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“The straight line, a respectable optical illusion which ruins many a man.”
— Victor Hugo, Les Misérables

Abstract. We explore the application of MBSE for conceptual sys-
tem architecting. Choosing an architecture is a fundamental activity.
Our Model-Based System Architecting (MBSA) framework facili-
tates the specification of an architecture as a reasoning process — a
series of conceptualization and decision-making activities, backed-up
by an MBSE environment. Our framework captures both the ontol-
ogy of a stakeholder-driven and solution-oriented system architec-
ture, and the process of growing the architecture as a series of con-
ceptualization steps through five ontological domains: the
stakeholder domain, the solution-neutral environment, the solution-
specific environment, the integrated concept, and the concept of op-
erations. Our MBS A approach shifts the modeling focus from record-
ing to conceptualizing, exploring, decision-making, and innovating.
In comparison to an “offline” architecting process, our approach may
initially require a bigger effort but should enable stronger stakeholder
engagement, clearer architectural decision point framing, quicker ex-
ploration, better long-term viability, and increased model robustness.

Keywords. Model-Based System Architecting, Model-Based Sys-
tems Engineering, Architectural Decision-Making, Object-Process
Methodology, Concept Representation.
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1.1. Introduction

Choosing an architecture for a complex system, sometimes called the
“fuzzy front end” of design, is a task rife with ambiguity. Traditional ap-
proaches have relied on a federated mixture of informal, semiformal, and
formal methods. The growing challenge systems face today has made these
“offline” approaches largely obsolete. Model-Based Systems Engineering
(MBSE) [1] is gradually becoming a mainstream approach for practicing
systems engineering. However, while traditional systems engineering works
to capture missing connections between subsystems, MBSE today is fo-
cused on the descriptive recording of concepts in models [2]. This concept
representation is essential for further processing, analysis, and presentation,
but it is only one aspect of systems engineering. Current practice and re-
search are overweight with the representational effort in MBSE, and under-
weight on analysis and decision-making. Similarly, software engineers are
expected to deliver operational, functional, secure, and efficient software
regardless of the programming languages and software development envi-
ronment they use; mechanical engineers are expected to deliver valid, veri-
fied, buildable, and maintainable part and component designs, regardless of
the design technology they design with, etc. Nevertheless, in the current
landscape of digital engineering [3], no one imagines that software, hard-
ware, or mechanical engineers will not employ the latest software to man-
age, design, implement, test, and deploy their deliverables. Systems engi-
neering should be no exception.

We explore the ways in which MBSE can be used to support system ar-
chitecting, and to ensure that the process remains rigorous and insightful.
Reaching a good system architecture must be inherent in any MBSE ap-
proach. Accordingly, our model-based system architecting (MBSA) ap-
proach uses models and analysis of MBSE to choose an architecture. It is
not a detached adaptation or variation of MBSE to system architecting.

Much has been written about the descriptive aspects of MBSE, whether
it be in cataloging functional flow or in defining potential system states.
However, this documentation does not necessarily support architectural de-
cision-making unless it presents decision points. A decision point could be
an opportunity to choose a solution from at least two options. We define
what we consider architectural, in order to evaluate how and where MBSE
supports decision-making about architecture.

The effort involved in building an MBSE environment and the associated
cultural transformation imply that the scope and purpose must be crisply
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defined, so as to rationalize the investment in MBSE. One of these purposes
(but by no means the only one) is to support architectural decision-making.
MBSA includes the following cycle of activities in scope:

1. representing potential architectures with models,

2. identifying architectural decisions,

3. conducting analysis in support of emerging architectural decisions,
4. making architectural decisions based on model analysis results, and
5. capturing decisions in the model for the next architecting iteration.

Model-Based Conceptual Design (MBCD) resembles MBSA. MBCD is
the application of MBSE to tradespace exploration during the conceptual
stages of systems engineering [4]. The activities performed during the con-
ceptual stages of system engineering are defined as architecting, and their
main outcome is an architecture — a holistic view of the entire system. By
contrast, activities performed to realize the architecture, particularly plan-
ning solutions with engineering and scientific knowhow — are considered as
designing — where the main outcome is the design: a blueprint for developers
to implement or build the system. A complex component’s design may con-
stitute architecting for that component as a bona fide system, e.g., the jet
engine in an airplane, or a communication network that connects many sen-
sors and controllers.

MBSA has also been used as an acronym for Model-Based System Ar-
chitecture [5], in a framework which uses the Systems Modeling Language
(SysML) [6]. That approach focused on providing a repository of artifacts,
which facilitate communicating with stakeholders, assuring requirements
traceability, and specifying systems and sub-systems. We employ the MBSE
paradigm as a reasoning mechanism, and not only as a documentation ap-
proach, because we believe that it generates additional value to stakeholders.

Previously, the Model-Based System Architecting and Software Engi-
neering (MBASE) approach [7] advocated a holistic process for software
architectures, software lifecycle guidance. The MBASE approach was in-
fact document-centric. The model-based ecosystems were not yet mature
enough to accommodate a complete system architecting, design, develop-
ment, deployment, and operation thread. Therefore, MBASE started with an
Operational Concept Description (OCD), but focused on generating docu-
ments like the System and Software Requirements Definition (SSRD), Sys-
tem and Software Architecture Description (SSAD), Life Cycle Plan (LCP),
and Feasibility Rationale Description (FRD) [8]. It also concerned some
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critical aspects in software deployment such as iterative development, fol-
lowing the Spiral paradigm [9], transition, and software support.

The discussion on the necessity, relevance, and sufficiency of system ar-
chitecting, particularly in software-intensive systems, has been ongoing es-
pecially with the appearance of short-cycle iterative and continuous devel-
opment and deployment approaches [10]. The key argument remains, and
gets validated in many famous failures [11] that holistic system architecting
increases confidence in the ability to meet stakeholder needs, develop a ro-
bust architecture that can adapt to changes, and reduce the amount of tech-
nical debt as the system evolves [12].

Many of the building blocks described in this chapter originate from pre-
vious holistic frameworks for system architecting [13], in which modeling
played a key role in concept description, but could not yet be regarded as a
fully model-based approach.

Bahill and Madni introduce a model-based approach known as the
SIMILAR process, which stands for: a) Stating the Problem, b) Investigat-
ing Alternatives, c) Modeling the System, d) Integrating Components, €)
Launching the System, f) Assessing Performance, and g) Re-evaluating the
System [14]. The MBS A approach that we proposed focuses and extends on
the early stages in the SIMILAR framework and especially on early itera-
tions in which the conceptual architecture is the main artifact, and little or
no physical components are available.

1.1.1. Model-Based System Architecting: Crossing a
Mental Grand Canyon

MBSA often begins with concept brainstorming in response to some need
or set of needs, and ends with a formalized review and sign off of a well-
defined and buildable architecture. In between, there is a series of concep-
tualizations and decisions: The leap from stakeholder needs to a well-de-
fined organization of structural and behavioral elements does not happen
overnight. This mental ‘Grand Canyon’ is simply too wide to jump all at
once, and a series of intermediate steps is necessary. The question is: how
can we wisely plan these steps that will lead us safely to the other side? This
idea is illustrated in Error! Reference source not found..



Model-Based System Architecting and Decision-Making 5

Integrated Concept

Decision® Concepts -
{ Candidates

Solution Neutral
Environment &
8 3 ‘ Solution Specific

Concept of
Operations

4
Stakeholder B> Decision for o 4 isi
Need <
[ ® Decision
p” £ :
z

Concept -
Chosen

Decision

QDecision

Conceptual Model

Figure 1. Crossing the mental Grand Canyon from needs to operationally-viable
solutions, through a series of system architecture decisions, using a model as the
knowledge base and primary reasoning engine.

A system architecture is a description of the structure and behavior of a
system that jointly provide one or more functions to serve the needs of sys-
tem stakeholders. MBSA relies on a formal modeling language to capture,
present, and reason about the system architecture, but the deliverables are
essentially the same as those of the traditional (not model-based) process: a
specification of the system architecture, which can serve as the basis for
further requirement specification, design, development, testing, and opera-
tion. This high-level concept of MBSA is illustrated in Figure 2. We shall
be using Object-Process Methodology (OPM) [1] as a model for this Chap-
ter, due its relative simplicity (using OPCloud, and its automatically gener-
ated text specifications! [15]). The complete reference model for our MBSA
framework is included in [16]. In Figure 2 the objects (such as “Stakeholder”
and “System Architect”) are denoted by rectangles, whereas the process
(“Model-Based System Architecting”) is denoted by oval. The filled in
black triangle inside a triangle means that the “Need” is the attribute of
“Stakeholder”. The link with arrow informs about the consumption of the
attribute “Need” by the “Model-Based System Architecting” process. The
link with filled in circle at the end is the agent link (“System Architect”),
whereas the link with the open circle at the end is the instrument link
(“Model-Based Systems Engineering Environment”). The full description
of the OPM symbols can be found in [1].

1 Figure 2’s title is directly drawn from the text specification that OPCloud generates for this diagram, making it an unambiguous
description of the diagram.
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Figure 2. Model-Based System Architecting: Stakeholder exhibits Need. Model-
Based System Architecting consumes Need of Stakeholder. System Architect han-
dles Model-Based System Architecting. Model-Based System Architecting requires
Model-based Systems Engineering Environment. Model-Based System Architect-
ing yields System Architecture.

1.1.2. A Tango of Conceptualizations and Decisions

A concept is an initial mapping of what we want to accomplish to the
form that will be used to accomplish it. For example, “the rocket will land
upright using stabilizer fins”, “the vehicle will work on both fuel and elec-
trical power”, or “all the communications will go through the central mes-
sage hub”. The concept is part of the system architecture and should be spec-

ified appropriately within the scope of the MBSA process.

A concept maps function to form [13]. The function of a system is a pro-
cess (an activity), which typically affects one or more operands (the objects
that are changed by the activity). The form is a set of elements that support
this function. This is analogous to the three core parts of all languages being
the noun (instrument of the action), verb (activity that describes the action),
and noun (the object of the action) [17]. Figure 3 illustrates the basic pattern
of a concept and the association among the concept, function, form, and ar-
chitecture.

The highest-level concept of the entire architecture should be a short
phrase or sentence. For example, “Self Driving Car handles Transporting of
up to 4 Passengers to a distance of 500km”. In this short example we clearly
see a) the process: Transporting, b) the form: Self Driving Car, c) the oper-
and: Passenger (up to 4). Additionally, this statement includes an optional
attribute: Distance (up to 500km), which may be drawn from some need.
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Figure 3. Concept: Form enables Function; Function = Process that affects an Op-
erand. The allocation of Function to Form leads to an Architecture [13].

The long journey from needs to solutions passes through a series of steps
and is by no means a straight line. Many of these steps go back and forth in
what could be imagined as a tango dance. Many mental models have been
proposed for this series of steps, most notably the V model and other exam-
ples [18], which mostly advocate a procedure of activities. We present a
generic classification. We argue that at each point, architecting is either one
of two cognitive tasks: conceptualizing or deciding. Conceptualizing is de-
scribing or specifying concepts, while deciding is selecting concepts from
the available candidate pool. After deciding, the decision becomes part of
the solution. Conceptualizing and deciding are collectively referred to as
reasoning. Each architecting step is a reasoning step, and MBSA is a series
of reasoning steps, as shown in Figure 4. Both types of reasoning — concep-
tualization and deciding — can benefit from a model-based approach.
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1. Model-Based System Architecting zooms into Conceptualization, Concept Selec-
tion, and Concept Development, which occur in that time sequence.

. Stakeholder exhibits Need.

. Conceptualization requires Need of Stakeholder and System Architecture.

. Conceptualization yields Candidate Concept.

. Concept Selection requires Candidate Concept.

. Concept Selection yields Concept.

. Concept Development requires Concept.

8. Concept Development yields System Architecture.

Figure 4. Model-Based System Architecting in-zoomed
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1.2. Model-Based Concept Representation

In this section, we discuss a conceptualization process, built around a con-
cept representation framework, supported by OPM modeling language. In
sub-section 1.2.1 we define an ontology for system architecting with five
domains. Sub-sections 1.2.2 to 1.2.6 sequentially reveal each one of the on-
tological domains through a conceptual reference model. The iterative na-
ture of the system design process is demonstrated through the interplay be-
tween the domains. The Scope of an MBSA Application is explained in sub-
section 1.2.7. We then use this framework to examine how MBSA changes
the system architecting process.
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1.2.1. System Architecture Framework

An ontology is a formal vocabulary of domain concepts. It is critical to
adopt and formalize an ontology for a coherent discussion about concept
representation, particularly for system architectures. Our ontology is illus-
trated in Figure 5. This ontology underpins a framework that introduces the
core entries within the system architecture concept representation, and pro-
poses ways to encode these entries, preferably in a modeling environment.
The ontology consists of five domains: Stakeholders (D1), Solution-Neutral
Environment (D2), Solution-Specific Environment (D3), Integrated Con-
cept (D4), and Concept of Operations (D5). A concept domain is a subset of
the ontology, which focuses on a specific aspect of the architecture, and has
a mapping to other. Domains are distinguished by color. We list 28 entries
within these domains, based on a concept representation framework intro-
duced in [19, 20]. We reference these 28 entries using {EXX}, such as
{E15} referring to Specific Form.

The first three domains, D1-D3, represent the simplest formulation of a
concept. The fourth and fifth domains lie downstream to reflect a latent ter-
mination, i.e., extending D1-D3 as long as it is still appropriate to continue
detailing the architecture. The exact timing for terminating varies with solu-
tion types and contexts [19,20]. D1-D3 are distinguished from D4-D5 in the
abstract vs specific levels of discussion. The system architect should be
comfortable with switching from the abstract discussion (D1, D2, and D3)
to a more concrete level of detail (covered by D4 and D5). Moreover, itera-
tive system architecting means that D5 can impact D1, in a cycle of revising,
diverging, and converging. Figure 6 shows the system architecture as a com-
position of the domains.
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Domain 1 (D1)
Stakeholders
1 Stakeholder
2 Need
Domain 2 (D2) Domain 3 (D3) Domain 4 (D4)
Solution-Neutral Environment Solution-Specific Environment Integrated Concept
3 |Solution-neutral operand (SNO)| 8 [ Solution-specific operand (SSO) | 17 Internal Operands (10)
4 SNO value attribute 9 SSO value attribute 18 10 value attribute
5] SNO other attribute 10 SSO other attribute 19 10 other attribute
6 | Solution-neutral process (SNP) | 11| Solution-specific process (SSP) | 20 Internal Processes (IP)
7/ SNP attribute 12 SSP attribute 21 IP attribute
13 Generic Form 22 | Internal Elements of Form (IEoF)
14 Generic Form attribute 23 IEoF attribute
15 Specific Form 24 Structure
16 Specific Form attribute 25 Interactions
Domain 5 (D5)
Concept of Operations
26 Concept of Operations
27 Operator
28 Context

Figure 5. A System Architecture Ontology and a Concept Representation Frame-
work, adapted from [19, 20].
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Figure 6. A System Architecture ontology with five concept domains.

1.2.2. The Stakeholder Domain (D1)

The Stakeholder domain (D1) captures stakeholders and their needs. A
stakeholder {EO1} is “any group or individual who can affect or is affected
by the achievement of the system’s objectives” [21]. In other words, many
groups and individuals can be stakeholders in the broadest sense, depending
on the context. This emphasized the importance of a broad operational con-
text in which the system is intended to operate. Consider the European
“Green Deal” [22]: according to the given definition, all humans on Earth
are Green Deal stakeholders.
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Stakeholder needs {E02} are defined as answers to the question ‘What
problems are we trying to solve?’” [23]. Needs should be problem-oriented
and not solution-oriented. Needs are often specified before the system ar-
chitect gets involved. Needs are often fuzzy, ambiguous statement by stake-
holders. This fuzziness challenges system architects to clearly formulate the
essence of the need, e.g., what is the expected capability, or expected out-
come, or expected change to the current state. The special importance of the
stakeholder needs is that they are used to formulate functional requirements
in a solution-neutral environment.

The stakeholder needs might come from the variety of the sources. The
first of them is the stakeholders themselves: this is the task of the system
architect to frame the discussion with stakeholders in such a way that would
help formulating those needs. Another potential sources of needs are the Use
Cases, constraints, requirements that might come from extensive literature
review.

The system architect's goal is to formulate the functional intent in each
stakeholder need. Needs are associated with the problem statement first, ex-
pressed in the solution-neutral environment and realized through the pro-
cess. Figure 7 illustrates the Stakeholders domain (D1) in which the stake-
holders are denoted by rectangle and need is defined as an attribute (denoted
by a black triangle inside a triangle) of stakeholders.

D1:
Stakeholders

Stakeholder
{E01}

Need {E02}

Figure 7. The Stakeholders Domain (D1): Stakeholder {EO1} exhibits Need {E02}.

1.2.3. The Solution-Neutral Environment (D2)

The need for a solution-neutral environment is a fundamental design prin-
ciple [24]. The solution-neutral environment (D2) facilitates the elicitation
of functional requirements, which must be free of any bias towards prospec-
tive solution approaches, specific technical disciplines, or implementation
strategies [25]. Therefore, the system architect specifies the essential infor-
mation about the solution-neutral process before solution concept
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development. The functional intent (such as “transporting passengers”,
“transferring money”, or “playing music”) should be formulated before the
possible alternative solutions are set up.

Figure 8 encodes the solution-neutral environment (SNE) and its entries.
The solution-neutral operand (SNO) {E03} is an object of interest that will
undergo some transformation by the solution-neutral process (SNP) {E06}.
The solution-neutral process manifests the dynamic nature of the function:
it reflects the action. The SNP and SNO should be abstract so that a variety
of alternatives will emerge and an informed decision-making process will
take place. The SNE entries may have attributes, which are appropriate to
start elaborating at this stage.

SNP {E06} maps to the need {E02}, which is specified in D1, as shown
in Figure 8. Need is realized via the performance of some process — the SNP
and the consumption, transformation, or generation of some operand — the
SNO. Changes in need are likely to entail changes in SNP.

Stakgltlders D2: Solution-Neutral Environment

Need {E02}

Solution-neutral Solution-neutral
Process (SNP) <<—>  Operand (SNO)
{E06} {E03}

: A

SNO Value
Attribute {E04}

SNO Attribute
{E05})

SNP Attribute
{E07}

Figure 8. The Solution-Neutral Environment (D2): Need {E02} exhibits Solution-
Neutral Process (SNP) {E06}. Solution-Neutral Process (SNP) {E06} affects Solu-
tion-Neutral Operand (SNO) {E03}. Solution-Neutral Operand (SNO) {E03} ex-
hibits SNO Value Attribute {E04} and SNO Attribute {E05}. Solution-Neutral Pro-
cess (SNP) {E06} exhibits SNP Attribute {EQ7}.
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1.24. The Solution-Specific Environment (D3)

The solution-specific environment (D3) encodes alternative architectures.
A solution entry defines how the system is going to perform the solution-
neutral functions. Solution-specific processes (SSPs) and solution-specific
operands (SSOs) are mapped to their solution-neutral counterparts (which
were presented in D2), such that it is clear which solution-specific entry at-
tempts to realize each solution-neutral one. For example, “Transporting by
Air (Flying)”, “Transporting by Land (Rolling)”, and “Transporting by Sea
(Sailing)” are SSPs refining the SNP “Transporting”.

The solution-specific environment is derived from the solution-neutral
one via the generalization-specialization relation (drawn as a blank triangle
in OPM, as shown in Figure 9). The SNO “person” generalizes the SSO
“passenger” in a transportation context, “patient” in a medical context, and
“user” in a technological context. Domain jargon can better describe the ar-
tifacts, entities, and human roles (e.g., the SSO “exoplanet” in deep space
exploration).

The number of possible solutions is a product of the number of D3 entries
per D2 entries, therefore it increases with every additional solution-specific
entry. However, the specification of solutions also narrows down the funnel
of possible solutions. While the solution-neutral environment leaves room
open for as many solutions as possible, solution-specific entries identify spe-
cific ways that realize the solution-neutral intent to choose from, and close
the door to other unlisted ideas.

The solution-specific environment may also be associated with the prin-
cipal solution — the deliverable of conceptual design [26]. A principal solu-
tion is a concept, and the early outline of an architecture. The key purpose
of the solution-specific environment is to discover the architecture by spec-
ifying those forms as principal solutions. This is achieved by specifying Ge-
neric Form entities {E13} and associating them with the SSOs they enable
or support. Every SSP has several optional Generic Forms that may imple-
ment it. This is a fundamental conceptual design principle, which, to some
extent, further extends the solution space. For example, the SSP “Flying”
can be implemented by several Generic Forms, e.g., Airplane, Helicopter,
and Drone.

Each Generic Form can be specialized into Specific Forms (SFs) {E15}
within the scope of the Generic Form. For example, “Jet Airplane”, “Turbo-
Prop Airplane”, and “Propeller Airplane” are three SFs of the Generic Form
“Airplane”. The Vertical Take-off and Landing (VTOL) Aircraft concept,
which is featured by Lockheed Martin’s V-22 “Osprey”, is a form with
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lineage to two Generic Forms: Airplane and Helicopter. Therefore, a Spe-
cific Form which is a combination of several Generic Form can be a valid
concept. In fact, converging multiple dimensions of Generic Form into a
minimal set of specific forms is desired, if it reduces the tradespace into a
smaller set of comprehensive, integrated solutions.

D2: Solution-Neutral

Environment D3: Solution-Specific Environment

Solution-neutral

Process (SNP)
{E06}
@ Solution-specific Generic Form

Process {E11} (GF) {E13}
Solution-neutral
Operand (SNO)
{E03} GF Attribute
SSP Attribute {E14} Zx
{E12}
Specific Form
(SF) {E15}
Solution-specific
Operand (SSO)
{E08}
SF Attribute
A {E16}
SSO Value
Attribute {E09}
SSO Attribute
{E10}

Figure 9. Solution-Specific Environment (D3): Solution-Specific Process (SSP)
{E11} affects Solution-Specific Operand (SSO) {E08}. Generic Form (GF) {E13}
enables Solution-Specific Process (SSP) {E11}. Solution-Specific Operand (SSO)
{E08} exhibits SSO Value Attribute {E09} and SSO Attribute {E10}. Solution-
Specific Process (SSP) {E11} exhibits SSP Attribute {E12}. Generic Form (GF)
{E13} exhibits GF Attribute {E14}. Specific Form (SF) {E15} exhibits SF Attrib-
ute {E16}.

1.2.5. The Integrated Concept (D4)

An integrated concept fuses multiple concepts into a cohesive architec-
ture. Two integrated concepts should be distinguishable from each other at
a relatively high-level of abstraction (i.e., following a relatively small num-
ber of abstraction steps, such as the listing of internal processes or the break-
down into components). The integrated concept must also reach a sufficient
level of granularity that allows for the critical transition from system
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architecture to subsystem design [27]. The integrated concept actually re-
sults from decomposition, rather the composition, i.e. by increasing the
granularity of the architecture.

The Integrated Concept Domain (D4) encodes the internal processes, op-
erands, structures, and relations, as illustrated in Figure 10. Digital thread
flows from the specific form {E15} in D3. Each function is compounded
from an Internal Process {E20} and an Internal Operand {E17}. Internal
Element of Form {E22} enables the functions. The structure (physical inter-
action of elements of form) and interactions (functional relationship of ele-
ments of form) between the system concept’s entities are demonstrated at
the bottom of Figure 10.

D3: Solution-Specific

Environment D4: Integrated Concept

Specific Form

(SF) {E15}
Internal
Element of

I I
Form {E22} nternd

Process

—Q S~ Internal

Operand {E17}

A 10 Value
Attribute {E18}
|IEoF Attribute
{E23} 10 Attribute
{E19}
IP Attribute
{E21}

Internal Element Of
Form 1 {E22[i]}

Wracting

Internal Element Of
Form 2 {E22[j]}

Figure 10. The Integrated Concept Domain (D4): Internal Process {E20} affects
Internal Operand {E17}. Their attributes are specified {E21}, {E18}, {E19}, re-
spectively. The internal elements of form {E22} is used to execute the function.
IEoF’s attribute is {E23}. The lower part specifies structural and interaction rela-
tions {E24} and interactions {E25} among instances of IEoFs {E22}.

A system architecture captures vertical and horizontal relations [28]. The
vertical relations capture the decomposition or breakdown of systems into
subsystems. The horizontal relations capture interactions between elements,
such as flows of material, energy, or information. D4 caters to both the
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vertical relations — encoded in the upper part of Figure 10, and the horizontal
ones, encoded in the lower part of Figure 10.

The multiplicity of potential vertical breakdowns and horizontal interac-
tions gives rise to the concern that the architecture of the integrated concept
will become too complicated and messy. We should therefore set bounds on
the amount of information to specify at this stage. Miller’s Law states that
an average human can hold 7+2 objects in short-term memory [29]. It has
since become common to assert that 7+2, Miller’s Magical Number, is a
good limit for complexity, because constructs that include more than 7+2
items are likely to become difficult to grasp.

Completeness and complexity go together in our approach. That is to say:
a complete integrated concept at the first level of decomposition (from a
specific concept to the set of internal structures), is complete in the sense
that it utilizes its complexity quota, so to speak: A view that comprises no
more than 7+2 elements make a good candidate for completeness of speci-
fication. That is not to say that there cannot be more elements. More ele-
ments should be clustered with the existing 7+2 elements. Thus, 7+2 is in
fact an estimate for sufficiency and a constructive measure of complexity,
in the sense that it encourages the architect to converge on this range for
complexity management. We can therefore say that a problem that does not
converge on a 7+2 element scale at any given level of hierarchy, may not
qualify for this approach.

1.2.6. The Concept of Operations (D5)

The Concept of Operations (ConOps) domain (D5) specifies the overall
high-level idea of how the system will be used to meet stakeholder expecta-
tions [23]. The Department of Defense Architecture Framework (DoDAF)
refers to the ConOps as a high-level abstraction graphic that captures how
the system will operate, how it will work out together to help the operational
stakeholders achieve their goals [30]. We have shown a similar model-based
approach for analyzing the DoDAF Operational Viewpoint, which covers
the ConOps [31]. The ConOps ties the system concept with the environ-
ment, and over time. The ConOps is important as it informs all stakeholders
with the context and integrative operation of the system: what processes are
to be performed, in which sequence, and how they will be executed by com-
ponents of the architecture. Eventually, the purpose of the ConOps is to il-
lustrate how the architecture delivers value. ConOps should include both the
system of interest, and the accompanying systems that are necessary to con-
sider during the system design process.
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D5 focuses on the context represented through the whole product system
{E28}, as shown in Figure 11. It includes the accompanying systems, sys-
tem enterprise which is responsible for the system of interest {E15}, and
operator {E27}. An operator is a person or group of people who operate the
system. There is always one higher level in which an architecture resides,
unless we aim to architect a universe, which, to the best of our knowledge,
is the most inclusive architecture of all.

D1: Stakeholders

Need {E02}

D2: Solution-Neutral D3: Solution-Specific
Environment Environme’:n D4: Integrated Concept

Solution-neutral

Oper?ggs()SNO) D5: Concept of Operations
;I\J‘ Solution-specific
J Operand (SSO)
\vi {E08}

Whole Product

System {E28}

Operator {E27} J‘—
Internal Process ./ Accompanying
\/\ System

Solution-neutral
Process (SNP) {E06}

{E20[]}
1

8 Q
Solution-specific Process % External
{E11} M// Process

Internal Process S
{E200])

System
Enterprise

Internal Process

{E20[K]} Specific Form
. e (SF) {E15}

Internal Element
of Form {E22}

Figure 11. The Concept of Operations Domain (D5)

The context defines how the system interacts with its environment. The
same architecture can perform perfectly in one context and poorly in an-
other. For example, a Formula 1 racer will be amazing on the racing tarmac
but less adept on the loose surfaces of the Dakar Rally. Even if the architec-
ture remains the same, the context provides the boundaries and constraints
in which the solution architecture must operate successfully.

While it might make sense to consider the ConOps earlier in the process,
it can also be harmful because setting too many constraints and restrictions
limits our ability to come up with good solutions. Consider, for example,
that operational stakeholders will impose a ConOps that heavily relies on
manual or cognitive actions, while the whole solution can be autonomous or
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semi-autonomous. We would rather explore multiple options and validate
autonomous solutions by finding an appropriate ConOps, rather than try to
fit it into a human-intensive environment. Thanks to a paradigm shift in the
automotive industry, many more functions are delegated to automation and
relieve the driver of the cognitive load rather than intensify the burden.

It is still possible to specify ConOps upfront for an already well-defined
operational architecture in which the architect has to integrate a new capa-
bility or functionality. The specification of legacy elements, platforms, and
reusable assets can be helpful both for solution-specific concept viability
and for further-up elicitation of needs. In some cases, a critical analysis and
challenging of existing operational concepts may help elicit the true under-
lying needs of operational stakeholders, which may open up the door to
other major architectural enhancements.

ConOps has connections with the other domains, which is illustrated in
Figure 11. The iterative nature of the system design process is embodied in
the clear digital thread that starts with stakeholders and their needs and cul-
minates in D5. Figure 11 demonstrates the role of D5 in context representa-
tion, as well as inclusion of the system design process in a coherent way in
which the domains are interwoven to deliver a value from system operation
to meet stakeholders needs.

1.2.7. The Scope of an MBSA Application

The scope of an MBSA project may be a subset of our framework. The
system architect may choose to focus only on some domains, depending on
how broad or narrow an exploration they desire. Ideally, we would try to
model just enough to have a reasonable evaluation of our architectural op-
tions, identify evaluation criteria, and move forward with an architecture.
MBSA should capture sufficient detail to support the detailed design. Un-
fortunately, the broader the architectural decisions under consideration, the
more general the models must be to account for the breadth of options. The
presented framework assumes that the fixed effort available in the architect-
ing phase is a tradeoff between breadth and depth of architectures evaluated.

MBSA is designed to minimize unnecessary effort. If, for instance, a so-
lution-specific environment (D3) is already defined due to various con-
straints (for instance, implementing some functionality using specific hard-
ware type), we may skip the divergence from solution-neutral environment
(D2) and attempt to match the solution-specific environment (D3) with
stakeholder needs (D1). Solution-neutral and solution-specific functionali-
ties are defined in a way that clarifies and simplifies the MBSA effort. This
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approach also helps systems architects focus on those functionalities that are
most critical to constitute decision points that would direct the architecture
one way or another.

System architecture, like civil architecture, is both science and art [32].
This scope should answer the following questions, including explicitly spec-
ifying what lies outside the boundary of MBSA:

1. Which functions must, should, should not, and must not be captured?

2. Could introspecting on the functions of interest yield a re-formulation

of the problem? If so, how general must the model be?

. Which components should and should not be captured?

4. How do we determine if someone is a stakeholder and whether they
should be included?

. How do we evaluate synergies or conflicts in a given architecture?

6. What are the insights derived from the process of architecting beside
the outline of a selected architecture, and how do we preserve those
insights in order to further inform the design process?

7. At which level of granularity is it sufficient to decompose the system
of interest in relation to context and specific needs of stakeholders?

MBSA allows for recording the answers to these questions within the ar-
chitecture model, and within the context of our concept representation
framework — thus extending and empowering the cognitive process done by
the system architect in order to consider and answer these questions. Indeed,
just like a painting is an artifact of the artistic process, a model can record
the emergent propositions that we include in a system architecture, such as
elegance, empowerment, holism, and inspiration — all of which are subjec-
tive perceptions that we hope stakeholders will experience when presented
with the selected system architecture.

(O8]

9,1

1.3. MBSA And Architectural Decision-Making

In this section we focus on the value of a model-based process for archi-
tectural decision-making. Architectural decisions are those reasoning steps
that affect the direction in which an architecture evolves. Decisions are made
throughout the process, and some are based on the model. We focus on how
model-based system architecting would be different from a traditional “of-
fline” system architecting process. It has been generally asserted that models
promote easier design reuse, evaluating more options, and automating de-
sign space exploration. We are interested in a deeper question of how we
might expect decision-making to change. The mere availability of models
has not broadly changed the decision-making process. We ask what is it
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about MBSE capabilities that would lead us to believe that the process of
choosing among potential architectures is different, and better?

R&D stakeholders often make incremental decisions on large programs,
before detailed solution comparison tables are available. The front end of
design is often ambiguous, and there is a gulf to be crossed between the
concept-as-a-napkin-sketch and detailed specifications. We need more rig-
orous bridges than the traditional ones — slideshow illustrations and overly
complex draft box-and-line drawings.

The ability to visualize decision-supporting information as discussed in
the previous section had taken a back seat while the MBSE community had
focused on the modeling environment and the user experience of the mod-
eler or analyst. Product managers and engineers have been somewhat ne-
glected and have lost their ability to look at a model, recognize a dilemma,
understand the options, and make or at least advise a decision. In this section
we try to remedy this situation by focusing on decisions rather than on ex-
cellence in modeling.

Following a brief discussion of some decision-theoretic concepts (sub-
sections 1.3.1 and 1.3.2), we study several ways in which MBSE enhances
architectural decision-making: Capturing stakeholder needs as cost and ben-
efit manifestations of architectural decisions (sub-section 1.3.3); Capturing
and discovering the tradespace of possible candidate conceptual architec-
tures, and highlighting decision points and inviting the architect and stake-
holder to resolve them; Specifying architectural decisions by detailing the
solution-specific architecture in the context of the problem domain; and
highlighting the decisions that were made or will have to be made through-
out the architecting process, their impact on the evolving architecture, and
the trace of justification and rationalization of the emerging architecture
(sub-section 1.3.5).

We consider driver behavior tracking, an issue that vehicle owners are
familiar with, as they want to ensure the safe and lawful behavior of those
who drive their vehicles. This issue is well known to vehicle fleet operators,
rental companies, insurers, and parents of adolescent children. We would
like to find a solution for this problem.

1.3.1. What is a decision and which decisions are
architectural?

Decisions are the choices that one makes about something after consider-
ing several possibilities [33]. This definition emphasizes that a) each
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decision emerges from several alternatives, and b) the choice should be
made after reasoning and consideration. A decision is the outcome of a de-
cision-making process.

Architectural decisions are those important and critical-to-make decisions
that have a significant impact on the concept — i.e., a significant transfor-
mation of system structure and behavior [13]. Our cognitive and mental abil-
ities and subjective biases may make the most important decisions indis-
cernible from less important ones. The model-based approach helps place
stakeholders on the same page and ensure that priorities, impacts, and im-
plications are clear to all, conventionalized, and objective, as part of the de-
cision-making process.

Decision-making is the process of reaching a decision. It generally con-
sists of three phases: Decision Problem Definition, Deciding, and Decision
Execution. A more detailed description of the canonical outline of decision-
making is provided by [34].

The system architect’s primary role is decision-making, and decision
making is the essence of architecting, however, more and more architectural
decisions are made in groups, and the architect’s role becomes one of facil-
itating, moderating, informing, and recording architectural decisions [35].
This notion highlights the importance of a suitable platform that would assist
the system architect throughout the architectural decision-making process.
Decision support capabilities include information management, formula-
tion, recommendation, selection, execution, and learning [36].

The relevance of several alternatives is natural to humans. From the most
trivial chore to the most pressing and fundamental issues of our lives, there
are always at least two options, and even when there is one visible option,
there is also a shadow, or default option of “doing nothing” (DN). When we
consider medical treatment, we identify alternative clinics, physicians, med-
ical approaches, available days and hours, healthcare coverage, and the risk
of worsening our medical condition. Complex system architecting is no dif-
ferent: When we design a new aircraft, we evaluate the desired capacity, fuel
consumption, range, piloting automation capabilities, situational awareness,
etc. Alternatives emerge from key attributes, relevant values, and feasible
combinations.

Decision analysis is the scientific foundation of decision-making. It is
rooted in both the exact and social sciences, giving rise to two DM para-
digms: the analytical and the behavioral. Analytical, model-centered ap-
proaches emerged from classical probabilistic and utility-theoretic ap-
proaches and focused on rational choice [37-39]. Behavioral decision
theories 