decision-supporting information as discussed in 
the previous section had taken a back seat while the MBSE community had 
focused on the modeling environment and the user experience of the mod-
eler or analyst. Product managers and engineers have been somewhat ne-
glected and have lost their ability to look at a model, recognize a dilemma, 
understand the options, and make or at least advise a decision. In this section 
we try to remedy this situation by focusing on decisions rather than on ex-
cellence in modeling. 

Following a brief discussion of some decision-theoretic concepts (sub-
sections 1.3.1 and 1.3.2), we study several ways in which MBSE enhances 
architectural decision-making: Capturing stakeholder needs as cost and ben-
efit manifestations of architectural decisions (sub-section 1.3.3); Capturing 
and discovering the tradespace of possible candidate conceptual architec-
tures, and highlighting decision points and inviting the architect and stake-
holder to resolve them; Specifying architectural decisions by detailing the 
solution-specific architecture in the context of the problem domain; and 
highlighting the decisions that were made or will have to be made through-
out the architecting process, their impact on the evolving architecture, and 
the trace of justification and rationalization of the emerging architecture 
(sub-section 1.3.5). 

We consider driver behavior tracking, an issue that vehicle owners are 
familiar with, as they want to ensure the safe and lawful behavior of those 
who drive their vehicles. This issue is well known to vehicle fleet operators, 
rental companies, insurers, and parents of adolescent children. We would 
like to find a solution for this problem.  

1.3.1. What is a decision and which decisions are 
architectural? 

Decisions are the choices that one makes about something after consider-
ing several possibilities [33]. This definition emphasizes that a) each 
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decision emerges from several alternatives, and b) the choice should be 
made after reasoning and consideration. A decision is the outcome of a de-
cision-making process. 

Architectural decisions are those important and critical-to-make decisions 
that have a significant impact on the concept – i.e., a significant transfor-
mation of system structure and behavior [13]. Our cognitive and mental abil-
ities and subjective biases may make the most important decisions indis-
cernible from less important ones. The model-based approach helps place 
stakeholders on the same page and ensure that priorities, impacts, and im-
plications are clear to all, conventionalized, and objective, as part of the de-
cision-making process. 

Decision-making is the process of reaching a decision. It generally con-
sists of three phases: Decision Problem Definition, Deciding, and Decision 
Execution. A more detailed description of the canonical outline of decision-
making is provided by [34]. 

The system architect’s primary role is decision-making, and decision 
making is the essence of architecting, however, more and more architectural 
decisions are made in groups, and the architect’s role becomes one of facil-
itating, moderating, informing, and recording architectural decisions [35]. 
This notion highlights the importance of a suitable platform that would assist 
the system architect throughout the architectural decision-making process. 
Decision support capabilities include information management, formula-
tion, recommendation, selection, execution, and learning [36].  

The relevance of several alternatives is natural to humans. From the most 
trivial chore to the most pressing and fundamental issues of our lives, there 
are always at least two options, and even when there is one visible option, 
there is also a shadow, or default option of “doing nothing” (DN). When we 
consider medical treatment, we identify alternative clinics, physicians, med-
ical approaches, available days and hours, healthcare coverage, and the risk 
of worsening our medical condition. Complex system architecting is no dif-
ferent: When we design a new aircraft, we evaluate the desired capacity, fuel 
consumption, range, piloting automation capabilities, situational awareness, 
etc. Alternatives emerge from key attributes, relevant values, and feasible 
combinations.  

Decision analysis is the scientific foundation of decision-making. It is 
rooted in both the exact and social sciences, giving rise to two DM para-
digms: the analytical and the behavioral. Analytical, model-centered ap-
proaches emerged from classical probabilistic and utility-theoretic ap-
proaches and focused on rational choice [37–39]. Behavioral decision 
theories view decision-making as a non-normative, human-centered 
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process, with all the issues it raises [40]. According to the behavioral school, 
a person or group of people make decisions under various constraints, un-
certainty, and bias [41]. The behavioral approach deals with heuristics, ra-
tionality and rationalization, analysis paralysis, and a host of other aspects 
and phenomena of human cognition. Managerial aspects like decision track-
ing and assurance are considered mainly behavioral.  

Two primary handbooks on systems engineering (INCOSE’s and 
NASA’s [23, 42]) discuss decision making as an engineering process, con-
cerning both programmatic and architectural aspects. Programmatic deci-
sions are made at decision gates, to simplify project and risk management. 
Architectural decisions concern aspects like functionality, design, technol-
ogy, and vendor selection.  

Trade Study, or Tradespace Exploration, is the process of analysing var-
ious architectural alternatives, and trading-off figures of merit until a bal-
anced solution is obtained [43, 44]. The primary phases of a trade study are:  
problem scoping, communicating with stakeholders, defining evaluation cri-
teria and weights, defining and filtering alternatives, evaluating candidate 
alternatives based on measures of merit, selecting the best alternative, re-
viewing and re-evaluating the selection, assessing impact, and validating as-
sumptions. 

Reasoning about the alternatives is a fundamental part of our actions. 
There is a need to support the reasoning process through the recording and 
visualization of alternatives, compositions of alternatives, and comparisons 
of alternatives. The model-based approach empowers reasoning by reducing 
all the alternatives into a common formal language and representation. The 
representations of alternatives are not always straightforward, and the need 
to formulate them under the syntax and semantics of the modeling language 
makes the alternative concepts and their attributes emerge through an inter-
active cognitive-computational process, rather than through a deterministic 
mechanistic process of converting ideas to models.  

Additional concerns related to decision making involve the consideration 
of uncertainty, risk, and subjective bias. Being able to integrate requirement 
prioritization, solution architecture selection, design exploration and deci-
sion making, and risk analysis is the essence of informed decision-analytic 
system architecting [14]. We would add here that the ability to do all of this 
in a model-driven way and in a model-based environment, particularly dur-
ing early conceptual architecting iterations, is the essence of this chapter. 

While the concept is a function-form mapping at the highest level of ab-
straction, a series of architectural decisions maps a set of functions to their 
respective forms. Consider an example of the functional intent of Money 
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Moving, as illustrated in Figure 12. In this case the stakeholder {E01} is 
defined as a Person, who has a need {E02} Change the location of money 
from point A to point B. The solution-neutral process Moving {E06} affects 
the solution-neutral operand Money {E03} by changing its state from Point 
A to Point B. The solution-neutral process Moving {E06} can be interpreted 
as either Transporting {E11.1} (moving money in the form of bills and coins 
in a physical way, e.g. using a secure courier), or Transferring {E11.2} (off-
setting sums of money electronically between two accounts, sometimes 
commonly called wiring, after an ancient legacy dating back to the days of 
the telegraph). Both the physical Transporting and the digital Transferring 
are solution-specific processes that lead to completely different alternative 
architectures for delivering money to or for stakeholders: Flying Vehicle 
{E13.1.1} and Land Vehicle {E13.1.2} in case of Transporting {E11.1}, 
and Wire Transfer {E13.2.1} and Check Deposit {E13.2.2} in case of Trans-
ferring {E11.2} 

 
Figure 12. Architectural choices for the solution-neutral functional intent of Money 
Moving. 

The distinction among SSPs is not always obvious. Transferring can also 
be interpreted in a physical sense, for example, through a Check Deposit. 
Further decomposition of SSPs can quickly reveal the distinctions between 
alternative concepts for realizing the original solution-neutral functional 
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intent. The Internal Processes of Transporting and Transferring reveal the 
differences between these two conceptually distinct solution-specific archi-
tectures. The physical steps are distinctly different from the digital steps 
needed to complete the Money Moving procedure under each architecture. 

The common representation and formulation of the two distinct ap-
proaches using the same modeling framework enables reasoning about these 
approaches. Placing these abstract concepts together and showing how they 
are both derived from the same solution-neutral functional intent, facilitates 
the cognitive process of comparing alternatives. The system architect can go 
back and forth between the solution-neutral and solution-specific environ-
ments. The common representation facilitates discussion with stakeholders 
about the alternatives to validate the functional intent, to discover new alter-
natives, and to eliminate the irrelevant ones. This iterative process leads to 
continuous improvement and validation of the emerging architecture. 

1.3.2. Concept Attributes, Metrics, and Decision-
Supporting Criteria 

We now discuss ways to include decision-supporting criteria for concept 
evaluation as part of the MBSA process. The terms criterion and metric may 
be used interchangeably, but while a metric is typically perceived as a gen-
eral-purpose quantitative index (e.g. the Dow-Jones, the outside tempera-
ture, or the second moment of inertia), a criterion is defined in the context 
of a decision problem and is usually weighed against at least one other cri-
terion. Both criteria and metrics can be qualitative or quantitative. Qualita-
tive criteria must be ordinal or ranked, such that it is clear which value is 
better. That said, two stakeholders could aspire for opposite trends of the 
same criterion. For example, airports want to maximize the volume of air 
traffic while nearby residents want to minimize it. A binary criterion is either 
high or low, met or unmet, true or false, success or failure. A ternary crite-
rion has three levels, e.g. high-medium-low, red-orange-green (also known 
as a traffic light criterion, etc.), and so on. Any number of ranks can be ap-
plied to a criterion. However, higher separation of ranks, require more pre-
cision in the induction of the value such that one can be confident about the 
suitability of the ranking assigned to an alternative in a specific criterion. 

Criteria depend on the context and vary from concept to concept, and 
across stakeholders. Nevertheless, all criteria can be encoded in the model-
based framework and support decision-making about the system architec-
ture throughout the process. We can capture any criterion as an attribute of 
solution-neutral environment (D2), solution-specific environment (D3), and 
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integrated concept (D4). A value-related attribute is the one which is 
changed by the associated process. 

Consider, for instance, a dilemma between three vehicle architectures: 
front-wheel drive, rear-wheel drive, and all-wheel drive. The question is not 
merely about mechanical feasibility – all options are feasible, and all have 
uses and applications, and therefore the evaluation must be based on the 
needs. Recognizing this situation as a decision problem is the first stage in 
the decision-making process. The decision problem should account for met-
rics that are sufficiently detailed on the one hand but sufficiently design-
agnostic on the other hand. This is perhaps the essence of the distinction 
between architecting and designing. The decision may rely on cost, size, 
weight, weight distribution, volume, power consumption, maintainability, 
etc. – as long as we can assign values to such criteria through elaboration of 
candidate solution architectures. The concept representation framework en-
codes the key performance metrics (which serve as decision-supporting cri-
teria) as the attributes of the solution-neutral domain (D2), solution-specific 
domain (D3), and integrated concept (D4). Specifying the attributes is there-
fore critical for alternative evaluation and comparison and not only as addi-
tional information. The MBSA framework enables of any system concept 
analysis that the system architect and design team may come up with. 

1.3.3. Capturing stakeholder needs  

Any spreadsheet would do for listing stakeholders and needs, but a 
model-based approach enhances this process in several meaningful ways. 
Model pattern reusability is useful for identifying stakeholders. A pattern of 
stakeholder types could include broad stakeholder categories and roles 
(owner, operator, regulator, etc.), as shown in Figure 13. 
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Figure 13. A reusable pattern of stakeholders 

A dependable and reusable pattern of stakeholders – a decomposition and 
specification of subdivisions and attributes of the stakeholder concept – can 
be very useful in quickly and efficiently choosing stakeholders, rather than 
rediscovering and recreating them for each model anew. A stakeholder pat-
tern may include both high-level and lower-level roles, units, and profiles, 
as well as generic or umbrella needs. For instance, a national or regional 
energy authority obviously wants to provide energy to its residents, while 
minimizing operating costs and obeying the law. They might also care about 
clean and sustainable energy generation solutions. Such needs can be en-
coded in a pattern and utilized for various applications, even such that only 
consider the energy authorities indirectly, e.g., mass transportation projects.  

Stakeholder entries may also be elaborated with domain terminology. 
Ffor example, a defense stakeholder pattern can draw from the DoD Archi-
tecture Framework (DoDAF) [30]. Other aspects could include geographic 
distribution, available resources, standards, regulations, laws to comply 
with, strengths, weaknesses, opportunities and threats (SWOT), and so on. 

Specifying stakeholders in the model, whether through discovery, docu-
mentation, or reuse, informs the system architect about all those parties and 
people who might need to weigh in on problem and solution domain 
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decisions. Stakeholders who are not the primary customers or beneficiaries 
of an architecture must also be identified, and their needs must also be well-
understood, especially if they are in tension. A stakeholder set also leads to 
an emerging stakeholder network. Mapping stakeholder relations can be 
done in stakeholder value networks [45].  

Consider for instance the Israeli missile defense system “Iron Dome”, 
which has the intent of protecting the country against incoming rockets and 
ballistic missiles. Thanks to the protective umbrella that this system has cast 
over rural southern Israel, the economy in those areas began to thrive. In-
dustry, commerce, and tourism indirectly became stakeholders. Nationwide 
franchises have had a chance to lobby on the deployment of Iron Dome bat-
teries, due to the national economic impact these have had on their business. 
Before the system had been field-tested, it was very difficult to find deploy-
ment locations for launchers, sensors, logistic support, command and con-
trol outposts, and military encampments to support the massive operation of 
Iron Dome. Years later, shopping centers with a piece of the system on their 
outskirts suddenly became attractions. Having all stakeholders and needs in 
a common model could have led to different dynamics.  

Institutional stakeholders often elaborate their needs as so-called stake-
holder requirements. We include those as identified stakeholder needs, 
which simplifies the process, however there is a caveat. Stakeholder require-
ments are not really requirements. While this assertion may seem rude to 
some readers who have been stakeholders, this assertion stems from the un-
derstanding that both parties – stakeholder and system architect – are inter-
ested in getting to the stakeholder’s essential needs, prior to establishing any 
solution that would meet those needs. 

A model supports a hierarchy of interrelated needs that serve to justify 
those bottom-line or most central needs that stakeholders chose to state as 
their expectations from the system. For example, the Vehicle Owner in our 
Driver Behavior Tracking example ultimately wishes to maximize vehicle 
utilization while minimizing the risk to the driver and vehicle. Business 
owners might also be interested in monitoring schedule compliance by their 
professional drivers. We can figure out together with the owner or, say, the 
consumer association as a representative organization, how technology can 
help, next to other approaches like education or regulation. An in-vehicle 
technology could focus on collecting, analyzing, reporting, or acting upon 
drive and driver behavior characteristic data.  

The presence of requirements in a model is truly informative when they 
serve as references for architectural decisions – regardless of how needs and 
requirements are captured. Systems engineers are responsible for 
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traceability – showing that each requirement (or need) is mapped to pieces 
of the solution, so that stakeholders (and especially customers) may track 
and verify the fulfilling of their expectations from the system.  

Decision-making is a process of choosing one possible solution out of a 
population or solution space, according to some criteria by which the solu-
tions are assessed, scored, or ranked. Stakeholder needs constitute such so-
lution assessment criteria because they capture the benefits and costs that 
stakeholders will reap from any given solution.  

In driver behavior tracking, the owner is obviously a stakeholder, but also 
the driver, the insurer, the vehicle manufacturer, and the regulator. We might 
say that the public is also a stakeholder, in case the owner is a public entity 
such as a consumer-serving delivery provider, government agency, law en-
forcement agency, non-profit organization, etc. For simplicity, we will focus 
on two stakeholders: Vehicle Owner and Driver. Figure 14 illustrates the 
instantiation of D1 with our two Stakeholders and their Needs. 

The Vehicle Owner needs to minimize the risk to the vehicle, driver, and 
passengers while the driver wants to maximize her use of the vehicle and 
maintain a good reputation as a responsible driver. The driver is a central 
stakeholder in our case. One of those needs, for example, is Privacy. In some 
settings, drivers’ right to privacy exceeds the vehicle owner’s right to mon-
itor their vehicle. For instance, car rental companies must not spy on their 
customers (in most countries), and employers may not be allowed to monitor 
their employees beyond scheduled work hours. We may not invade the right 
to privacy, and therefore some practices, e.g., in-vehicle ambient voice re-
cording, may not be permitted. On the other hand, for law enforcement and 
public safety agencies, operational activity monitoring and debriefing is a 
critical activity which may significantly benefit from such a capability. It is 
therefore clear that while such a privacy-violating capability may be useful 
for driver behavior monitoring, it must account for the circumstances and 
might not always be applicable. These notions impact our architectural de-
cision-making process by illuminating the tradespace about such aspects, 
thereby validating the architectural decisions to follow.  
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Driver and Vehicle Owner are instances 
of Stakeholder, E01. 

 

Driver Reputation Maximization, Pri-
vacy Maximization, Risk Minimization, 
and Vehicle Usage Maximization are in-

stances of Need, E02. 

 

Vehicle Owner exhibits Risk Minimiza-
tion. 

 

Driver exhibits Driver Reputation Maxi-
mization, Privacy Maximization, and 

Vehicle Usage Maximization. 

Figure 14. Stakeholders of the Driver Behavior Tracking System are affected by the 
main functionality of the system: Driver Behavior Tracking. 

We can articulate needs as global metrics with aspired trends, e.g., Risk 
Minimization or Privacy Maximization. This approach prepares the needs 
for multi-attribute utility analysis [46] and multi-attribute tradespace explo-
ration (MATE) [47], which aggregates all benefits and costs. This approach 
also helps in discovering opposite and biased needs and objectives. For ex-
ample, in the case of privacy, the owner may not directly wish to violate the 
driver’s privacy, but their need to receive as much information as possible 
about driver behavior may eventually compromise driver privacy. It does 
not mean that the owner has a need to “Minimize Privacy”. If stakeholders 
had two conflicting needs, i.e. opposite trends on the same metric, we can 
quickly see how these might give rise to a potential conflict. For example, 
assuming that driver behavior tracking is not a passive process from the 
driver’s perspective, the driver might want to “Minimize Data Collecting” 
while the vehicle owner might want to “Maximize Data Collecting” in order 
to gain as much information as possible. One way of resolving such conflicts 
is by weighing the alternatives and understand the fundamental needs. In 
our case the driver’s fundamental need is actually to minimize disturbances. 
Such stakeholder needs revisions may eliminate inherent bias in need spec-
ifications, and resolve conflicts. 
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The specification of solution-neutral functions is mapped to needs and 
solution-neutral functions (SNPs), as shown in Figure 15. Once clearly de-
fined, we should have a problem-domain, solution-neutral model, covering 
the stakeholders, their needs, operational activities, and operands of interest. 

 
Figure 15. Mapping stakeholder needs to solution-neutral processes, and solution-
neutral processes to solution-neutral operands. 

Presenting the problem model to stakeholders allows them to validate a 
formal concept representation and clarify their needs in a common language. 
This approach is better than any approach in which there is no shared model 
that ensures consistency, common language, and holism. A stakeholder-
driven model of the problem-domain is a necessary but not a sufficient con-
dition for supporting a solution space generation process. In fact, failure to 
correctly represent the problem domain with a model may result in converg-
ing on a limited set of feasible solutions, which raises the risk of an invalid 
solution. The narrower the problem-domain description is, the likelier the 
solution architecture to be a bad solution for the wrong problem. 
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1.3.4. Capturing and discovering possible architectures 

The system architecting process can be structured as a series of decisions 
[13]. Key to this idea is identifying and filtering forward those decisions that 
have the greatest impact on the system’s performance and cost. We would 
like the model to assist us in confining the scope to the necessary minimum 
so that we would be able to focus on the critical decisions and the supporting 
conceptualization to inform them.  

The number of potential architectures under consideration is theoretically 
the product of the numbers of options per decision. For example, if we have 
two decision variables and each decision variable has two options, then the 
total number of architectures is 2x2=4. If a third decision emerges, with, say 
3 options, the number of integrated alternatives becomes 2x2x3=12, and so 
on. Many combinations may be logically infeasible and therefore excluded, 
but we can still end up with a large number of combinations. Figure 16 il-
lustrates the mapping of architectural options to architecture decisions, with 
three decision points (A, B, and C), each with two options. Theoretically, 
we have a total of 2x2x2 = 8 options. We also illustrate three possible system 
architectures: SA1, SA2, and SA3. We map each architecture to the options 
that it relies on per each architectural decision.  

Table 1 summarizes all possible combinations of decisions to be made. 
Three out of the eight combinations have been identified as relevant candi-
dates for further exploration. Generating the combination table from the 
model is an important capability for ensuring consistency between the map 
of the problem domain and the list of applicable integrated solutions. It is 
also critical for ensuring that suitable, reasonable, and feasible alternatives 
are considered and not only the obvious, immediate, or convenient ones. 
Consider, for instance, that combination 6, that we can encode as a vector 
[a2 b1 c2] vis a vis the vector of options [A B C], is a truly brilliant combi-
nation that has not even been considered. Furthermore, if a new, previously 
unthought-of, or neglected decision variable is added, it brings the number 
of combinations to 16. This could be a game changer in many ways. 
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Figure 16. Combinations of architectural decisions generate as many architectural 
candidates as the product of the numbers of options per decision variable. 

Table 1. Three out of eight potential combined architectures based on three deci-
sions with two options each. 

Combination Arch. Decision A  Arch. Decision B Arch. Decision C 

1 a1 b1 c1 
2 a1 b1 c2 
3 - Architecture 2 a1 b2 c1 
4 a1 b2 c2 
5 - Architecture 1 a2 b1 c1 
6 a2 b1 c2 
7 a2 b2 c1 
8 - Architecture 3 a2 b2 c2 

Maintaining a valid table of options, based on an evolving model, even 
after an initial conceptual architecture is determined, has tremendous im-
portance in ensuring the validity, sufficiency, and completeness of the 
tradespace, and consequently the validity of the tradespace exploration 
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effort - both by ensuring a consideration of all feasible options and by con-
tinued validation of the tradespace. 

A retrospective of the Apollo Program considered nine possible decisions 
(including Lunar-orbit Rendezvous, fuel type, and other considerations) 
[13]. If each decision has only two options, then the number of possible 
combinations is 2^9, which is 512 architectures. Each option must be enu-
merated and considered, even if only superficially, in order to filter out ir-
relevant options and converge on a small and manageable set of combined 
options. We could map five additional candidate architectures to all remain-
ing possible combinations of decision options, but with 512 alternatives, this 
seems to be impractical.  

Enumerating the alternatives is only the first stage. We must determine 
each candidate solution’s feasibility by some study and elaboration of de-
tails that will allow us to reach a confident conclusion about each candidate 
architecture in order to decide if we keep or drop it.  

The set of decisions can also be used in generating placeholders for all 
options and then selecting candidates to populate. We can filter out options 
which are unlikely, infeasible, or too expensive. We can consider the three 
architectures illustrated above as the three finalists that survived the filtering 
process out of the original eight (possibly following thorough analysis using 
our concept representation framework). We will return to these options later 
as we elaborate them from the placeholder level to full-blown architecture 
specifications, relying on structural and functional building blocks. 

There are situations in which options are implicit in the choice to regard 
or disregard an artifact. Consider, for instance, a specific stakeholder’s re-
quirement about compliance with some protocol, which is not mission-crit-
ical, but potentially a good idea in terms of interoperability, reusability, and 
risk reduction. We can easily relax the assumption that protocol compliance 
must be obtained by specifying two optional states for that protocol as either 
accepted or deferred/rejected. This step will immediately inflate the 
tradespace by a factor of 2 because each available combination will have to 
be assessed with and without the protocol. Thus, we can significantly ex-
pand the tradespace by referring to any predetermined concept as possibly-
redundant. The binary enumeration of option states is therefore critical to 
comprehensive coverage and enumeration of tradespace options. 

We can reduce the tradespace by disqualifying either the accepted or re-
jected option for binary decisions, or by splitting the decision process into a 
series of decision points, in which each decision point consists of a subset 
of the decision variables, resulting in more decision steps but significantly 
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less options to enumerate, assess, and choose from. Listing the options in 
the model, evaluating a subset of combinations, and selecting those combi-
nations we wish to explore further, makes this process significantly easier, 
smarter, and more consistent.  

The impact of MBSA here is therefore in the ability to enumerate candi-
date alternatives based on a model of architectural decisions. By specifying 
options as states of the artifact, we facilitate a process of enumerating the 
candidate alternatives. 

For driver behavior tracking, we might consider, for instance the follow-
ing aspects as fundamental to determining a conceptual architecture:  

1. One size fits all vs usage-specific variants - this would imply a single 
product versus a product line - and will significantly affect the archi-
tecture of the product platform and the variants. 

2. Open vs closed sensor policy - are we going to allow a variety of sen-
sors to plug into our solution or only one or two specific sensors. 

3. Vehicle-integrated vs stand-alone solution - are we going to embed the 
system in the vehicle and fully integrate it with vehicle systems such 
as the dashboard displays and vehicle component bus, or install it sep-
arately (possibly with a small connection to the vehicle for basic mon-
itoring or interfacing capability) 

4. Driver management vs anonymity - are we going to include driver 
identification and personalization, such that data and behavior patterns 
are directly associated with a specific driver, or leave the task of figur-
ing out who drove the vehicle while misbehaving without the assis-
tance of our technology. 

5. Driver notification available or not - are we going to alert the driver, or 
only collect the data and report to the subscribing customer (who could 
be the owner, the driver, or the insurer but it would not be a real-time 
indication). 

We could continue defining more aspects of an architecture and gradually 
increase the tradespace. We already have 32 combinations if each decision 
variable only has two options. We can also refer to these issues as five serial 
decisions and only consider one variable at a time. This will result in evalu-
ating 10 solutions in total - 2 per step. The risk is in missing potentially 
preferable solutions hiding among the other 22, by discarding possible com-
binations by nailing down one variable after another. With 6 variable serial 
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decision-making, the ratio is 64 combinations to 12 inspected solutions and 
the difference is 52 ignored solution candidates. 

For 𝑁 binary decision variables the ratio between exhaustive search and 
serial decision-making is 2!: 2𝑁. While serial decision-making seems in-
herently sub-optimal, this is how many of us make architectural decisions - 
resolving one issue or a couple of issues at a time. A model-based approach 
allows for both visualizing and analyzing the problem space with clear un-
derstanding of the implications of breaking down the problem into a series 
of smaller problems, as opposed to thoroughly studying the entire state 
space. Reaching a compromise is often a good idea, but it still requires good 
understanding of how decision variables can be grouped together into con-
ceivable subspaces of the entire tradespace. 

1.3.5. Capturing the architectural decision-making process 
alongside the resulting architecture 

The analogy between systems architecting and multi-criteria decision-
making decision-making can be formalized using Category Theory. Cate-
gory Theory is a branch of mathematics that focuses on the equivalence of 
representations and transformations of mathematical structures [48]. A cat-
egory consists of a set of objects, which represent types, and a set of mor-
phisms, which define mappings among types. These mappings can include 
relations, conversions, mathematical functions, etc. For example, a 
morphism sign: R → S converts any real number in R to a value in S, S={-
1,0,1} according to its sign: a positive number maps to 1, a negative number 
maps to -1, and zero maps to 0. Morphisms can also act on multiple objects 
and generate multiple objects. For example, a morphism R → S converts the 
sign of a product of two real numbers to a value in S. 

Analogous to the mapping of concepts to models [49], architecting is a 
mapping from the Problem Domain to an Architecture Co-Domain. This 
mapping should correspond to the notion that Deciding is a mapping from 
Problem to Decision. Architecting and deciding can be viewed as categori-
cally equivalent if there exists a complete mapping of the decision domain 
to the architecture domain. In Category Theoretic terms, a mapping between 
categories is a functor. We would like to show that there exists a functor 
ADF: A → D such that for every object and morphism in A there exists a 
mapping to objects and morphisms in D. Similarly, we would like to show 
that there exists a functor DAF: D → A such that for every object and 
morphism in D there exists a mapping to objects and morphisms in A. 
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In a category of system architectures, the objects are Architectures A, and 
morphisms are mappings of one architecture to another architecture, i.e. ar-
chitecting steps. We shall initially argue simply that architecting: A → A.  
The morphism architecting includes a set of elaborations that change the 
architecture to address the problems that the previous architecture presents. 
This mapping also considers options to change the current architecture. 
Therefore, it would be more correct to state that architecting {A,P,O} → A, 
where P is a problem object, and O is a candidate operation object. 

Each architecture A(n) presents a set of problems P, that has to be solved 
by the architecture A(n+1). The sequence of solving the problem may transit 
through a set of architectural alternatives A(n+1,1), A(n+1,2), A(n+1,3), etc. 
Therefore, architecting is also a polymorphism on A(n) due to its ability to 
create multiple sequel architectures. Alternative architectures are generated 
according to candidate operations on A(n). For example: add/modify/re-
move a block (structural element), add/modify/remove a function, add/mod-
ify/remove operand, add/modify/remove assignment of function to form, 
add/modify/remove output relation from function to operand, and so on. We 
can also merge or split items - e.g., break down a function into two or more 
smaller functions, merge several outputs into one big output entity, etc.  

Some revisions of a given architecture model are not recommended, even 
if they are syntactically valid using a given modeling language. We should 
follow the careful transition through our concept representation framework, 
in order to maximize stakeholder value and solution-neutral problem defini-
tion, to ensure solution tradespace exploration, appropriately follow archi-
tecting guidelines, and minimize solution discrepancy.  

While every architecting step changes the architecture, not every opera-
tion constitutes a decision problem. A decision point emerges when multiple 
options are possible. Although any inclusion or exclusion of an item in the 
architecture could pose a dilemma, constitute a decision point, or incur a 
discussion, we will usually conclude that it is preferable and worthwhile to 
include rather than exclude any aspect that enriches the concept and context 
of the architecture. For instance, we should not refrain from including any 
stakeholder or stakeholder needs even if they seem far-fetched or infeasible 
at a specific point in time. In case we wish to consider alternatives with and 
without a specific feature, capability, or aspect, we should define its state set 
as a binary existent/non-existent such that it will be taken into account in the 
definition of the tradespace. We therefore define an architecture decision 
point for A(n) as a situation in which all the following conditions hold: 
1. at least two options are possible regarding a specific aspect of A: 
𝐴(𝑛)à𝐴"	(𝑛 + 1); 	𝐴(𝑛)à𝐴#(𝑛 + 1);… 
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2. Choosing one option over another may result in an architecture change, 
in a different solution, or in a different cost-benefit balance with respect 
to original stakeholder needs:  𝐴$ 	(𝑛 + 1) 	≠ 	𝐴%(𝑛 + 1), for any 𝑖, 𝑗. 

3. The decision cannot be made at a later point in time, i.e., the next iteration 
must be different from the current: 𝐴$(𝑛 + 1) 	≠ 	𝐴(𝑛) for any 𝑖. 

The above three conditions allow very specific issues to become decision 
points, and filter out trivial architecture modifications. However, it is now 
critical to identify these decision points and separate them from the rest of 
the architecture modification steps. Tagging model elements as decision var-
iables enables this. For example, a sensor could be on or off from the oper-
ational perspective, but could be local or remote from the architectural per-
spective. Sensor activation (on/off) is obviously not an architectural 
decision, but determining the sensor location (local/remote) is. Therefore, 
we would characterize the sensor with two attributes: activation state and 
location. Only the location of the sensor is an architectural decision. We will 
tag that as a decision for further filtering and analysis. 

Decision problems have been traditionally captured using decision trees 
[13, 50]. One of the major issues with decision trees is their obvious deci-
sion-centricity, as opposed to solution-centricity: they emphasize the deci-
sion-making process, but it is sometimes difficult to see how decisions rep-
resent solutions. Said otherwise, once a system architecture has been created 
and built, the architect’s intent may vanish. Conversely, system architec-
tures show the result of implemented architectural decisions, but not the de-
cision-making process that effected those decisions.  

A computational framework for coordinated design of cyber-physical 
system components under a given architecture (e.g. power, mass, and capac-
ity optimization for a vehicle, communication system, etc.) attempted to ad-
dress this decision-to-design discrepancy [51]. The problem is framed as the 
resource intake required to deliver the assigned functionality relative to an 
existing architecture. We are interested in extending this approach to de-
velop a tradespace of architectures and select preferable architectures. We 
need to capture both the design and the designing process, in a coordinated 
and consistent way. This is where MBSE fits in.  

Although MBSE has focused on representing system architectures with 
diagrams, it is possible to harness the power of modeling notations to cap-
ture decision processes. We should therefore strive to encode the process of 
deciding about architectural options in the conceptual system model, as well 
as its outcomes (in the form of architecture artifacts), this dual architecture-
decision, we may begin to generate a model-based decision-driven system 
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architecture. This assertion has been initially corroborated in [36] where a 
canonical decision-making process model was introduced. 

Modeling the architectural decision-making process also facilitates better 
planning of the process. By planning ahead multiple architecting iterations, 
the system architect can clarify the prioritization of needs or the preference 
of solution technologies along predefined milestones. The model does not 
have to show only the immediately decision at hand. By deriving architec-
tures from other architectures we will be able to serialize the architectural 
decision-making process and significantly reduce the computational and 
cognitive effort that is necessary to reason about a combinatorically-explod-
ing tradespace. In the above example, rather than consider 16 candidate 
combinations of the four binary decision variables, the first iteration consid-
ers 8 and the second iteration considers 2, hence the total number of re-
viewed candidates is 10. While this may result in overlooking 6 candidate 
architectures, a decision to prioritize decision variables A, B, and C and then 
decide about D, due to several legitimate considerations, is practically en-
coded in this model and can even be audited, debriefed, or even revisited - 
if it will not be too late. 

MBSE is an environment that can foster concept discovery. In practice, 
reaching a viable architecture is a major milestone, short of comparing mul-
tiple architectures. MBSE environments could, at minimum, assist the ar-
chitect in detecting this moment, for example by showing the architect that 
satisfactory coverage of needs has been achieved. 

MBSE should also be able to indicate to the architect that a work-in-pro-
cess architecture is infeasible or prone to reach a dead end. MBSE environ-
ments can fulfill this role if they are able to track the fulfillment of goals, 
whether those goals are defined within the model or as external evaluations 
and judgements that the model has to satisfy.  

1.3.6. Solution-specific architecture decisions 

Architectural decisions constitute a gateway between the problem-ori-
ented decision point formulation of the architecture, and the solution-ori-
ented architecture specification and elaboration. While the decisions are 
made based on cost and benefit considerations, we recall that the architect-
ing morphism also accounts for the set of available operations on the given 
architecture model. However, the size of this set of operations is completely 
arbitrary. Namely - we can carry out any number of operations we feel is 
sufficient to establish confidence in the architecture’s ability to deliver the 
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costs and benefits that we assess for it. In a world of incomplete information, 
constant change, and limited resources, we must make the call in many 
cases, and often end up revisiting and revising our former decisions. 

MBSE could make this process of elaborating an architecture more struc-
tured. For example, we can insist on elaborating any architectural candidate 
one or two levels down in order to gain confidence in that potential solution. 
In many cases, these extra levels of detail could help us realize we are about 
to reach a dead end or come up with a solution that does not make sense.  

Following the model-based specification of both the architecture and the 
architectural decision-making process, and remaining within the same con-
ceptual modeling framework, we can explore candidate architectures by 
mapping them to what models truly excel in – the architecture’s functional 
and structural specification. MBSE supports the specifying of operational 
processes and solution-neutral functions to be supported by the architecture, 
and mapping each operational process to the stakeholders that are involved 
in it, each operand to a need, and each functionality to the operational pro-
cess that it contributes to, either by plain membership in the set of activities 
that compose the process, or through the specific generation of output or 
outcomes that can be used in the operational process. 

A robust MBSE environment provides for both diverging from a problem 
statement to a space of alternative solutions, as we have seen so far, and for 
converging on a specific solution or subset of solutions as the architect de-
sires, as we discuss next. The ability to continue using the same environment 
to grow a conceptual architecture into a comprehensive solution design is a 
major benefit, and yet, it is not always the case with MBSE environments. 

A concept has to include solution-specific operands, processes, form, and 
the allocation of form to function, to make a good architecture. MBSE can 
force or advise architecture elaboration in order to capture these aspects. 
Robust MBSE environments will also make it easy for the architect to com-
pare concepts both within the same model and across multiple models. The 
former approach helps in seeing the big picture in one place, while the latter 
helps in letting the solution architect focus on the details of the solution. 

For driver behavior tracking, suppose we have chosen an open architec-
ture, we can now incorporate an in-vehicle camera, an environment record-
ing camera, a vehicle-integrated data collection device, or a driver assistance 
system, to collect information from the vehicle. In fact, any combination of 
these four solutions could be a candidate solution as well, and while some 
combinations may potentially provide greater value on some criteria, e.g. 
those that contribute to fulfilling the operational needs, they may also be too 
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expensive, complicated, big, heavy, etc. All of these factor into the stake-
holder needs, but now we can actually start discussing such attributes as 
mass, volume, power consumption, bandwidth, and performance. This is 
where architectural modeling both informs the more technical and func-
tional architectural decisions (e.g. where to install a camera, or how to pro-
cess the data), but, as emphasized, it also helps validate the open sensor ar-
chitecture that we have chosen in the conceptual architecting phase. 

By mapping each solution we propose to a stakeholder need in a model, 
where everything is traced back to the preference schemes and framed as a 
decision-driven process, is again a significant game changer. It is always a 
challenge to come back to a stakeholder with a concept and elicit new re-
quirements and expectations. It is also clear that stakeholders must remain 
in the loop because the solution directly impacts the concept of operations, 
as shown in the concept representation framework. Even if the conceptual 
architecture is converged, this phase opens up a whole new tradespace of 
options and decision-making remains critical and essential as it previously 
was in mapping out stakeholders needs to solution concepts.  

Transparent, collaborative, model-based stakeholder engagement signifi-
cantly improves stakeholder need validation by introducing visual, model-
driven projections of solution architectures on problem statements. Choos-
ing a vehicle-integrated solution inevitably generates concerns about inter-
ference with vehicle control and the potential risk of cyber-security.  

The outcome of solution generating vis-à-vis well-defined stakeholder 
needs is illustrated in  Figure 17. We begin with a functional decomposition 
of the system’s main functionality, while ensuring the nested functionalities 
are as solution-neutral and as need-oriented as possible. In our case we spec-
ify Road Monitoring, Driver Monitoring, and Vehicle Monitoring as SSPs 
that map to the Monitoring SNP. Real-time Analysis and Off-Line Analysis 
are two solution approaches for Analysis. Informing the Vehicle Owner and 
the Driver can be implemented either in Real-Time or after the fact. 

Specifying potential forms that may contribute to the execution of each 
function lays out the tradespace of possible combined solutions. We recall 
that any combination of options constitutes a theoretically possible solution 
and implies a decision point. We map each SSP to Generic Forms. We then 
propose three integrated architectures: minimal, maximal, and midway ar-
chitectures. This is also a way to reduce the problem-space from an expo-
nential combination to a set of functions that must be performed by the sys-
tem, such that all functions and needs are fulfilled, or at least fulfillable. This 
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representation does not directly address the decisions to be made, but we 
can decide for each GF artifact whether to implement it or not.  

 
Figure 17. Deriving solution-specific functions from solution-neutral functions, 
specifying generic form to support solution-specific functions, and assembling three 
typical architectures - minimal, midway, and maximal - as combinations of generic 
form. The selected architecture will be further developed in D4. 

We must provide at least one form to provide each function. In some 
cases, the same form may perform more than one function, as the technol-
ogy, or commercial product it relies on allows. In some cases, a solution 
candidate requires another solution candidate. For instance, in our example, 
in order to run a software application within the vehicle, we must be able to 
run it either on a dedicated device or on the vehicle’s multimedia system. 

In this example we define a Minimal Architecture as the combination of 
a Vehicle Monitor, Off-Line Analyzer, and Report Generator. We can also 
refer to this trio as one architectural building-block and define any architec-
ture by adding to this one. By specifying candidate elements of form and 
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function without specifying their states we argue that they can either exist 
or not exist in the solution. This is another approach to list solution factors 
that can later co-facilitate combined solution architectures, complementing 
the approach for listing options as states of the constituent decision units. 
With three out of nine elements unified, we can now say that the solution 
space has 2& = 	128 options. Any solution which includes more than the 
Minimal Solution and less than the Maximal Solution (which includes all 
the eight elements) is a partial solution that we can specify in terms of its 
constituent elements and evaluate according to our decision criteria. A 
model is useful here both in visualizing the range of options, and in elabo-
rating any point in this range. 

Decision criteria might include overall weight, volume, power consump-
tion, and integration effort. Note that such design parameters may emerge 
as constraints to a solution rather than pre-conceived stakeholder needs, 
which is yet another reason for an iterative model-based architectural deci-
sion-making approach as we advocate here. We can begin discussing the 
cost, in financial, energetic, or performance-related terms, after we have se-
cured a solution for stakeholder needs. Another approach would be to com-
bine these benefit and cost factors together and consider them together in 
the same iteration. Both approaches are possible in an MBSE environment, 
as the evolvability of the model is an inherent capability of the MBSE pro-
cess. As explained before, it depends on the decomposability and conceiva-
bility of the tradespace and is up to the solution architect to figure out. Phys-
ical qualities must be considered together because of the mutual effects (e.g. 
the combination of mass, power, and capacity). The model can clearly cap-
ture bundles of solution-specific attributes as decision variables and facili-
tate (and in some cases execute) the computation of a Pareto frontier, i.e. a 
set of combinations that meet all the criteria at the best values. We can sim-
ilarly analyze software considerations and determine the most appropriate 
decomposition into digestible and sensible design decisions. 

We may argue that the contribution of in-vehicle camera is smaller than 
that of a road-observing camera, or that the integration with a Driver Assis-
tance System is better for alerting the driver than a multimedia system inter-
face. The purpose here is not necessarily to argue for one approach in favor 
of another, but to show how a model-based scheme can greatly enhance the 
visibility of the decision-making process, the understanding of trade-offs 
and composition of alternatives, and the propagation of value and enable-
ment all the way to stakeholder needs. Communicating such a model to 
stakeholders is also easier and more intuitive, as it can illustrate the impact 
on stakeholder needs, which greatly increases clarity and transparency. 
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1.4. Conclusion 

We have shown how systems architecting is essentially a reasoning pro-
cess, which consists of conceptualization and decision-making steps. MBSE 
facilitates, but also changes the architecting process. It is worth taking a step 
back to summarize the ways in which MBSA differs and grows from legacy, 
“off-line” system architecting. The architecting process (whether legacy or 
model-based) is a source of discovery and insight. It addresses the need to 
understand, through sufficient specification and completeness of coverage 
at a given abstraction level of analysis. These drivers enable us to judge 
when the architectural modeling is concluded. 

We have presented a model-based concept representation framework that 
formalizes the conceptualization process to generate a system architecture. 
The framework advocates a path to a solution that accounts for all the major 
concerns in a system architecture. Indeed, this is not a linear process, but an 
iterative one, rife with revisions, divergence, and convergence. The frame-
work accommodates both ongoing conceptualizations and decision-making 
when critical decisions must be made. 

We conclude with three key MBSA principles: 

1. MBSA is an iterative reasoning process, in which the model records 
and informs the evolving conceptual architecture. 

2. MBSA fosters divergence before convergence: allowing for options to 
emerge from a solution-neutral environment, and converging on a so-
lution after considering multiple solution-specific approaches. 

3. MBSA projects can focus on the relevant conceptualizations and not 
necessarily follow an A-to-Z approach - the amount of modeled infor-
mation should be just enough to reach a decision. 

The “offline” architecting process is based on siloed analysis and discus-
sion, and we find there is substantially more effort in setting up a model to 
answer architectural questions. Some of this effort is due to the need to trans-
late decision-theoretic concepts into conceptual modeling language. How-
ever, once a model is developed and can serve as a baseline, the resulting 
exploration becomes quicker with each iteration. The model-based approach 
could provide a return on investment due to the reusability and evolvability 
of model assets through multiple iterations. We caution, though, that the ar-
chitecting process should not be conceived as a procedural one: our frame-
work is not just a checklist. Given that no architectural model will be able 
to capture detailed design information, we find that the process of modeling 
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and sense-making is important to building a shared understanding among 
the architecture team members. Therefore, the process remains both cogni-
tive and computational, and the two streams augment each other thanks to 
the shared artifact that the model constitutes, which lends itself both to hu-
man reasoning and machine processing. 

We summarize the primary benefits of MBSA as follows: 

Communication with stakeholders: Communicating with stakeholders 
is an essential part of the decision-making process. Engaging stakeholders, 
getting them involved, committed, and informed, is critical for architecting 
the solution to their needs. A shared language for discussing concepts, prob-
lems, options, and solutions with a reference model is instrumental in facil-
itating, formalizing, and documenting the discussion. 

Knowledge and architectural building block reusability: A growing 
concern in enterprises working on evolving systems in an agile world, the 
reuse of existing knowledge about the domain and design of existing de-
signs, is becoming a critical aspect of MBSE. Reusability of knowledge, 
architecture, and design artifacts has two major impacts on the decision-
making process. Reliance on existing assets reduces uncertainty, ambiguity, 
and programmatic risk (schedule, budget, quality, etc.).  Furthermore, re-
ducing the explorable tradespace by reusing existing component designs is 
an approach to coping with a combinatorial solution space explosion. Sys-
tem architecture decisions that are based on a formal model that incorporates 
reusable domain content and building blocks have higher degrees of confi-
dence and may be more likely to survive the emergence of new constraints, 
issues, or materializations of risk. 

Consistent problem-Space mapping: MBSA facilitates conceptual 
mapping of the problem space in a domain-agnostic manner. It is then pos-
sible to specify problem-domain needs, key evaluation metrics, and perfor-
mance indicators, and to layout the architectural solution space that may 
contain at least one feasible solution to the problem. Evolving problem un-
derstanding, some of it in parallel to decision-making, helps reshape and 
recreate the problem domain. We believe that this consistency in mapping 
the problem space helps us recognize patterns across designs.  

Gradual transformation of problem statements to architectures: 
MBSA facilitates a smooth transition from the problem domain to the solu-
tion domain by allowing for a traceable mapping of candidate and chosen 
solutions to problems. While we could describe the problem domain in a 
variety of less-formal ways, and the solution in a variety of approaches, a 
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model-based approach formalizes the transition, the transformation, and the 
traceability of solution domain aspects to problem domain ones.  

Consistent comparison and evolution of alternative architectures: 
Comparing and reasoning about architectures within the modeling frame-
works is challenging. MBSA allows this by mapping conceptual architec-
ture decisions to quantifiable metrics of stakeholder utility on the one hand, 
and to quantifiable metrics of design validity on the other. We can promise 
a conceptual architecture that helps our stakeholders in many ways, but fail-
ing to validate the architecture may be bad for business. MBSA facilitates a 
smooth transition across modeling, assessment, verification and validation 
methods, with a conceptual model as a focal point. The alternative approach 
rephrases the decision-making problem in mathematical decision-analytic 
terms that do not rely on the model. There are two risks there: a) the full 
architecture scope will not be sufficiently understood when developing a 
selected solution, and b) validating the solution architecture by tracing back 
to the “numbers” will be impossible. 

Documenting both the architecting process and its outcome—the ar-
chitecture: By documenting our decision-making process in a model, we 
are creating a mapping of the entire process rather than the outcome. One 
should not guess why a particular architecture has been selected. We believe 
MBSE will be much stronger in capturing functional intent. A decision-ori-
ented model can substantiate the solution on the considerations that fed the 
decision-making process leading to that particular solution. While this is not 
a common MBSE practice, we assert that it is possible, achievable, and de-
sirable within an MBSE framework to ensure that the process is appropri-
ately documented, and that the traceability of solutions to options to prob-
lems to needs to stakeholders becomes clear.  

Aspiration to sufficiency: We have discussed the importance of model 
sufficiency – knowing that we have modeled enough to make an architec-
tural decision. We reasoned that by applying Miller’s Law of ~7±2 elements 
in every set as a threshold for sufficiency. We can measure the compliance 
of various sets of objects and processes with this criterion and determine our 
confidence in the model and our willingness to rely on it.  
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