
Chapter 1

Model-Based System Architecting
and Decision-Making

Yaroslav Menshenin, Yaniv Mordecai, Edward F. Crawley,
Bruce G. Cameron

 Skolkovo Institute of Science and Technology, Moscow, Russia
 Massachusetts Institute of Technology, Cambridge MA, USA

“The straight line, a respectable optical illusion which ruins many a man.”
― Victor Hugo, Les Misérables

Abstract. We explore the application of MBSE for conceptual sys-
tem architecting. Choosing an architecture is a fundamental activity.
Our Model-Based System Architecting (MBSA) framework facili-
tates the specification of an architecture as a reasoning process – a
series of conceptualization and decision-making activities, backed-up
by an MBSE environment. Our framework captures both the ontol-
ogy of a stakeholder-driven and solution-oriented system architec-
ture, and the process of growing the architecture as a series of con-
ceptualization steps through five ontological domains: the
stakeholder domain, the solution-neutral environment, the solution-
specific environment, the integrated concept, and the concept of op-
erations. Our MBSA approach shifts the modeling focus from record-
ing to conceptualizing, exploring, decision-making, and innovating.
In comparison to an “offline” architecting process, our approach may
initially require a bigger effort but should enable stronger stakeholder
engagement, clearer architectural decision point framing, quicker ex-
ploration, better long-term viability, and increased model robustness.

Keywords. Model-Based System Architecting, Model-Based Sys-
tems Engineering, Architectural Decision-Making, Object-Process
Methodology, Concept Representation.

2
1

2

2 1 2

2 Yaroslav Menshenin, Yaniv Mordecai, Edward F. Crawley,
Bruce G. Cameron

1.1. Introduction

Choosing an architecture for a complex system, sometimes called the
“fuzzy front end” of design, is a task rife with ambiguity. Traditional ap-
proaches have relied on a federated mixture of informal, semiformal, and
formal methods. The growing challenge systems face today has made these
“offline” approaches largely obsolete. Model-Based Systems Engineering
(MBSE) [1] is gradually becoming a mainstream approach for practicing
systems engineering. However, while traditional systems engineering works
to capture missing connections between subsystems, MBSE today is fo-
cused on the descriptive recording of concepts in models [2]. This concept
representation is essential for further processing, analysis, and presentation,
but it is only one aspect of systems engineering. Current practice and re-
search are overweight with the representational effort in MBSE, and under-
weight on analysis and decision-making. Similarly, software engineers are
expected to deliver operational, functional, secure, and efficient software
regardless of the programming languages and software development envi-
ronment they use; mechanical engineers are expected to deliver valid, veri-
fied, buildable, and maintainable part and component designs, regardless of
the design technology they design with, etc. Nevertheless, in the current
landscape of digital engineering [3], no one imagines that software, hard-
ware, or mechanical engineers will not employ the latest software to man-
age, design, implement, test, and deploy their deliverables. Systems engi-
neering should be no exception.

We explore the ways in which MBSE can be used to support system ar-
chitecting, and to ensure that the process remains rigorous and insightful.
Reaching a good system architecture must be inherent in any MBSE ap-
proach. Accordingly, our model-based system architecting (MBSA) ap-
proach uses models and analysis of MBSE to choose an architecture. It is
not a detached adaptation or variation of MBSE to system architecting.

Much has been written about the descriptive aspects of MBSE, whether
it be in cataloging functional flow or in defining potential system states.
However, this documentation does not necessarily support architectural de-
cision-making unless it presents decision points. A decision point could be
an opportunity to choose a solution from at least two options. We define
what we consider architectural, in order to evaluate how and where MBSE
supports decision-making about architecture.

The effort involved in building an MBSE environment and the associated
cultural transformation imply that the scope and purpose must be crisply

Model-Based System Architecting and Decision-Making 3

defined, so as to rationalize the investment in MBSE. One of these purposes
(but by no means the only one) is to support architectural decision-making.
MBSA includes the following cycle of activities in scope:

1. representing potential architectures with models,

2. identifying architectural decisions,

3. conducting analysis in support of emerging architectural decisions,

4. making architectural decisions based on model analysis results, and

5. capturing decisions in the model for the next architecting iteration.

Model-Based Conceptual Design (MBCD) resembles MBSA. MBCD is
the application of MBSE to tradespace exploration during the conceptual
stages of systems engineering [4]. The activities performed during the con-
ceptual stages of system engineering are defined as architecting, and their
main outcome is an architecture – a holistic view of the entire system. By
contrast, activities performed to realize the architecture, particularly plan-
ning solutions with engineering and scientific knowhow – are considered as
designing – where the main outcome is the design: a blueprint for developers
to implement or build the system. A complex component’s design may con-
stitute architecting for that component as a bona fide system, e.g., the jet
engine in an airplane, or a communication network that connects many sen-
sors and controllers.

MBSA has also been used as an acronym for Model-Based System Ar-
chitecture [5], in a framework which uses the Systems Modeling Language
(SysML) [6]. That approach focused on providing a repository of artifacts,
which facilitate communicating with stakeholders, assuring requirements
traceability, and specifying systems and sub-systems. We employ the MBSE
paradigm as a reasoning mechanism, and not only as a documentation ap-
proach, because we believe that it generates additional value to stakeholders.

Previously, the Model-Based System Architecting and Software Engi-
neering (MBASE) approach [7] advocated a holistic process for software
architectures, software lifecycle guidance. The MBASE approach was in-
fact document-centric. The model-based ecosystems were not yet mature
enough to accommodate a complete system architecting, design, develop-
ment, deployment, and operation thread. Therefore, MBASE started with an
Operational Concept Description (OCD), but focused on generating docu-
ments like the System and Software Requirements Definition (SSRD), Sys-
tem and Software Architecture Description (SSAD), Life Cycle Plan (LCP),
and Feasibility Rationale Description (FRD) [8]. It also concerned some

4 Yaroslav Menshenin, Yaniv Mordecai, Edward F. Crawley,
Bruce G. Cameron

critical aspects in software deployment such as iterative development, fol-
lowing the Spiral paradigm [9], transition, and software support.

The discussion on the necessity, relevance, and sufficiency of system ar-
chitecting, particularly in software-intensive systems, has been ongoing es-
pecially with the appearance of short-cycle iterative and continuous devel-
opment and deployment approaches [10]. The key argument remains, and
gets validated in many famous failures [11] that holistic system architecting
increases confidence in the ability to meet stakeholder needs, develop a ro-
bust architecture that can adapt to changes, and reduce the amount of tech-
nical debt as the system evolves [12].

Many of the building blocks described in this chapter originate from pre-
vious holistic frameworks for system architecting [13], in which modeling
played a key role in concept description, but could not yet be regarded as a
fully model-based approach.

Bahill and Madni introduce a model-based approach known as the
SIMILAR process, which stands for: a) Stating the Problem, b) Investigat-
ing Alternatives, c) Modeling the System, d) Integrating Components, e)
Launching the System, f) Assessing Performance, and g) Re-evaluating the
System [14]. The MBSA approach that we proposed focuses and extends on
the early stages in the SIMILAR framework and especially on early itera-
tions in which the conceptual architecture is the main artifact, and little or
no physical components are available.

1.1.1. Model-Based System Architecting: Crossing a
Mental Grand Canyon

MBSA often begins with concept brainstorming in response to some need
or set of needs, and ends with a formalized review and sign off of a well-
defined and buildable architecture. In between, there is a series of concep-
tualizations and decisions: The leap from stakeholder needs to a well-de-
fined organization of structural and behavioral elements does not happen
overnight. This mental ‘Grand Canyon’ is simply too wide to jump all at
once, and a series of intermediate steps is necessary. The question is: how
can we wisely plan these steps that will lead us safely to the other side? This
idea is illustrated in Error! Reference source not found..

Model-Based System Architecting and Decision-Making 5

Figure 1. Crossing the mental Grand Canyon from needs to operationally-viable
solutions, through a series of system architecture decisions, using a model as the
knowledge base and primary reasoning engine.

A system architecture is a description of the structure and behavior of a
system that jointly provide one or more functions to serve the needs of sys-
tem stakeholders. MBSA relies on a formal modeling language to capture,
present, and reason about the system architecture, but the deliverables are
essentially the same as those of the traditional (not model-based) process: a
specification of the system architecture, which can serve as the basis for
further requirement specification, design, development, testing, and opera-
tion. This high-level concept of MBSA is illustrated in Figure 2. We shall
be using Object-Process Methodology (OPM) [1] as a model for this Chap-
ter, due its relative simplicity (using OPCloud, and its automatically gener-
ated text specifications1 [15]). The complete reference model for our MBSA
framework is included in [16]. In Figure 2 the objects (such as “Stakeholder”
and “System Architect”) are denoted by rectangles, whereas the process
(“Model-Based System Architecting”) is denoted by oval. The filled in
black triangle inside a triangle means that the “Need” is the attribute of
“Stakeholder”. The link with arrow informs about the consumption of the
attribute “Need” by the “Model-Based System Architecting” process. The
link with filled in circle at the end is the agent link (“System Architect”),
whereas the link with the open circle at the end is the instrument link
(“Model-Based Systems Engineering Environment”). The full description
of the OPM symbols can be found in [1].

1 Figure 2’s title is directly drawn from the text specification that OPCloud generates for this diagram, making it an unambiguous

description of the diagram.

6 Yaroslav Menshenin, Yaniv Mordecai, Edward F. Crawley,
Bruce G. Cameron

Figure 2. Model-Based System Architecting: Stakeholder exhibits Need. Model-
Based System Architecting consumes Need of Stakeholder. System Architect han-
dles Model-Based System Architecting. Model-Based System Architecting requires
Model-based Systems Engineering Environment. Model-Based System Architect-
ing yields System Architecture.

1.1.2. A Tango of Conceptualizations and Decisions

A concept is an initial mapping of what we want to accomplish to the
form that will be used to accomplish it. For example, “the rocket will land
upright using stabilizer fins”, “the vehicle will work on both fuel and elec-
trical power”, or “all the communications will go through the central mes-
sage hub”. The concept is part of the system architecture and should be spec-
ified appropriately within the scope of the MBSA process.

A concept maps function to form [13]. The function of a system is a pro-
cess (an activity), which typically affects one or more operands (the objects
that are changed by the activity). The form is a set of elements that support
this function. This is analogous to the three core parts of all languages being
the noun (instrument of the action), verb (activity that describes the action),
and noun (the object of the action) [17]. Figure 3 illustrates the basic pattern
of a concept and the association among the concept, function, form, and ar-
chitecture.

The highest-level concept of the entire architecture should be a short
phrase or sentence. For example, “Self Driving Car handles Transporting of
up to 4 Passengers to a distance of 500km”. In this short example we clearly
see a) the process: Transporting, b) the form: Self Driving Car, c) the oper-
and: Passenger (up to 4). Additionally, this statement includes an optional
attribute: Distance (up to 500km), which may be drawn from some need.

Model-Based System Architecting and Decision-Making 7

Figure 3. Concept: Form enables Function; Function = Process that affects an Op-
erand. The allocation of Function to Form leads to an Architecture [13].

The long journey from needs to solutions passes through a series of steps
and is by no means a straight line. Many of these steps go back and forth in
what could be imagined as a tango dance. Many mental models have been
proposed for this series of steps, most notably the V model and other exam-
ples [18], which mostly advocate a procedure of activities. We present a
generic classification. We argue that at each point, architecting is either one
of two cognitive tasks: conceptualizing or deciding. Conceptualizing is de-
scribing or specifying concepts, while deciding is selecting concepts from
the available candidate pool. After deciding, the decision becomes part of
the solution. Conceptualizing and deciding are collectively referred to as
reasoning. Each architecting step is a reasoning step, and MBSA is a series
of reasoning steps, as shown in Figure 4. Both types of reasoning – concep-
tualization and deciding – can benefit from a model-based approach.

8 Yaroslav Menshenin, Yaniv Mordecai, Edward F. Crawley,
Bruce G. Cameron

1. Model-Based System Architecting zooms into Conceptualization, Concept Selec-

tion, and Concept Development, which occur in that time sequence.
2. Stakeholder exhibits Need.
3. Conceptualization requires Need of Stakeholder and System Architecture.
4. Conceptualization yields Candidate Concept.
5. Concept Selection requires Candidate Concept.
6. Concept Selection yields Concept.
7. Concept Development requires Concept.
8. Concept Development yields System Architecture.

Figure 4. Model-Based System Architecting in-zoomed

1.2. Model-Based Concept Representation

In this section, we discuss a conceptualization process, built around a con-
cept representation framework, supported by OPM modeling language. In
sub-section 1.2.1 we define an ontology for system architecting with five
domains. Sub-sections 1.2.2 to 1.2.6 sequentially reveal each one of the on-
tological domains through a conceptual reference model. The iterative na-
ture of the system design process is demonstrated through the interplay be-
tween the domains. The Scope of an MBSA Application is explained in sub-
section 1.2.7. We then use this framework to examine how MBSA changes
the system architecting process.

Model-Based System Architecting and Decision-Making 9

1.2.1. System Architecture Framework

An ontology is a formal vocabulary of domain concepts. It is critical to
adopt and formalize an ontology for a coherent discussion about concept
representation, particularly for system architectures. Our ontology is illus-
trated in Figure 5. This ontology underpins a framework that introduces the
core entries within the system architecture concept representation, and pro-
poses ways to encode these entries, preferably in a modeling environment.
The ontology consists of five domains: Stakeholders (D1), Solution-Neutral
Environment (D2), Solution-Specific Environment (D3), Integrated Con-
cept (D4), and Concept of Operations (D5). A concept domain is a subset of
the ontology, which focuses on a specific aspect of the architecture, and has
a mapping to other. Domains are distinguished by color. We list 28 entries
within these domains, based on a concept representation framework intro-
duced in [19, 20]. We reference these 28 entries using {EXX}, such as
{E15} referring to Specific Form.

The first three domains, D1-D3, represent the simplest formulation of a
concept. The fourth and fifth domains lie downstream to reflect a latent ter-
mination, i.e., extending D1-D3 as long as it is still appropriate to continue
detailing the architecture. The exact timing for terminating varies with solu-
tion types and contexts [19, 20]. D1-D3 are distinguished from D4-D5 in the
abstract vs specific levels of discussion. The system architect should be
comfortable with switching from the abstract discussion (D1, D2, and D3)
to a more concrete level of detail (covered by D4 and D5). Moreover, itera-
tive system architecting means that D5 can impact D1, in a cycle of revising,
diverging, and converging. Figure 6 shows the system architecture as a com-
position of the domains.

10 Yaroslav Menshenin, Yaniv Mordecai, Edward F. Crawley,
Bruce G. Cameron

Figure 5. A System Architecture Ontology and a Concept Representation Frame-
work, adapted from [19, 20].

Figure 6. A System Architecture ontology with five concept domains.

1.2.2. The Stakeholder Domain (D1)

The Stakeholder domain (D1) captures stakeholders and their needs. A
stakeholder {E01} is “any group or individual who can affect or is affected
by the achievement of the system’s objectives” [21]. In other words, many
groups and individuals can be stakeholders in the broadest sense, depending
on the context. This emphasized the importance of a broad operational con-
text in which the system is intended to operate. Consider the European
“Green Deal” [22]: according to the given definition, all humans on Earth
are Green Deal stakeholders.

Model-Based System Architecting and Decision-Making 11

Stakeholder needs {E02} are defined as answers to the question ‘What
problems are we trying to solve?’” [23]. Needs should be problem-oriented
and not solution-oriented. Needs are often specified before the system ar-
chitect gets involved. Needs are often fuzzy, ambiguous statement by stake-
holders. This fuzziness challenges system architects to clearly formulate the
essence of the need, e.g., what is the expected capability, or expected out-
come, or expected change to the current state. The special importance of the
stakeholder needs is that they are used to formulate functional requirements
in a solution-neutral environment.

The stakeholder needs might come from the variety of the sources. The
first of them is the stakeholders themselves: this is the task of the system
architect to frame the discussion with stakeholders in such a way that would
help formulating those needs. Another potential sources of needs are the Use
Cases, constraints, requirements that might come from extensive literature
review.

The system architect's goal is to formulate the functional intent in each
stakeholder need. Needs are associated with the problem statement first, ex-
pressed in the solution-neutral environment and realized through the pro-
cess. Figure 7 illustrates the Stakeholders domain (D1) in which the stake-
holders are denoted by rectangle and need is defined as an attribute (denoted
by a black triangle inside a triangle) of stakeholders.

Figure 7. The Stakeholders Domain (D1): Stakeholder {E01} exhibits Need {E02}.

1.2.3. The Solution-Neutral Environment (D2)

The need for a solution-neutral environment is a fundamental design prin-
ciple [24]. The solution-neutral environment (D2) facilitates the elicitation
of functional requirements, which must be free of any bias towards prospec-
tive solution approaches, specific technical disciplines, or implementation
strategies [25]. Therefore, the system architect specifies the essential infor-
mation about the solution-neutral process before solution concept

12 Yaroslav Menshenin, Yaniv Mordecai, Edward F. Crawley,
Bruce G. Cameron

development. The functional intent (such as “transporting passengers”,
“transferring money”, or “playing music”) should be formulated before the
possible alternative solutions are set up.

Figure 8 encodes the solution-neutral environment (SNE) and its entries.
The solution-neutral operand (SNO) {E03} is an object of interest that will
undergo some transformation by the solution-neutral process (SNP) {E06}.
The solution-neutral process manifests the dynamic nature of the function:
it reflects the action. The SNP and SNO should be abstract so that a variety
of alternatives will emerge and an informed decision-making process will
take place. The SNE entries may have attributes, which are appropriate to
start elaborating at this stage.

SNP {E06} maps to the need {E02}, which is specified in D1, as shown
in Figure 8. Need is realized via the performance of some process – the SNP
and the consumption, transformation, or generation of some operand – the
SNO. Changes in need are likely to entail changes in SNP.

Figure 8. The Solution-Neutral Environment (D2): Need {E02} exhibits Solution-
Neutral Process (SNP) {E06}. Solution-Neutral Process (SNP) {E06} affects Solu-
tion-Neutral Operand (SNO) {E03}. Solution-Neutral Operand (SNO) {E03} ex-
hibits SNO Value Attribute {E04} and SNO Attribute {E05}. Solution-Neutral Pro-
cess (SNP) {E06} exhibits SNP Attribute {E07}.

Model-Based System Architecting and Decision-Making 13

1.2.4. The Solution-Specific Environment (D3)

The solution-specific environment (D3) encodes alternative architectures.
A solution entry defines how the system is going to perform the solution-
neutral functions. Solution-specific processes (SSPs) and solution-specific
operands (SSOs) are mapped to their solution-neutral counterparts (which
were presented in D2), such that it is clear which solution-specific entry at-
tempts to realize each solution-neutral one. For example, “Transporting by
Air (Flying)”, “Transporting by Land (Rolling)”, and “Transporting by Sea
(Sailing)” are SSPs refining the SNP “Transporting”.

The solution-specific environment is derived from the solution-neutral
one via the generalization-specialization relation (drawn as a blank triangle
in OPM, as shown in Figure 9). The SNO “person” generalizes the SSO
“passenger” in a transportation context, “patient” in a medical context, and
“user” in a technological context. Domain jargon can better describe the ar-
tifacts, entities, and human roles (e.g., the SSO “exoplanet” in deep space
exploration).

The number of possible solutions is a product of the number of D3 entries
per D2 entries, therefore it increases with every additional solution-specific
entry. However, the specification of solutions also narrows down the funnel
of possible solutions. While the solution-neutral environment leaves room
open for as many solutions as possible, solution-specific entries identify spe-
cific ways that realize the solution-neutral intent to choose from, and close
the door to other unlisted ideas.

The solution-specific environment may also be associated with the prin-
cipal solution – the deliverable of conceptual design [26]. A principal solu-
tion is a concept, and the early outline of an architecture. The key purpose
of the solution-specific environment is to discover the architecture by spec-
ifying those forms as principal solutions. This is achieved by specifying Ge-
neric Form entities {E13} and associating them with the SSOs they enable
or support. Every SSP has several optional Generic Forms that may imple-
ment it. This is a fundamental conceptual design principle, which, to some
extent, further extends the solution space. For example, the SSP “Flying”
can be implemented by several Generic Forms, e.g., Airplane, Helicopter,
and Drone.

Each Generic Form can be specialized into Specific Forms (SFs) {E15}
within the scope of the Generic Form. For example, “Jet Airplane”, “Turbo-
Prop Airplane”, and “Propeller Airplane” are three SFs of the Generic Form
“Airplane”. The Vertical Take-off and Landing (VTOL) Aircraft concept,
which is featured by Lockheed Martin’s V-22 “Osprey”, is a form with

14 Yaroslav Menshenin, Yaniv Mordecai, Edward F. Crawley,
Bruce G. Cameron

lineage to two Generic Forms: Airplane and Helicopter. Therefore, a Spe-
cific Form which is a combination of several Generic Form can be a valid
concept. In fact, converging multiple dimensions of Generic Form into a
minimal set of specific forms is desired, if it reduces the tradespace into a
smaller set of comprehensive, integrated solutions.

Figure 9. Solution-Specific Environment (D3): Solution-Specific Process (SSP)
{E11} affects Solution-Specific Operand (SSO) {E08}. Generic Form (GF) {E13}
enables Solution-Specific Process (SSP) {E11}. Solution-Specific Operand (SSO)
{E08} exhibits SSO Value Attribute {E09} and SSO Attribute {E10}. Solution-
Specific Process (SSP) {E11} exhibits SSP Attribute {E12}. Generic Form (GF)
{E13} exhibits GF Attribute {E14}. Specific Form (SF) {E15} exhibits SF Attrib-
ute {E16}.

1.2.5. The Integrated Concept (D4)

An integrated concept fuses multiple concepts into a cohesive architec-
ture. Two integrated concepts should be distinguishable from each other at
a relatively high-level of abstraction (i.e., following a relatively small num-
ber of abstraction steps, such as the listing of internal processes or the break-
down into components). The integrated concept must also reach a sufficient
level of granularity that allows for the critical transition from system

Model-Based System Architecting and Decision-Making 15

architecture to subsystem design [27]. The integrated concept actually re-
sults from decomposition, rather the composition, i.e. by increasing the
granularity of the architecture.

The Integrated Concept Domain (D4) encodes the internal processes, op-
erands, structures, and relations, as illustrated in Figure 10. Digital thread
flows from the specific form {E15} in D3. Each function is compounded
from an Internal Process {E20} and an Internal Operand {E17}. Internal
Element of Form {E22} enables the functions. The structure (physical inter-
action of elements of form) and interactions (functional relationship of ele-
ments of form) between the system concept’s entities are demonstrated at
the bottom of Figure 10.

Figure 10. The Integrated Concept Domain (D4): Internal Process {E20} affects
Internal Operand {E17}. Their attributes are specified {E21}, {E18}, {E19}, re-
spectively. The internal elements of form {E22} is used to execute the function.
IEoF’s attribute is {E23}. The lower part specifies structural and interaction rela-
tions {E24} and interactions {E25} among instances of IEoFs {E22}.

A system architecture captures vertical and horizontal relations [28]. The
vertical relations capture the decomposition or breakdown of systems into
subsystems. The horizontal relations capture interactions between elements,
such as flows of material, energy, or information. D4 caters to both the

16 Yaroslav Menshenin, Yaniv Mordecai, Edward F. Crawley,
Bruce G. Cameron

vertical relations – encoded in the upper part of Figure 10, and the horizontal
ones, encoded in the lower part of Figure 10.

The multiplicity of potential vertical breakdowns and horizontal interac-
tions gives rise to the concern that the architecture of the integrated concept
will become too complicated and messy. We should therefore set bounds on
the amount of information to specify at this stage. Miller’s Law states that
an average human can hold 7±2 objects in short-term memory [29]. It has
since become common to assert that 7±2, Miller’s Magical Number, is a
good limit for complexity, because constructs that include more than 7±2
items are likely to become difficult to grasp.

Completeness and complexity go together in our approach. That is to say:
a complete integrated concept at the first level of decomposition (from a
specific concept to the set of internal structures), is complete in the sense
that it utilizes its complexity quota, so to speak: A view that comprises no
more than 7±2 elements make a good candidate for completeness of speci-
fication. That is not to say that there cannot be more elements. More ele-
ments should be clustered with the existing 7±2 elements. Thus, 7±2 is in
fact an estimate for sufficiency and a constructive measure of complexity,
in the sense that it encourages the architect to converge on this range for
complexity management. We can therefore say that a problem that does not
converge on a 7±2 element scale at any given level of hierarchy, may not
qualify for this approach.

1.2.6. The Concept of Operations (D5)

The Concept of Operations (ConOps) domain (D5) specifies the overall
high-level idea of how the system will be used to meet stakeholder expecta-
tions [23]. The Department of Defense Architecture Framework (DoDAF)
refers to the ConOps as a high-level abstraction graphic that captures how
the system will operate, how it will work out together to help the operational
stakeholders achieve their goals [30]. We have shown a similar model-based
approach for analyzing the DoDAF Operational Viewpoint, which covers
the ConOps [31]. The ConOps ties the system concept with the environ-
ment, and over time. The ConOps is important as it informs all stakeholders
with the context and integrative operation of the system: what processes are
to be performed, in which sequence, and how they will be executed by com-
ponents of the architecture. Eventually, the purpose of the ConOps is to il-
lustrate how the architecture delivers value. ConOps should include both the
system of interest, and the accompanying systems that are necessary to con-
sider during the system design process.

Model-Based System Architecting and Decision-Making 17

D5 focuses on the context represented through the whole product system
{E28}, as shown in Figure 11. It includes the accompanying systems, sys-
tem enterprise which is responsible for the system of interest {E15}, and
operator {E27}. An operator is a person or group of people who operate the
system. There is always one higher level in which an architecture resides,
unless we aim to architect a universe, which, to the best of our knowledge,
is the most inclusive architecture of all.

Figure 11. The Concept of Operations Domain (D5)

The context defines how the system interacts with its environment. The
same architecture can perform perfectly in one context and poorly in an-
other. For example, a Formula 1 racer will be amazing on the racing tarmac
but less adept on the loose surfaces of the Dakar Rally. Even if the architec-
ture remains the same, the context provides the boundaries and constraints
in which the solution architecture must operate successfully.

While it might make sense to consider the ConOps earlier in the process,
it can also be harmful because setting too many constraints and restrictions
limits our ability to come up with good solutions. Consider, for example,
that operational stakeholders will impose a ConOps that heavily relies on
manual or cognitive actions, while the whole solution can be autonomous or

18 Yaroslav Menshenin, Yaniv Mordecai, Edward F. Crawley,
Bruce G. Cameron

semi-autonomous. We would rather explore multiple options and validate
autonomous solutions by finding an appropriate ConOps, rather than try to
fit it into a human-intensive environment. Thanks to a paradigm shift in the
automotive industry, many more functions are delegated to automation and
relieve the driver of the cognitive load rather than intensify the burden.

It is still possible to specify ConOps upfront for an already well-defined
operational architecture in which the architect has to integrate a new capa-
bility or functionality. The specification of legacy elements, platforms, and
reusable assets can be helpful both for solution-specific concept viability
and for further-up elicitation of needs. In some cases, a critical analysis and
challenging of existing operational concepts may help elicit the true under-
lying needs of operational stakeholders, which may open up the door to
other major architectural enhancements.

ConOps has connections with the other domains, which is illustrated in
Figure 11. The iterative nature of the system design process is embodied in
the clear digital thread that starts with stakeholders and their needs and cul-
minates in D5. Figure 11 demonstrates the role of D5 in context representa-
tion, as well as inclusion of the system design process in a coherent way in
which the domains are interwoven to deliver a value from system operation
to meet stakeholders needs.

1.2.7. The Scope of an MBSA Application

The scope of an MBSA project may be a subset of our framework. The
system architect may choose to focus only on some domains, depending on
how broad or narrow an exploration they desire. Ideally, we would try to
model just enough to have a reasonable evaluation of our architectural op-
tions, identify evaluation criteria, and move forward with an architecture.
MBSA should capture sufficient detail to support the detailed design. Un-
fortunately, the broader the architectural decisions under consideration, the
more general the models must be to account for the breadth of options. The
presented framework assumes that the fixed effort available in the architect-
ing phase is a tradeoff between breadth and depth of architectures evaluated.

MBSA is designed to minimize unnecessary effort. If, for instance, a so-
lution-specific environment (D3) is already defined due to various con-
straints (for instance, implementing some functionality using specific hard-
ware type), we may skip the divergence from solution-neutral environment
(D2) and attempt to match the solution-specific environment (D3) with
stakeholder needs (D1). Solution-neutral and solution-specific functionali-
ties are defined in a way that clarifies and simplifies the MBSA effort. This

Model-Based System Architecting and Decision-Making 19

approach also helps systems architects focus on those functionalities that are
most critical to constitute decision points that would direct the architecture
one way or another.

System architecture, like civil architecture, is both science and art [32].
This scope should answer the following questions, including explicitly spec-
ifying what lies outside the boundary of MBSA:

1. Which functions must, should, should not, and must not be captured?
2. Could introspecting on the functions of interest yield a re-formulation

of the problem? If so, how general must the model be?
3. Which components should and should not be captured?
4. How do we determine if someone is a stakeholder and whether they

should be included?
5. How do we evaluate synergies or conflicts in a given architecture?
6. What are the insights derived from the process of architecting beside

the outline of a selected architecture, and how do we preserve those
insights in order to further inform the design process?

7. At which level of granularity is it sufficient to decompose the system
of interest in relation to context and specific needs of stakeholders?

MBSA allows for recording the answers to these questions within the ar-
chitecture model, and within the context of our concept representation
framework – thus extending and empowering the cognitive process done by
the system architect in order to consider and answer these questions. Indeed,
just like a painting is an artifact of the artistic process, a model can record
the emergent propositions that we include in a system architecture, such as
elegance, empowerment, holism, and inspiration – all of which are subjec-
tive perceptions that we hope stakeholders will experience when presented
with the selected system architecture.

1.3. MBSA And Architectural Decision-Making

In this section we focus on the value of a model-based process for archi-
tectural decision-making. Architectural decisions are those reasoning steps
that affect the direction in which an architecture evolves. Decisions are made
throughout the process, and some are based on the model. We focus on how
model-based system architecting would be different from a traditional “of-
fline” system architecting process. It has been generally asserted that models
promote easier design reuse, evaluating more options, and automating de-
sign space exploration. We are interested in a deeper question of how we
might expect decision-making to change. The mere availability of models
has not broadly changed the decision-making process. We ask what is it

20 Yaroslav Menshenin, Yaniv Mordecai, Edward F. Crawley,
Bruce G. Cameron

about MBSE capabilities that would lead us to believe that the process of
choosing among potential architectures is different, and better?

R&D stakeholders often make incremental decisions on large programs,
before detailed solution comparison tables are available. The front end of
design is often ambiguous, and there is a gulf to be crossed between the
concept-as-a-napkin-sketch and detailed specifications. We need more rig-
orous bridges than the traditional ones – slideshow illustrations and overly
complex draft box-and-line drawings.

The ability to visualize decision-supporting information as discussed in
the previous section had taken a back seat while the MBSE community had
focused on the modeling environment and the user experience of the mod-
eler or analyst. Product managers and engineers have been somewhat ne-
glected and have lost their ability to look at a model, recognize a dilemma,
understand the options, and make or at least advise a decision. In this section
we try to remedy this situation by focusing on decisions rather than on ex-
cellence in modeling.

Following a brief discussion of some decision-theoretic concepts (sub-
sections 1.3.1 and 1.3.2), we study several ways in which MBSE enhances
architectural decision-making: Capturing stakeholder needs as cost and ben-
efit manifestations of architectural decisions (sub-section 1.3.3); Capturing
and discovering the tradespace of possible candidate conceptual architec-
tures, and highlighting decision points and inviting the architect and stake-
holder to resolve them; Specifying architectural decisions by detailing the
solution-specific architecture in the context of the problem domain; and
highlighting the decisions that were made or will have to be made through-
out the architecting process, their impact on the evolving architecture, and
the trace of justification and rationalization of the emerging architecture
(sub-section 1.3.5).

We consider driver behavior tracking, an issue that vehicle owners are
familiar with, as they want to ensure the safe and lawful behavior of those
who drive their vehicles. This issue is well known to vehicle fleet operators,
rental companies, insurers, and parents of adolescent children. We would
like to find a solution for this problem.

1.3.1. What is a decision and which decisions are
architectural?

Decisions are the choices that one makes about something after consider-
ing several possibilities [33]. This definition emphasizes that a) each

Model-Based System Architecting and Decision-Making 21

decision emerges from several alternatives, and b) the choice should be
made after reasoning and consideration. A decision is the outcome of a de-
cision-making process.

Architectural decisions are those important and critical-to-make decisions
that have a significant impact on the concept – i.e., a significant transfor-
mation of system structure and behavior [13]. Our cognitive and mental abil-
ities and subjective biases may make the most important decisions indis-
cernible from less important ones. The model-based approach helps place
stakeholders on the same page and ensure that priorities, impacts, and im-
plications are clear to all, conventionalized, and objective, as part of the de-
cision-making process.

Decision-making is the process of reaching a decision. It generally con-
sists of three phases: Decision Problem Definition, Deciding, and Decision
Execution. A more detailed description of the canonical outline of decision-
making is provided by [34].

The system architect’s primary role is decision-making, and decision
making is the essence of architecting, however, more and more architectural
decisions are made in groups, and the architect’s role becomes one of facil-
itating, moderating, informing, and recording architectural decisions [35].
This notion highlights the importance of a suitable platform that would assist
the system architect throughout the architectural decision-making process.
Decision support capabilities include information management, formula-
tion, recommendation, selection, execution, and learning [36].

The relevance of several alternatives is natural to humans. From the most
trivial chore to the most pressing and fundamental issues of our lives, there
are always at least two options, and even when there is one visible option,
there is also a shadow, or default option of “doing nothing” (DN). When we
consider medical treatment, we identify alternative clinics, physicians, med-
ical approaches, available days and hours, healthcare coverage, and the risk
of worsening our medical condition. Complex system architecting is no dif-
ferent: When we design a new aircraft, we evaluate the desired capacity, fuel
consumption, range, piloting automation capabilities, situational awareness,
etc. Alternatives emerge from key attributes, relevant values, and feasible
combinations.

Decision analysis is the scientific foundation of decision-making. It is
rooted in both the exact and social sciences, giving rise to two DM para-
digms: the analytical and the behavioral. Analytical, model-centered ap-
proaches emerged from classical probabilistic and utility-theoretic ap-
proaches and focused on rational choice [37–39]. Behavioral decision
theories view decision-making as a non-normative, human-centered

22 Yaroslav Menshenin, Yaniv Mordecai, Edward F. Crawley,
Bruce G. Cameron

process, with all the issues it raises [40]. According to the behavioral school,
a person or group of people make decisions under various constraints, un-
certainty, and bias [41]. The behavioral approach deals with heuristics, ra-
tionality and rationalization, analysis paralysis, and a host of other aspects
and phenomena of human cognition. Managerial aspects like decision track-
ing and assurance are considered mainly behavioral.

Two primary handbooks on systems engineering (INCOSE’s and
NASA’s [23, 42]) discuss decision making as an engineering process, con-
cerning both programmatic and architectural aspects. Programmatic deci-
sions are made at decision gates, to simplify project and risk management.
Architectural decisions concern aspects like functionality, design, technol-
ogy, and vendor selection.

Trade Study, or Tradespace Exploration, is the process of analysing var-
ious architectural alternatives, and trading-off figures of merit until a bal-
anced solution is obtained [43, 44]. The primary phases of a trade study are:
problem scoping, communicating with stakeholders, defining evaluation cri-
teria and weights, defining and filtering alternatives, evaluating candidate
alternatives based on measures of merit, selecting the best alternative, re-
viewing and re-evaluating the selection, assessing impact, and validating as-
sumptions.

Reasoning about the alternatives is a fundamental part of our actions.
There is a need to support the reasoning process through the recording and
visualization of alternatives, compositions of alternatives, and comparisons
of alternatives. The model-based approach empowers reasoning by reducing
all the alternatives into a common formal language and representation. The
representations of alternatives are not always straightforward, and the need
to formulate them under the syntax and semantics of the modeling language
makes the alternative concepts and their attributes emerge through an inter-
active cognitive-computational process, rather than through a deterministic
mechanistic process of converting ideas to models.

Additional concerns related to decision making involve the consideration
of uncertainty, risk, and subjective bias. Being able to integrate requirement
prioritization, solution architecture selection, design exploration and deci-
sion making, and risk analysis is the essence of informed decision-analytic
system architecting [14]. We would add here that the ability to do all of this
in a model-driven way and in a model-based environment, particularly dur-
ing early conceptual architecting iterations, is the essence of this chapter.

While the concept is a function-form mapping at the highest level of ab-
straction, a series of architectural decisions maps a set of functions to their
respective forms. Consider an example of the functional intent of Money

Model-Based System Architecting and Decision-Making 23

Moving, as illustrated in Figure 12. In this case the stakeholder {E01} is
defined as a Person, who has a need {E02} Change the location of money
from point A to point B. The solution-neutral process Moving {E06} affects
the solution-neutral operand Money {E03} by changing its state from Point
A to Point B. The solution-neutral process Moving {E06} can be interpreted
as either Transporting {E11.1} (moving money in the form of bills and coins
in a physical way, e.g. using a secure courier), or Transferring {E11.2} (off-
setting sums of money electronically between two accounts, sometimes
commonly called wiring, after an ancient legacy dating back to the days of
the telegraph). Both the physical Transporting and the digital Transferring
are solution-specific processes that lead to completely different alternative
architectures for delivering money to or for stakeholders: Flying Vehicle
{E13.1.1} and Land Vehicle {E13.1.2} in case of Transporting {E11.1},
and Wire Transfer {E13.2.1} and Check Deposit {E13.2.2} in case of Trans-
ferring {E11.2}

Figure 12. Architectural choices for the solution-neutral functional intent of Money
Moving.

The distinction among SSPs is not always obvious. Transferring can also
be interpreted in a physical sense, for example, through a Check Deposit.
Further decomposition of SSPs can quickly reveal the distinctions between
alternative concepts for realizing the original solution-neutral functional

24 Yaroslav Menshenin, Yaniv Mordecai, Edward F. Crawley,
Bruce G. Cameron

intent. The Internal Processes of Transporting and Transferring reveal the
differences between these two conceptually distinct solution-specific archi-
tectures. The physical steps are distinctly different from the digital steps
needed to complete the Money Moving procedure under each architecture.

The common representation and formulation of the two distinct ap-
proaches using the same modeling framework enables reasoning about these
approaches. Placing these abstract concepts together and showing how they
are both derived from the same solution-neutral functional intent, facilitates
the cognitive process of comparing alternatives. The system architect can go
back and forth between the solution-neutral and solution-specific environ-
ments. The common representation facilitates discussion with stakeholders
about the alternatives to validate the functional intent, to discover new alter-
natives, and to eliminate the irrelevant ones. This iterative process leads to
continuous improvement and validation of the emerging architecture.

1.3.2. Concept Attributes, Metrics, and Decision-
Supporting Criteria

We now discuss ways to include decision-supporting criteria for concept
evaluation as part of the MBSA process. The terms criterion and metric may
be used interchangeably, but while a metric is typically perceived as a gen-
eral-purpose quantitative index (e.g. the Dow-Jones, the outside tempera-
ture, or the second moment of inertia), a criterion is defined in the context
of a decision problem and is usually weighed against at least one other cri-
terion. Both criteria and metrics can be qualitative or quantitative. Qualita-
tive criteria must be ordinal or ranked, such that it is clear which value is
better. That said, two stakeholders could aspire for opposite trends of the
same criterion. For example, airports want to maximize the volume of air
traffic while nearby residents want to minimize it. A binary criterion is either
high or low, met or unmet, true or false, success or failure. A ternary crite-
rion has three levels, e.g. high-medium-low, red-orange-green (also known
as a traffic light criterion, etc.), and so on. Any number of ranks can be ap-
plied to a criterion. However, higher separation of ranks, require more pre-
cision in the induction of the value such that one can be confident about the
suitability of the ranking assigned to an alternative in a specific criterion.

Criteria depend on the context and vary from concept to concept, and
across stakeholders. Nevertheless, all criteria can be encoded in the model-
based framework and support decision-making about the system architec-
ture throughout the process. We can capture any criterion as an attribute of
solution-neutral environment (D2), solution-specific environment (D3), and

Model-Based System Architecting and Decision-Making 25

integrated concept (D4). A value-related attribute is the one which is
changed by the associated process.

Consider, for instance, a dilemma between three vehicle architectures:
front-wheel drive, rear-wheel drive, and all-wheel drive. The question is not
merely about mechanical feasibility – all options are feasible, and all have
uses and applications, and therefore the evaluation must be based on the
needs. Recognizing this situation as a decision problem is the first stage in
the decision-making process. The decision problem should account for met-
rics that are sufficiently detailed on the one hand but sufficiently design-
agnostic on the other hand. This is perhaps the essence of the distinction
between architecting and designing. The decision may rely on cost, size,
weight, weight distribution, volume, power consumption, maintainability,
etc. – as long as we can assign values to such criteria through elaboration of
candidate solution architectures. The concept representation framework en-
codes the key performance metrics (which serve as decision-supporting cri-
teria) as the attributes of the solution-neutral domain (D2), solution-specific
domain (D3), and integrated concept (D4). Specifying the attributes is there-
fore critical for alternative evaluation and comparison and not only as addi-
tional information. The MBSA framework enables of any system concept
analysis that the system architect and design team may come up with.

1.3.3. Capturing stakeholder needs

Any spreadsheet would do for listing stakeholders and needs, but a
model-based approach enhances this process in several meaningful ways.
Model pattern reusability is useful for identifying stakeholders. A pattern of
stakeholder types could include broad stakeholder categories and roles
(owner, operator, regulator, etc.), as shown in Figure 13.

26 Yaroslav Menshenin, Yaniv Mordecai, Edward F. Crawley,
Bruce G. Cameron

Figure 13. A reusable pattern of stakeholders

A dependable and reusable pattern of stakeholders – a decomposition and
specification of subdivisions and attributes of the stakeholder concept – can
be very useful in quickly and efficiently choosing stakeholders, rather than
rediscovering and recreating them for each model anew. A stakeholder pat-
tern may include both high-level and lower-level roles, units, and profiles,
as well as generic or umbrella needs. For instance, a national or regional
energy authority obviously wants to provide energy to its residents, while
minimizing operating costs and obeying the law. They might also care about
clean and sustainable energy generation solutions. Such needs can be en-
coded in a pattern and utilized for various applications, even such that only
consider the energy authorities indirectly, e.g., mass transportation projects.

Stakeholder entries may also be elaborated with domain terminology.
Ffor example, a defense stakeholder pattern can draw from the DoD Archi-
tecture Framework (DoDAF) [30]. Other aspects could include geographic
distribution, available resources, standards, regulations, laws to comply
with, strengths, weaknesses, opportunities and threats (SWOT), and so on.

Specifying stakeholders in the model, whether through discovery, docu-
mentation, or reuse, informs the system architect about all those parties and
people who might need to weigh in on problem and solution domain

Model-Based System Architecting and Decision-Making 27

decisions. Stakeholders who are not the primary customers or beneficiaries
of an architecture must also be identified, and their needs must also be well-
understood, especially if they are in tension. A stakeholder set also leads to
an emerging stakeholder network. Mapping stakeholder relations can be
done in stakeholder value networks [45].

Consider for instance the Israeli missile defense system “Iron Dome”,
which has the intent of protecting the country against incoming rockets and
ballistic missiles. Thanks to the protective umbrella that this system has cast
over rural southern Israel, the economy in those areas began to thrive. In-
dustry, commerce, and tourism indirectly became stakeholders. Nationwide
franchises have had a chance to lobby on the deployment of Iron Dome bat-
teries, due to the national economic impact these have had on their business.
Before the system had been field-tested, it was very difficult to find deploy-
ment locations for launchers, sensors, logistic support, command and con-
trol outposts, and military encampments to support the massive operation of
Iron Dome. Years later, shopping centers with a piece of the system on their
outskirts suddenly became attractions. Having all stakeholders and needs in
a common model could have led to different dynamics.

Institutional stakeholders often elaborate their needs as so-called stake-
holder requirements. We include those as identified stakeholder needs,
which simplifies the process, however there is a caveat. Stakeholder require-
ments are not really requirements. While this assertion may seem rude to
some readers who have been stakeholders, this assertion stems from the un-
derstanding that both parties – stakeholder and system architect – are inter-
ested in getting to the stakeholder’s essential needs, prior to establishing any
solution that would meet those needs.

A model supports a hierarchy of interrelated needs that serve to justify
those bottom-line or most central needs that stakeholders chose to state as
their expectations from the system. For example, the Vehicle Owner in our
Driver Behavior Tracking example ultimately wishes to maximize vehicle
utilization while minimizing the risk to the driver and vehicle. Business
owners might also be interested in monitoring schedule compliance by their
professional drivers. We can figure out together with the owner or, say, the
consumer association as a representative organization, how technology can
help, next to other approaches like education or regulation. An in-vehicle
technology could focus on collecting, analyzing, reporting, or acting upon
drive and driver behavior characteristic data.

The presence of requirements in a model is truly informative when they
serve as references for architectural decisions – regardless of how needs and
requirements are captured. Systems engineers are responsible for

28 Yaroslav Menshenin, Yaniv Mordecai, Edward F. Crawley,
Bruce G. Cameron

traceability – showing that each requirement (or need) is mapped to pieces
of the solution, so that stakeholders (and especially customers) may track
and verify the fulfilling of their expectations from the system.

Decision-making is a process of choosing one possible solution out of a
population or solution space, according to some criteria by which the solu-
tions are assessed, scored, or ranked. Stakeholder needs constitute such so-
lution assessment criteria because they capture the benefits and costs that
stakeholders will reap from any given solution.

In driver behavior tracking, the owner is obviously a stakeholder, but also
the driver, the insurer, the vehicle manufacturer, and the regulator. We might
say that the public is also a stakeholder, in case the owner is a public entity
such as a consumer-serving delivery provider, government agency, law en-
forcement agency, non-profit organization, etc. For simplicity, we will focus
on two stakeholders: Vehicle Owner and Driver. Figure 14 illustrates the
instantiation of D1 with our two Stakeholders and their Needs.

The Vehicle Owner needs to minimize the risk to the vehicle, driver, and
passengers while the driver wants to maximize her use of the vehicle and
maintain a good reputation as a responsible driver. The driver is a central
stakeholder in our case. One of those needs, for example, is Privacy. In some
settings, drivers’ right to privacy exceeds the vehicle owner’s right to mon-
itor their vehicle. For instance, car rental companies must not spy on their
customers (in most countries), and employers may not be allowed to monitor
their employees beyond scheduled work hours. We may not invade the right
to privacy, and therefore some practices, e.g., in-vehicle ambient voice re-
cording, may not be permitted. On the other hand, for law enforcement and
public safety agencies, operational activity monitoring and debriefing is a
critical activity which may significantly benefit from such a capability. It is
therefore clear that while such a privacy-violating capability may be useful
for driver behavior monitoring, it must account for the circumstances and
might not always be applicable. These notions impact our architectural de-
cision-making process by illuminating the tradespace about such aspects,
thereby validating the architectural decisions to follow.

Model-Based System Architecting and Decision-Making 29

Driver and Vehicle Owner are instances
of Stakeholder, E01.

Driver Reputation Maximization, Pri-
vacy Maximization, Risk Minimization,
and Vehicle Usage Maximization are in-

stances of Need, E02.

Vehicle Owner exhibits Risk Minimiza-
tion.

Driver exhibits Driver Reputation Maxi-
mization, Privacy Maximization, and

Vehicle Usage Maximization.

Figure 14. Stakeholders of the Driver Behavior Tracking System are affected by the
main functionality of the system: Driver Behavior Tracking.

We can articulate needs as global metrics with aspired trends, e.g., Risk
Minimization or Privacy Maximization. This approach prepares the needs
for multi-attribute utility analysis [46] and multi-attribute tradespace explo-
ration (MATE) [47], which aggregates all benefits and costs. This approach
also helps in discovering opposite and biased needs and objectives. For ex-
ample, in the case of privacy, the owner may not directly wish to violate the
driver’s privacy, but their need to receive as much information as possible
about driver behavior may eventually compromise driver privacy. It does
not mean that the owner has a need to “Minimize Privacy”. If stakeholders
had two conflicting needs, i.e. opposite trends on the same metric, we can
quickly see how these might give rise to a potential conflict. For example,
assuming that driver behavior tracking is not a passive process from the
driver’s perspective, the driver might want to “Minimize Data Collecting”
while the vehicle owner might want to “Maximize Data Collecting” in order
to gain as much information as possible. One way of resolving such conflicts
is by weighing the alternatives and understand the fundamental needs. In
our case the driver’s fundamental need is actually to minimize disturbances.
Such stakeholder needs revisions may eliminate inherent bias in need spec-
ifications, and resolve conflicts.

30 Yaroslav Menshenin, Yaniv Mordecai, Edward F. Crawley,
Bruce G. Cameron

The specification of solution-neutral functions is mapped to needs and
solution-neutral functions (SNPs), as shown in Figure 15. Once clearly de-
fined, we should have a problem-domain, solution-neutral model, covering
the stakeholders, their needs, operational activities, and operands of interest.

Figure 15. Mapping stakeholder needs to solution-neutral processes, and solution-
neutral processes to solution-neutral operands.

Presenting the problem model to stakeholders allows them to validate a
formal concept representation and clarify their needs in a common language.
This approach is better than any approach in which there is no shared model
that ensures consistency, common language, and holism. A stakeholder-
driven model of the problem-domain is a necessary but not a sufficient con-
dition for supporting a solution space generation process. In fact, failure to
correctly represent the problem domain with a model may result in converg-
ing on a limited set of feasible solutions, which raises the risk of an invalid
solution. The narrower the problem-domain description is, the likelier the
solution architecture to be a bad solution for the wrong problem.

Model-Based System Architecting and Decision-Making 31

1.3.4. Capturing and discovering possible architectures

The system architecting process can be structured as a series of decisions
[13]. Key to this idea is identifying and filtering forward those decisions that
have the greatest impact on the system’s performance and cost. We would
like the model to assist us in confining the scope to the necessary minimum
so that we would be able to focus on the critical decisions and the supporting
conceptualization to inform them.

The number of potential architectures under consideration is theoretically
the product of the numbers of options per decision. For example, if we have
two decision variables and each decision variable has two options, then the
total number of architectures is 2x2=4. If a third decision emerges, with, say
3 options, the number of integrated alternatives becomes 2x2x3=12, and so
on. Many combinations may be logically infeasible and therefore excluded,
but we can still end up with a large number of combinations. Figure 16 il-
lustrates the mapping of architectural options to architecture decisions, with
three decision points (A, B, and C), each with two options. Theoretically,
we have a total of 2x2x2 = 8 options. We also illustrate three possible system
architectures: SA1, SA2, and SA3. We map each architecture to the options
that it relies on per each architectural decision.

Table 1 summarizes all possible combinations of decisions to be made.
Three out of the eight combinations have been identified as relevant candi-
dates for further exploration. Generating the combination table from the
model is an important capability for ensuring consistency between the map
of the problem domain and the list of applicable integrated solutions. It is
also critical for ensuring that suitable, reasonable, and feasible alternatives
are considered and not only the obvious, immediate, or convenient ones.
Consider, for instance, that combination 6, that we can encode as a vector
[a2 b1 c2] vis a vis the vector of options [A B C], is a truly brilliant combi-
nation that has not even been considered. Furthermore, if a new, previously
unthought-of, or neglected decision variable is added, it brings the number
of combinations to 16. This could be a game changer in many ways.

32 Yaroslav Menshenin, Yaniv Mordecai, Edward F. Crawley,
Bruce G. Cameron

Figure 16. Combinations of architectural decisions generate as many architectural
candidates as the product of the numbers of options per decision variable.

Table 1. Three out of eight potential combined architectures based on three deci-
sions with two options each.

Combination Arch. Decision A Arch. Decision B Arch. Decision C

1 a1 b1 c1
2 a1 b1 c2
3 - Architecture 2 a1 b2 c1
4 a1 b2 c2
5 - Architecture 1 a2 b1 c1
6 a2 b1 c2
7 a2 b2 c1
8 - Architecture 3 a2 b2 c2

Maintaining a valid table of options, based on an evolving model, even
after an initial conceptual architecture is determined, has tremendous im-
portance in ensuring the validity, sufficiency, and completeness of the
tradespace, and consequently the validity of the tradespace exploration

Model-Based System Architecting and Decision-Making 33

effort - both by ensuring a consideration of all feasible options and by con-
tinued validation of the tradespace.

A retrospective of the Apollo Program considered nine possible decisions
(including Lunar-orbit Rendezvous, fuel type, and other considerations)
[13]. If each decision has only two options, then the number of possible
combinations is 2^9, which is 512 architectures. Each option must be enu-
merated and considered, even if only superficially, in order to filter out ir-
relevant options and converge on a small and manageable set of combined
options. We could map five additional candidate architectures to all remain-
ing possible combinations of decision options, but with 512 alternatives, this
seems to be impractical.

Enumerating the alternatives is only the first stage. We must determine
each candidate solution’s feasibility by some study and elaboration of de-
tails that will allow us to reach a confident conclusion about each candidate
architecture in order to decide if we keep or drop it.

The set of decisions can also be used in generating placeholders for all
options and then selecting candidates to populate. We can filter out options
which are unlikely, infeasible, or too expensive. We can consider the three
architectures illustrated above as the three finalists that survived the filtering
process out of the original eight (possibly following thorough analysis using
our concept representation framework). We will return to these options later
as we elaborate them from the placeholder level to full-blown architecture
specifications, relying on structural and functional building blocks.

There are situations in which options are implicit in the choice to regard
or disregard an artifact. Consider, for instance, a specific stakeholder’s re-
quirement about compliance with some protocol, which is not mission-crit-
ical, but potentially a good idea in terms of interoperability, reusability, and
risk reduction. We can easily relax the assumption that protocol compliance
must be obtained by specifying two optional states for that protocol as either
accepted or deferred/rejected. This step will immediately inflate the
tradespace by a factor of 2 because each available combination will have to
be assessed with and without the protocol. Thus, we can significantly ex-
pand the tradespace by referring to any predetermined concept as possibly-
redundant. The binary enumeration of option states is therefore critical to
comprehensive coverage and enumeration of tradespace options.

We can reduce the tradespace by disqualifying either the accepted or re-
jected option for binary decisions, or by splitting the decision process into a
series of decision points, in which each decision point consists of a subset
of the decision variables, resulting in more decision steps but significantly

34 Yaroslav Menshenin, Yaniv Mordecai, Edward F. Crawley,
Bruce G. Cameron

less options to enumerate, assess, and choose from. Listing the options in
the model, evaluating a subset of combinations, and selecting those combi-
nations we wish to explore further, makes this process significantly easier,
smarter, and more consistent.

The impact of MBSA here is therefore in the ability to enumerate candi-
date alternatives based on a model of architectural decisions. By specifying
options as states of the artifact, we facilitate a process of enumerating the
candidate alternatives.

For driver behavior tracking, we might consider, for instance the follow-
ing aspects as fundamental to determining a conceptual architecture:

1. One size fits all vs usage-specific variants - this would imply a single
product versus a product line - and will significantly affect the archi-
tecture of the product platform and the variants.

2. Open vs closed sensor policy - are we going to allow a variety of sen-
sors to plug into our solution or only one or two specific sensors.

3. Vehicle-integrated vs stand-alone solution - are we going to embed the
system in the vehicle and fully integrate it with vehicle systems such
as the dashboard displays and vehicle component bus, or install it sep-
arately (possibly with a small connection to the vehicle for basic mon-
itoring or interfacing capability)

4. Driver management vs anonymity - are we going to include driver
identification and personalization, such that data and behavior patterns
are directly associated with a specific driver, or leave the task of figur-
ing out who drove the vehicle while misbehaving without the assis-
tance of our technology.

5. Driver notification available or not - are we going to alert the driver, or
only collect the data and report to the subscribing customer (who could
be the owner, the driver, or the insurer but it would not be a real-time
indication).

We could continue defining more aspects of an architecture and gradually
increase the tradespace. We already have 32 combinations if each decision
variable only has two options. We can also refer to these issues as five serial
decisions and only consider one variable at a time. This will result in evalu-
ating 10 solutions in total - 2 per step. The risk is in missing potentially
preferable solutions hiding among the other 22, by discarding possible com-
binations by nailing down one variable after another. With 6 variable serial

Model-Based System Architecting and Decision-Making 35

decision-making, the ratio is 64 combinations to 12 inspected solutions and
the difference is 52 ignored solution candidates.

For 𝑁 binary decision variables the ratio between exhaustive search and
serial decision-making is 2!: 2𝑁. While serial decision-making seems in-
herently sub-optimal, this is how many of us make architectural decisions -
resolving one issue or a couple of issues at a time. A model-based approach
allows for both visualizing and analyzing the problem space with clear un-
derstanding of the implications of breaking down the problem into a series
of smaller problems, as opposed to thoroughly studying the entire state
space. Reaching a compromise is often a good idea, but it still requires good
understanding of how decision variables can be grouped together into con-
ceivable subspaces of the entire tradespace.

1.3.5. Capturing the architectural decision-making process
alongside the resulting architecture

The analogy between systems architecting and multi-criteria decision-
making decision-making can be formalized using Category Theory. Cate-
gory Theory is a branch of mathematics that focuses on the equivalence of
representations and transformations of mathematical structures [48]. A cat-
egory consists of a set of objects, which represent types, and a set of mor-
phisms, which define mappings among types. These mappings can include
relations, conversions, mathematical functions, etc. For example, a
morphism sign: R → S converts any real number in R to a value in S, S={-
1,0,1} according to its sign: a positive number maps to 1, a negative number
maps to -1, and zero maps to 0. Morphisms can also act on multiple objects
and generate multiple objects. For example, a morphism R → S converts the
sign of a product of two real numbers to a value in S.

Analogous to the mapping of concepts to models [49], architecting is a
mapping from the Problem Domain to an Architecture Co-Domain. This
mapping should correspond to the notion that Deciding is a mapping from
Problem to Decision. Architecting and deciding can be viewed as categori-
cally equivalent if there exists a complete mapping of the decision domain
to the architecture domain. In Category Theoretic terms, a mapping between
categories is a functor. We would like to show that there exists a functor
ADF: A → D such that for every object and morphism in A there exists a
mapping to objects and morphisms in D. Similarly, we would like to show
that there exists a functor DAF: D → A such that for every object and
morphism in D there exists a mapping to objects and morphisms in A.

36 Yaroslav Menshenin, Yaniv Mordecai, Edward F. Crawley,
Bruce G. Cameron

In a category of system architectures, the objects are Architectures A, and
morphisms are mappings of one architecture to another architecture, i.e. ar-
chitecting steps. We shall initially argue simply that architecting: A → A.
The morphism architecting includes a set of elaborations that change the
architecture to address the problems that the previous architecture presents.
This mapping also considers options to change the current architecture.
Therefore, it would be more correct to state that architecting {A,P,O} → A,
where P is a problem object, and O is a candidate operation object.

Each architecture A(n) presents a set of problems P, that has to be solved
by the architecture A(n+1). The sequence of solving the problem may transit
through a set of architectural alternatives A(n+1,1), A(n+1,2), A(n+1,3), etc.
Therefore, architecting is also a polymorphism on A(n) due to its ability to
create multiple sequel architectures. Alternative architectures are generated
according to candidate operations on A(n). For example: add/modify/re-
move a block (structural element), add/modify/remove a function, add/mod-
ify/remove operand, add/modify/remove assignment of function to form,
add/modify/remove output relation from function to operand, and so on. We
can also merge or split items - e.g., break down a function into two or more
smaller functions, merge several outputs into one big output entity, etc.

Some revisions of a given architecture model are not recommended, even
if they are syntactically valid using a given modeling language. We should
follow the careful transition through our concept representation framework,
in order to maximize stakeholder value and solution-neutral problem defini-
tion, to ensure solution tradespace exploration, appropriately follow archi-
tecting guidelines, and minimize solution discrepancy.

While every architecting step changes the architecture, not every opera-
tion constitutes a decision problem. A decision point emerges when multiple
options are possible. Although any inclusion or exclusion of an item in the
architecture could pose a dilemma, constitute a decision point, or incur a
discussion, we will usually conclude that it is preferable and worthwhile to
include rather than exclude any aspect that enriches the concept and context
of the architecture. For instance, we should not refrain from including any
stakeholder or stakeholder needs even if they seem far-fetched or infeasible
at a specific point in time. In case we wish to consider alternatives with and
without a specific feature, capability, or aspect, we should define its state set
as a binary existent/non-existent such that it will be taken into account in the
definition of the tradespace. We therefore define an architecture decision
point for A(n) as a situation in which all the following conditions hold:
1. at least two options are possible regarding a specific aspect of A:
𝐴(𝑛)à𝐴"	(𝑛 + 1); 	𝐴(𝑛)à𝐴#(𝑛 + 1);…

Model-Based System Architecting and Decision-Making 37

2. Choosing one option over another may result in an architecture change,
in a different solution, or in a different cost-benefit balance with respect
to original stakeholder needs: 𝐴$ 	(𝑛 + 1) 	≠ 	𝐴%(𝑛 + 1), for any 𝑖, 𝑗.

3. The decision cannot be made at a later point in time, i.e., the next iteration
must be different from the current: 𝐴$(𝑛 + 1) 	≠ 	𝐴(𝑛) for any 𝑖.

The above three conditions allow very specific issues to become decision
points, and filter out trivial architecture modifications. However, it is now
critical to identify these decision points and separate them from the rest of
the architecture modification steps. Tagging model elements as decision var-
iables enables this. For example, a sensor could be on or off from the oper-
ational perspective, but could be local or remote from the architectural per-
spective. Sensor activation (on/off) is obviously not an architectural
decision, but determining the sensor location (local/remote) is. Therefore,
we would characterize the sensor with two attributes: activation state and
location. Only the location of the sensor is an architectural decision. We will
tag that as a decision for further filtering and analysis.

Decision problems have been traditionally captured using decision trees
[13, 50]. One of the major issues with decision trees is their obvious deci-
sion-centricity, as opposed to solution-centricity: they emphasize the deci-
sion-making process, but it is sometimes difficult to see how decisions rep-
resent solutions. Said otherwise, once a system architecture has been created
and built, the architect’s intent may vanish. Conversely, system architec-
tures show the result of implemented architectural decisions, but not the de-
cision-making process that effected those decisions.

A computational framework for coordinated design of cyber-physical
system components under a given architecture (e.g. power, mass, and capac-
ity optimization for a vehicle, communication system, etc.) attempted to ad-
dress this decision-to-design discrepancy [51]. The problem is framed as the
resource intake required to deliver the assigned functionality relative to an
existing architecture. We are interested in extending this approach to de-
velop a tradespace of architectures and select preferable architectures. We
need to capture both the design and the designing process, in a coordinated
and consistent way. This is where MBSE fits in.

Although MBSE has focused on representing system architectures with
diagrams, it is possible to harness the power of modeling notations to cap-
ture decision processes. We should therefore strive to encode the process of
deciding about architectural options in the conceptual system model, as well
as its outcomes (in the form of architecture artifacts), this dual architecture-
decision, we may begin to generate a model-based decision-driven system

38 Yaroslav Menshenin, Yaniv Mordecai, Edward F. Crawley,
Bruce G. Cameron

architecture. This assertion has been initially corroborated in [36] where a
canonical decision-making process model was introduced.

Modeling the architectural decision-making process also facilitates better
planning of the process. By planning ahead multiple architecting iterations,
the system architect can clarify the prioritization of needs or the preference
of solution technologies along predefined milestones. The model does not
have to show only the immediately decision at hand. By deriving architec-
tures from other architectures we will be able to serialize the architectural
decision-making process and significantly reduce the computational and
cognitive effort that is necessary to reason about a combinatorically-explod-
ing tradespace. In the above example, rather than consider 16 candidate
combinations of the four binary decision variables, the first iteration consid-
ers 8 and the second iteration considers 2, hence the total number of re-
viewed candidates is 10. While this may result in overlooking 6 candidate
architectures, a decision to prioritize decision variables A, B, and C and then
decide about D, due to several legitimate considerations, is practically en-
coded in this model and can even be audited, debriefed, or even revisited -
if it will not be too late.

MBSE is an environment that can foster concept discovery. In practice,
reaching a viable architecture is a major milestone, short of comparing mul-
tiple architectures. MBSE environments could, at minimum, assist the ar-
chitect in detecting this moment, for example by showing the architect that
satisfactory coverage of needs has been achieved.

MBSE should also be able to indicate to the architect that a work-in-pro-
cess architecture is infeasible or prone to reach a dead end. MBSE environ-
ments can fulfill this role if they are able to track the fulfillment of goals,
whether those goals are defined within the model or as external evaluations
and judgements that the model has to satisfy.

1.3.6. Solution-specific architecture decisions

Architectural decisions constitute a gateway between the problem-ori-
ented decision point formulation of the architecture, and the solution-ori-
ented architecture specification and elaboration. While the decisions are
made based on cost and benefit considerations, we recall that the architect-
ing morphism also accounts for the set of available operations on the given
architecture model. However, the size of this set of operations is completely
arbitrary. Namely - we can carry out any number of operations we feel is
sufficient to establish confidence in the architecture’s ability to deliver the

Model-Based System Architecting and Decision-Making 39

costs and benefits that we assess for it. In a world of incomplete information,
constant change, and limited resources, we must make the call in many
cases, and often end up revisiting and revising our former decisions.

MBSE could make this process of elaborating an architecture more struc-
tured. For example, we can insist on elaborating any architectural candidate
one or two levels down in order to gain confidence in that potential solution.
In many cases, these extra levels of detail could help us realize we are about
to reach a dead end or come up with a solution that does not make sense.

Following the model-based specification of both the architecture and the
architectural decision-making process, and remaining within the same con-
ceptual modeling framework, we can explore candidate architectures by
mapping them to what models truly excel in – the architecture’s functional
and structural specification. MBSE supports the specifying of operational
processes and solution-neutral functions to be supported by the architecture,
and mapping each operational process to the stakeholders that are involved
in it, each operand to a need, and each functionality to the operational pro-
cess that it contributes to, either by plain membership in the set of activities
that compose the process, or through the specific generation of output or
outcomes that can be used in the operational process.

A robust MBSE environment provides for both diverging from a problem
statement to a space of alternative solutions, as we have seen so far, and for
converging on a specific solution or subset of solutions as the architect de-
sires, as we discuss next. The ability to continue using the same environment
to grow a conceptual architecture into a comprehensive solution design is a
major benefit, and yet, it is not always the case with MBSE environments.

A concept has to include solution-specific operands, processes, form, and
the allocation of form to function, to make a good architecture. MBSE can
force or advise architecture elaboration in order to capture these aspects.
Robust MBSE environments will also make it easy for the architect to com-
pare concepts both within the same model and across multiple models. The
former approach helps in seeing the big picture in one place, while the latter
helps in letting the solution architect focus on the details of the solution.

For driver behavior tracking, suppose we have chosen an open architec-
ture, we can now incorporate an in-vehicle camera, an environment record-
ing camera, a vehicle-integrated data collection device, or a driver assistance
system, to collect information from the vehicle. In fact, any combination of
these four solutions could be a candidate solution as well, and while some
combinations may potentially provide greater value on some criteria, e.g.
those that contribute to fulfilling the operational needs, they may also be too

40 Yaroslav Menshenin, Yaniv Mordecai, Edward F. Crawley,
Bruce G. Cameron

expensive, complicated, big, heavy, etc. All of these factor into the stake-
holder needs, but now we can actually start discussing such attributes as
mass, volume, power consumption, bandwidth, and performance. This is
where architectural modeling both informs the more technical and func-
tional architectural decisions (e.g. where to install a camera, or how to pro-
cess the data), but, as emphasized, it also helps validate the open sensor ar-
chitecture that we have chosen in the conceptual architecting phase.

By mapping each solution we propose to a stakeholder need in a model,
where everything is traced back to the preference schemes and framed as a
decision-driven process, is again a significant game changer. It is always a
challenge to come back to a stakeholder with a concept and elicit new re-
quirements and expectations. It is also clear that stakeholders must remain
in the loop because the solution directly impacts the concept of operations,
as shown in the concept representation framework. Even if the conceptual
architecture is converged, this phase opens up a whole new tradespace of
options and decision-making remains critical and essential as it previously
was in mapping out stakeholders needs to solution concepts.

Transparent, collaborative, model-based stakeholder engagement signifi-
cantly improves stakeholder need validation by introducing visual, model-
driven projections of solution architectures on problem statements. Choos-
ing a vehicle-integrated solution inevitably generates concerns about inter-
ference with vehicle control and the potential risk of cyber-security.

The outcome of solution generating vis-à-vis well-defined stakeholder
needs is illustrated in Figure 17. We begin with a functional decomposition
of the system’s main functionality, while ensuring the nested functionalities
are as solution-neutral and as need-oriented as possible. In our case we spec-
ify Road Monitoring, Driver Monitoring, and Vehicle Monitoring as SSPs
that map to the Monitoring SNP. Real-time Analysis and Off-Line Analysis
are two solution approaches for Analysis. Informing the Vehicle Owner and
the Driver can be implemented either in Real-Time or after the fact.

Specifying potential forms that may contribute to the execution of each
function lays out the tradespace of possible combined solutions. We recall
that any combination of options constitutes a theoretically possible solution
and implies a decision point. We map each SSP to Generic Forms. We then
propose three integrated architectures: minimal, maximal, and midway ar-
chitectures. This is also a way to reduce the problem-space from an expo-
nential combination to a set of functions that must be performed by the sys-
tem, such that all functions and needs are fulfilled, or at least fulfillable. This

Model-Based System Architecting and Decision-Making 41

representation does not directly address the decisions to be made, but we
can decide for each GF artifact whether to implement it or not.

Figure 17. Deriving solution-specific functions from solution-neutral functions,
specifying generic form to support solution-specific functions, and assembling three
typical architectures - minimal, midway, and maximal - as combinations of generic
form. The selected architecture will be further developed in D4.

We must provide at least one form to provide each function. In some
cases, the same form may perform more than one function, as the technol-
ogy, or commercial product it relies on allows. In some cases, a solution
candidate requires another solution candidate. For instance, in our example,
in order to run a software application within the vehicle, we must be able to
run it either on a dedicated device or on the vehicle’s multimedia system.

In this example we define a Minimal Architecture as the combination of
a Vehicle Monitor, Off-Line Analyzer, and Report Generator. We can also
refer to this trio as one architectural building-block and define any architec-
ture by adding to this one. By specifying candidate elements of form and

42 Yaroslav Menshenin, Yaniv Mordecai, Edward F. Crawley,
Bruce G. Cameron

function without specifying their states we argue that they can either exist
or not exist in the solution. This is another approach to list solution factors
that can later co-facilitate combined solution architectures, complementing
the approach for listing options as states of the constituent decision units.
With three out of nine elements unified, we can now say that the solution
space has 2& = 	128 options. Any solution which includes more than the
Minimal Solution and less than the Maximal Solution (which includes all
the eight elements) is a partial solution that we can specify in terms of its
constituent elements and evaluate according to our decision criteria. A
model is useful here both in visualizing the range of options, and in elabo-
rating any point in this range.

Decision criteria might include overall weight, volume, power consump-
tion, and integration effort. Note that such design parameters may emerge
as constraints to a solution rather than pre-conceived stakeholder needs,
which is yet another reason for an iterative model-based architectural deci-
sion-making approach as we advocate here. We can begin discussing the
cost, in financial, energetic, or performance-related terms, after we have se-
cured a solution for stakeholder needs. Another approach would be to com-
bine these benefit and cost factors together and consider them together in
the same iteration. Both approaches are possible in an MBSE environment,
as the evolvability of the model is an inherent capability of the MBSE pro-
cess. As explained before, it depends on the decomposability and conceiva-
bility of the tradespace and is up to the solution architect to figure out. Phys-
ical qualities must be considered together because of the mutual effects (e.g.
the combination of mass, power, and capacity). The model can clearly cap-
ture bundles of solution-specific attributes as decision variables and facili-
tate (and in some cases execute) the computation of a Pareto frontier, i.e. a
set of combinations that meet all the criteria at the best values. We can sim-
ilarly analyze software considerations and determine the most appropriate
decomposition into digestible and sensible design decisions.

We may argue that the contribution of in-vehicle camera is smaller than
that of a road-observing camera, or that the integration with a Driver Assis-
tance System is better for alerting the driver than a multimedia system inter-
face. The purpose here is not necessarily to argue for one approach in favor
of another, but to show how a model-based scheme can greatly enhance the
visibility of the decision-making process, the understanding of trade-offs
and composition of alternatives, and the propagation of value and enable-
ment all the way to stakeholder needs. Communicating such a model to
stakeholders is also easier and more intuitive, as it can illustrate the impact
on stakeholder needs, which greatly increases clarity and transparency.

Model-Based System Architecting and Decision-Making 43

1.4. Conclusion

We have shown how systems architecting is essentially a reasoning pro-
cess, which consists of conceptualization and decision-making steps. MBSE
facilitates, but also changes the architecting process. It is worth taking a step
back to summarize the ways in which MBSA differs and grows from legacy,
“off-line” system architecting. The architecting process (whether legacy or
model-based) is a source of discovery and insight. It addresses the need to
understand, through sufficient specification and completeness of coverage
at a given abstraction level of analysis. These drivers enable us to judge
when the architectural modeling is concluded.

We have presented a model-based concept representation framework that
formalizes the conceptualization process to generate a system architecture.
The framework advocates a path to a solution that accounts for all the major
concerns in a system architecture. Indeed, this is not a linear process, but an
iterative one, rife with revisions, divergence, and convergence. The frame-
work accommodates both ongoing conceptualizations and decision-making
when critical decisions must be made.

We conclude with three key MBSA principles:

1. MBSA is an iterative reasoning process, in which the model records
and informs the evolving conceptual architecture.

2. MBSA fosters divergence before convergence: allowing for options to
emerge from a solution-neutral environment, and converging on a so-
lution after considering multiple solution-specific approaches.

3. MBSA projects can focus on the relevant conceptualizations and not
necessarily follow an A-to-Z approach - the amount of modeled infor-
mation should be just enough to reach a decision.

The “offline” architecting process is based on siloed analysis and discus-
sion, and we find there is substantially more effort in setting up a model to
answer architectural questions. Some of this effort is due to the need to trans-
late decision-theoretic concepts into conceptual modeling language. How-
ever, once a model is developed and can serve as a baseline, the resulting
exploration becomes quicker with each iteration. The model-based approach
could provide a return on investment due to the reusability and evolvability
of model assets through multiple iterations. We caution, though, that the ar-
chitecting process should not be conceived as a procedural one: our frame-
work is not just a checklist. Given that no architectural model will be able
to capture detailed design information, we find that the process of modeling

44 Yaroslav Menshenin, Yaniv Mordecai, Edward F. Crawley,
Bruce G. Cameron

and sense-making is important to building a shared understanding among
the architecture team members. Therefore, the process remains both cogni-
tive and computational, and the two streams augment each other thanks to
the shared artifact that the model constitutes, which lends itself both to hu-
man reasoning and machine processing.

We summarize the primary benefits of MBSA as follows:

Communication with stakeholders: Communicating with stakeholders
is an essential part of the decision-making process. Engaging stakeholders,
getting them involved, committed, and informed, is critical for architecting
the solution to their needs. A shared language for discussing concepts, prob-
lems, options, and solutions with a reference model is instrumental in facil-
itating, formalizing, and documenting the discussion.

Knowledge and architectural building block reusability: A growing
concern in enterprises working on evolving systems in an agile world, the
reuse of existing knowledge about the domain and design of existing de-
signs, is becoming a critical aspect of MBSE. Reusability of knowledge,
architecture, and design artifacts has two major impacts on the decision-
making process. Reliance on existing assets reduces uncertainty, ambiguity,
and programmatic risk (schedule, budget, quality, etc.). Furthermore, re-
ducing the explorable tradespace by reusing existing component designs is
an approach to coping with a combinatorial solution space explosion. Sys-
tem architecture decisions that are based on a formal model that incorporates
reusable domain content and building blocks have higher degrees of confi-
dence and may be more likely to survive the emergence of new constraints,
issues, or materializations of risk.

Consistent problem-Space mapping: MBSA facilitates conceptual
mapping of the problem space in a domain-agnostic manner. It is then pos-
sible to specify problem-domain needs, key evaluation metrics, and perfor-
mance indicators, and to layout the architectural solution space that may
contain at least one feasible solution to the problem. Evolving problem un-
derstanding, some of it in parallel to decision-making, helps reshape and
recreate the problem domain. We believe that this consistency in mapping
the problem space helps us recognize patterns across designs.

Gradual transformation of problem statements to architectures:
MBSA facilitates a smooth transition from the problem domain to the solu-
tion domain by allowing for a traceable mapping of candidate and chosen
solutions to problems. While we could describe the problem domain in a
variety of less-formal ways, and the solution in a variety of approaches, a

Model-Based System Architecting and Decision-Making 45

model-based approach formalizes the transition, the transformation, and the
traceability of solution domain aspects to problem domain ones.

Consistent comparison and evolution of alternative architectures:
Comparing and reasoning about architectures within the modeling frame-
works is challenging. MBSA allows this by mapping conceptual architec-
ture decisions to quantifiable metrics of stakeholder utility on the one hand,
and to quantifiable metrics of design validity on the other. We can promise
a conceptual architecture that helps our stakeholders in many ways, but fail-
ing to validate the architecture may be bad for business. MBSA facilitates a
smooth transition across modeling, assessment, verification and validation
methods, with a conceptual model as a focal point. The alternative approach
rephrases the decision-making problem in mathematical decision-analytic
terms that do not rely on the model. There are two risks there: a) the full
architecture scope will not be sufficiently understood when developing a
selected solution, and b) validating the solution architecture by tracing back
to the “numbers” will be impossible.

Documenting both the architecting process and its outcome—the ar-
chitecture: By documenting our decision-making process in a model, we
are creating a mapping of the entire process rather than the outcome. One
should not guess why a particular architecture has been selected. We believe
MBSE will be much stronger in capturing functional intent. A decision-ori-
ented model can substantiate the solution on the considerations that fed the
decision-making process leading to that particular solution. While this is not
a common MBSE practice, we assert that it is possible, achievable, and de-
sirable within an MBSE framework to ensure that the process is appropri-
ately documented, and that the traceability of solutions to options to prob-
lems to needs to stakeholders becomes clear.

Aspiration to sufficiency: We have discussed the importance of model
sufficiency – knowing that we have modeled enough to make an architec-
tural decision. We reasoned that by applying Miller’s Law of ~7±2 elements
in every set as a threshold for sufficiency. We can measure the compliance
of various sets of objects and processes with this criterion and determine our
confidence in the model and our willingness to rely on it.

Acknowledgement. We would like to thank the MIT-Technion Post-Doc-
toral Fellowship Program for enabling this collaboration.

46 Yaroslav Menshenin, Yaniv Mordecai, Edward F. Crawley,
Bruce G. Cameron

1.5. References

1. Dori D (2016) Model-Based Systems Engineering with OPM and SysML.
Springer, New York

2. McDermott TA, Hutchinson N, Clifford M, Van Aken E, Slado A,
Henderson K (2020) Benchmarking the Benefits and Current Maturity of
Model-Based Systems Engineering across the Enterprise. Systems
Engineering Research Center (SERC)

3. Hale JP, Zimmerman P, Kukkala G, Guerrero J, Kobryn P, Puchek B,
Bisconti M, Baldwin C, Mulpuri M (2017) Digital Model-based
Engineering: Expectations, Prerequisites, and Challenges of Infusion.
NASA

4. Morris BA, Harvey D, Robinson KP, Cook SC (2016) Issues in Conceptual
Design and MBSE Successes: Insights from the Model-Based Conceptual
Design Surveys. INCOSE Int Symp 26:269–282 .
https://doi.org/10.1002/j.2334-5837.2016.00159.x

5. Weilkiens T, Lamm JG, Roth S, Walker M (2016) Model-Based System
Architecture. In: Model Based System Architecture, First Edit. John Wiley
& Sons, Inc, pp 27–33

6. Object Management Group (2019) OMG Systems Modeling Language
Version 1.6

7. Klappholz D, Port D (2004) Introduction to MBASE (Model-Based
(System) Architecting and Software Engineering). In: ZELKOWITZ M V.
(ed) Advances in Computers. Elsevier, pp 203–248

8. Boehm B, Klappholz D, Colbert E, Puri P, Jain A, Bhuta J, Kitapci H (2004)
Guidelines for Model-Based (System) Architecting and Software
Engineering (MBASE). 1–159

9. Boehm B (2006) Some future trends and implications for systems and
software engineering processes. Syst Eng 9:1–19 .
https://doi.org/10.1002/sys.20044

10. Boehm B, Oram A, Wilson G (2010) Architecting: How much and when?
O’Reilly Media

11. Bahill AT, Henderson SJ (2005) Requirements Development, Verification,
and Validation exhibited in famous failures. Syst Eng 8:1–14 .
https://doi.org/10.1002/sys.20017

12. Lane JA, Koolmanojwong S, Boehm B (2013) Affordable Systems :
Balancing the Capability , Schedule , Flexibility , and Technical Debt
Tradespace

13. Crawley E, Cameron B, Selva D (2015) Systems Architecture: Strategy and
Product Development for Complex Systems. Prentice Hall

14. Bahill AT, Madni AM (2017) Tradeoff Decisions in System Design.
Springer International Publishing Switzerland

15. Dori D, Kohen H, Jbara A, Wengrowicz N, Lavi R, Levi-Soskin N,
Bernstein K, Shani U (2020) OPCloud: An OPM Integrated Conceptual-
Executable Modeling Environment for Industry 4.0. In: Kenett RS, Swarz

Model-Based System Architecting and Decision-Making 47

RS, Zonnenshain A (eds) Systems Engineering in the Fourth Industrial
Revolution: Big Data, Novel Technologies, and Modern Systems
Engineering. Wiley

16. Menshenin Y, Mordecai Y (2020) Model Based System Architecting
Reference Model. V01_20_12

17. Chomsky N (1956) Three models for the description of language. IRE Trans
Inf Theory 2:113–124 . https://doi.org/10.1109/TIT.1956.1056813

18. INCOSE (2015) INCOSE Systems Engineering Handbook: A Guide for
System Life Cycle Processes and Activities, Fourth Edi. John Wiley &
Sons, Inc.

19. Menshenin Y, Crawley E (2020) A system concept representation
framework and its testing on patents, urban architectural patterns, and
software patterns. Syst Eng 23:492–515 . https://doi.org/10.1002/sys.21547

20. Menshenin Y (2020) Model-based framework for system concept - Ph.D.
Thesis. Skolkovo Institute of Science and Technology

21. Freeman RE (2001) A Stakeholder Theory of the Modern Corporation.
Perspect Bus Ethics 3: . https://doi.org/10.3138/9781442673496-009

22. European Commission (2019) The European Green Deal. Brussels
23. NASA (2016) NASA System Engineering Handbook, SP-2016-61. NASA
24. Suh NP (1990) The principles of design. Oxford University Press on

Demand
25. Nordlund M, Lee T, Kim S-G (2015) Axiomatic Design: 30 Years After.

In: Proceedings of the ASME 2015 International Mechanical Engineering
Congress and Exposition IMECE2015. ASME, Houston, Texas

26. Pahl G, Beitz W, Feldhusen J, Grote K-H (2007) Engineering Design A
Systematic Approach. Springer-Verlag London

27. Maier JF, Eckert CM, Clarkson PJ (2016) Model granularity and related
concepts. In: Proceedings of the DESIGN 2016 14th International Design
Conference

28. Eppinger SD, Browning TR (2012) Design Structure Matrix Methods and
Applications. Des Struct Matrix Methods Appl.
https://doi.org/10.7551/mitpress/8896.001.0001

29. Miller GA (1956) The magical number seven, plus or minus two: Some
limits on our capacity for processing information. Psychol Rev 63:81–97 .
https://doi.org/https://doi.org/10.1037/h0043158

30. United States Department of Defense (DoD) (2010) The DoDAF
Architecture Framework Version 2.02.
https://dodcio.defense.gov/Library/DoD-Architecture-Framework/.
Accessed 3 Dec 2020

31. Mordecai Y, James NK, Crawley EF (2020) Object-Process Model-Based
Operational Viewpoint Specification for Aerospace Architectures. IEEE
Aerosp Conf Proc 1–15 .
https://doi.org/10.1109/AERO47225.2020.9172685

32. Maier MW, Rechtin E (2000) The Art of Systems Architecting, Second Edi.
CRC Press LLC

33. Cambridge Dictionary (2020) Decision.

48 Yaroslav Menshenin, Yaniv Mordecai, Edward F. Crawley,
Bruce G. Cameron

https://dictionary.cambridge.org/us/dictionary/english/decision. Accessed
18 Dec 2020

34. Zeleny M (1982) The Decision Process and Its Stages. In: Zeleny M,
Cochrane J (eds) Multiple criteria decision making. McGraw-Hill, Inc.,
New York, pp 85–95

35. Weinreich R, Groher I (2016) The Architect’s Role in Practice: From
Decision Maker to Knowledge Manager? IEEE Softw 33:63–69 .
https://doi.org/10.1109/MS.2016.143

36. Mordecai Y, Dori D (2014) Conceptual Modeling of System-Based
Decision-Making. In: INCOSE Internaional Symposium. INCOSE, Las-
Vegas NV, USA, USA

37. Pratt, Raiffa, Schlaifer (1964) The Foundations of Decision Under
Uncertainty. 59:353–375

38. Saaty TL (1990) How to make a decision: The analytic hierarchy process.
Eur J Oper Res 48:9–26 . https://doi.org/10.1016/0377-2217(90)90057-I

39. Howard R (1968) The Foundations of Decision Analysis. IEEE Trans Syst
Sci Cybern 4:211–219 . https://doi.org/10.1109/TSSC.1968.300115

40. Kahneman D (2003) A perspective on judgment and choice: mapping
bounded rationality. Am Psychol 58:697–720 .
https://doi.org/10.1037/0003-066X.58.9.697

41. Tversky A, Kahneman D (1974) Judgement under Uncertainty: Heuristics
and Biases. Science (80-) 185:

42. INCOSE (2015) INCOSE Systems Engineering Handbook: A Guide for
System Life Cycle Processes and Activities, Fourth Edi. John Wiley &
Sons, Inc., San Diego, CA, USA

43. Haskins C, Forsberg K, Krueger M, Walden D, Hamelin RD (2011)
Systems Engineering Handbook, v. 3.2.2. International Council on Systems
Engineering

44. Parnell GS, Parnell GS, Madni AM, Bordley RF (2017) Trade-off
Analytics : Creating and Exploring the System Tradespace Chapter 2 : A
Conceptual Framework and Mathematical Foundation for Trade-off
Analysis

45. Rebentisch ES, Crawley EF, Loureiro G, Dickmann JQ, Catanzaro SN
(2005) Using Stakeholder Value Analysis to Build Exploration
Sustainability. Engineering 1–15 . https://doi.org/10.2514/6.2005-2553

46. Malak RJ, Aughenbaugh JM, Paredis CJJ (2009) Multi-attribute utility
analysis in set-based conceptual design. CAD Comput Aided Des 41:214–
227 . https://doi.org/10.1016/j.cad.2008.06.004

47. Ross AM, Hastings DE, Warmkessel JM, Diller NP (2004) Multi-Attribute
Tradespace Exploration as Front End for Effective Space System Design. J
Spacecr Rockets 41:20–28 . https://doi.org/10.2514/1.9204

48. Breiner S, Sriram RD, Subrahmanian E (2019) Compositional Models for
Complex Systems

49. Mordecai Y, Fairbanks J, Crawley EF (2020) Category-Theoretic
Formulation of Model-Based Systems Architecting : The Concept →

Model-Based System Architecting and Decision-Making 49

Model → Graph → View → Concept Transformation Cycle
50. Haimes YY (2009) Multiobjective Decision-Tree Analysis. In: Risk

Modeling, Assessment, and Management, Third Edit. John Wiley & Sons,
Inc.

51. Censi A (2017) A Class of Co-Design Problems with Cyclic Constraints
and Their Solution. IEEE Robot Autom Lett 2:96–103 .
https://doi.org/10.1109/LRA.2016.2535127

1.6. Cross-References

TBD

1.7. Author Bio (for static eReference)

Yaroslav Menshenin, PhD, is a Research Scientist at the Space Center, Skolkovo
Institute of Science and Technology – Skoltech (Moscow, Russia). He holds a
PhD (2020) from Skoltech and a Specialist Degree (MSc equivalent) (2012)
from the National University of Science and Technology “MISIS” (Moscow,
Russia). He is also a graduate of the Singularity University located at NASA
Ames Research Center (California, USA). Dr. Menshenin is a Member of
INCOSE, AIAA, IFIP WG 5.1, and the DESIGN Society. He was also a visiting
doctoral candidate at the System Architecture Group, MIT (2016-2017).

Yaniv Mordecai, PhD, is a post-doctoral research fellow at the Engineering Sys-
tems Laboratory, Massachusetts Institute of Technology (Cambridge, Massa-
chusetts, USA). He holds a PhD (2016) from Technion – Israel Institute of
Technology, (Haifa, Israel); and MSc (2010) and BSc (2002) from Tel-Aviv
University (Tel-Aviv, Israel). He is also a senior systems architect with
Motorola Solutions. Dr. Mordecai is a senior member of IEEE and board mem-
ber of IEEE Israel and of the Israeli Association for Systems Engineering –
INCOSE_IL. Yaniv is the recipient of the IEEE Systems, Man, and Cybernetics
Society Doctoral Dissertation Award (2017) and the OmegaAlpha Association
Exemplary Doctoral Dissertation Award (2017).

Edward F. Crawley, ScD, is the Ford Professor of Engineering and Professor of
Aeronautics and Astronautics and Engineering Systems at Massachusetts Insti-
tute of Technology (Cambridge, Massachusetts, USA). He holds a Sc.D (1980),
M.S. (1978), and B.S. (1976) from MIT. Dr. Crawley was the founding presi-
dent of Skolkovo Institute of Science and Technology, Moscow (2011-2016),
Director of the Bernard M. Gordon – MIT Engineering Leadership Program
(2007-2012), Executive Director the Cambridge University-MIT joint venture
(2003-2006), and head of the Aeronautics and Astronautics Department at MIT
(1996-2003). He is a Fellow of AIAA and RAeS; Member of the National

50 Yaroslav Menshenin, Yaniv Mordecai, Edward F. Crawley,
Bruce G. Cameron

Academy of Engineering (NAE), Royal Academy of Engineering (RAEng
UK), Royal Swedish Institute of Engineering Science (IVA) and the Chinese
Academy of Engineering (CAE); NASA Astronaut Finalist (1980); and Re-
gional Soaring Champion (1991, 1995, and 2005).

Bruce G. Cameron, PhD, is the Director of the System Architecture Group, Lec-
turer in System Design and Management, and Faculty Director of the Architec-
ture and Systems Engineering Certificate Program – all in Massachusetts Insti-
tute of Technology (Cambridge, Massachusetts, USA) He holds a PhD (2011)
and dual MS (2007) from MIT and a B.A.Sc from the University of Toronto
(Toronto, Canada). Dr. Cameron is also a co-founder of Technology Strategy
Partners.

