

Geometry

Chapter 1: points, LINES, PLANES, AND ANGLES

NAME

Section 1-1: A Game and Some Geometry

EQUIDISTANT

Section 1-2: Points, Lines, and Planes
3 Undefined terms in Geometry:
1.
2.
3.

POINT

-A

LINE

COLLINEAR POINTS -

NONCOLLINEAR POINTS -

COPLANAR POINTS -

NONCOPLANAR POINTS -
\qquad POINTS.
\qquad POINTS.

SPACE -

INTERSECTION -

The intersection of 2 lines is a \qquad

The intersection of 2 planes is a \qquad .

The intersection of a plane and a line not on that plane is a \qquad .

Examples:

Classify each statement as true or false.

1. $\overleftrightarrow{P F}$ ends at P.
2. Point S is on an infinite number of lines.
3. A plane has no thickness.
4. Collinear points are coplanar.
5. Planes have edges.
6. Two planes intersect in a line segment.
7. Two intersecting lines meet in exactly one point.
8. Points have no size.
9. Line XY can be denoted as $\overleftrightarrow{X Y}$ or $\overleftrightarrow{Y X}$.

Use the diagram below to classify each statement as true or false.
10. P is in M .
11. b is in M .
12. $\overleftrightarrow{Y X}$ contains P .

13. A in on b .
14. A and P are in M .
15. N contains P .

Points, Lines, and Planes

Estimate to compare the values.

1. The distance from U to S and the distance from U to T \qquad

2. The area of figure I (area I) and the area of figure II (area II) \qquad

Classify each statement as true or false. (Write T or F.)
3. $\overleftrightarrow{A B}$ is in plane M. \qquad 4. M contains $\overleftrightarrow{C D}$.
6. $\overleftrightarrow{A B}$ intersects $\overleftrightarrow{C D}$ at D.
8. B is in plane N.
10. N contains C, D, E, and F.
\qquad

11. E is on $\overleftrightarrow{C D}$. \qquad
12. C, D, and E are collinear. \qquad

Exs. 3-12

Name a fourth point that is in the same plane as the given points.
13. A, B, F \qquad 14. E, H, G \qquad
15. C, G, E \qquad 16. E, B, C \qquad
Name each of the following.
17. Three lines that intersect at point E \qquad

Exs. 13-20
18. The plane that does not intersect plane FGHE \qquad
19. Two planes that intersect in $\overleftrightarrow{C G}$
20. Three planes that intersect at point D \qquad
Sketch and label the figures described.
21. Vertical planes P and Q intersect in $\overleftrightarrow{R S}$.
22. Horizontal plane M containing $\overleftrightarrow{A B}$ intersects $\overleftrightarrow{A C}$ at point A

1-2 Points, Lines, and Planes (continued)

intersection the set of points in both figures
(Dashes in the diagrams indicate parts hidden from view.)
Z is on $\overleftrightarrow{A B}$.
$\overleftrightarrow{A B}$ contains Z.
$\overleftrightarrow{A B}$ passes through Z.
$\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ intersect at Z
Plane M contains $\overleftrightarrow{A B}$ and Y.
$\overleftrightarrow{C D}$ intersects M at Z.
M and N intersect in $\overleftrightarrow{E F}$.
$\overleftrightarrow{E F}$ is the intersection of M and N.
M and N contain $\overleftrightarrow{E F}$.

Classify each statement as true or false.

1. $\overleftrightarrow{B C}$ is in plane M.
2. Plane M contains $\overleftrightarrow{A B}$.
3. Line l intersects $\overleftrightarrow{A B}$ at point B.
4. $\overleftrightarrow{A B}$ and $\overleftrightarrow{D A}$ intersect at A.
5. $\overleftrightarrow{A D}$ is in plane M.
6. Plane M intersects $\overleftrightarrow{A E}$ at point B.
7. $\overleftrightarrow{A E}$ intersects plane M at point B.

8. A, B, and E are collinear.
9. B, F, and D are collinear.
10. A, B, and C are coplanar.
11. B, C, F, and G are coplanar.
12. A, B, C, and G are coplanar.
13. A, B, C, and F are coplanar.

The plane that contains the shaded region can be called plane $A B C D$.
14. Name three lines that intersect at point G.
15. Name two planes whose intersection is $\overleftrightarrow{F B}$.
16. Name the intersection of plane $E H G F$ and plane $E F B A$.
17. Name two planes that do not intersect.
18. Are points D, H, G, and C coplanar?
19. Are points D, H, G, and F coplanar?

20. Are points A, B, G, and H coplanar?

Sketch and label the figures described. Use dashes for parts hidden from view.

21. Line $\overleftrightarrow{A B}$ intersects plane X at point C.
22. Two planes M and N intersect in line l.
23. Horizontal plane P contains two lines $\overleftrightarrow{R S}$ and $\overleftrightarrow{T U}$ that intersect at point O.

Section 1-3: Segments, Rays, and Distance

List some pairs of opposite rays.

Postulates:

Theorems:

Length of a segment:

Ruler Postulate:

$\mathrm{HI}=$
$\mathrm{UJ}=$
תK $=$ \qquad
$\mathrm{HJ}=$
$\mathrm{MK}=$ \qquad

Segment $A d d i t i o n ~ P o s t u l a t e: ~ I f ~ B ~ i s ~$ between $A \& C$, then $A B+B C=$ \qquad .

Example $1 \quad A C=$ \qquad

Example 2 if $\mathrm{AC}=16$, find x .

Example 3 If $\mathrm{AC}=30$, find BC .

Congruent - objects that have the

Congruent Segments - segments that have \qquad
If $D E=F G$, then $\overline{D E} \cong \overline{F G}$.

Midpoint of a Segment: the point that the segment into
segments

Example 4
Given B is the midpoint of $\overline{A C}$,
$A B=4 x$, and $A C=32$. Find x.

Example 5
Given B is the midpoint of $\overline{A C}$, Find $A C$.

1-3 Segments, Rays, and Distance

Objectives: Use symbols for lines, segments, rays, and distances; find distances. Use the Segment Addition Postulate.

In learning a new language, the first things you need to learn are vocabulary and rules of grammar. In geometry, you need vocabulary, symbols, and rules called postulates.
segment A segment is named by giving its endpoints. X and Z are the endpoints of $\overline{X Z} . \overline{X Z}$ and $\overline{Z X}$ are the same segment. Y is between X and $Z . Y$ must be on $\overleftrightarrow{X Z}$.
ray A ray is named by giving its endpoint and another point on the ray. The endpoint of a ray is always named first.
$\overrightarrow{X Y}$ and $\overrightarrow{X Z}$ are the same ray.

$\overrightarrow{X Z}$ and $\overrightarrow{Z X}$ are different rays. $\overrightarrow{Y X}$ and $\overrightarrow{Y Z}$ are opposite rays.

Refer to the diagram at the right.

1. Give several names for the line.
2. Name several segments in the figure.

3. Name several rays in the figure.
4. Name two pairs of opposite rays.

Classify each statement as true or false.
5. C is between A and B.
6. $\overrightarrow{A D}$ and $\overrightarrow{A G}$ are opposite rays.
7. $\overline{C B}$ is the same as $\overline{B C}$.
8. $\overrightarrow{C B}$ is the same as $\overrightarrow{B C}$.
9. $\overleftrightarrow{C B}$ is the same as $\overleftrightarrow{B C}$.
10. $\overrightarrow{C B}$ is the same as $\overleftrightarrow{B C}$.
11. $\overleftrightarrow{J F}$ is the same as $\overleftrightarrow{C B}$.
12. $\overrightarrow{B A}$ is the same as $\overrightarrow{B D}$.

length $X Z$ is the length of $\overline{X Z}$ or the distance between point X and point Z.
You can find the length of a segment on the number line by computing the absolute value of the difference of the coordinates of the endpoints. Length must be a positive number.

Example 1

Find $X Z$ and $Y X$.

Solution

	$X Z=\|2-5\|=\|-3\|=3$		$Y X=\|-3-2\|=\|-5\|=5$
or	$X Z=\|5-2\|=\|3\|=3$	or $\quad Y X=\|2-(-3)\|=\|5\|=5$	

Segment Addition Postulate If B is between A and C, then $A B+B C=A C$.

1-3 Segments, Rays, and Distance (continued)

Example 2

R is between S and T, with $R T=x$,
$S R=x+4$, and $S T=14$.
Find the value of x. Then find $R T$ and $S R$.

Solution

$S R+R T=S T$ (by the Segment Addition Postulate)
$x+x+4=14$
$2 x+4=14$ $2 x=10$
$S R=x+4$
$x=5$
$R T=x=5$
$=5+4$

Two objects that have the same size and shape are congruent (\cong). For example, congruent segments have the same length. If $A B=C D$, then $\overline{A B} \cong \overline{C D}$.

midpoint of a segment A midpoint divides a segment into two congruent segments.

X is the midpoint of $\overline{A B}$, so $\overline{A X} \cong \overline{X B}$.
bisector of a segment A segment bisector is a line, segment, ray, or plane that intersects a segment at its midpoint.
$A X=X B$, so plane $M, \overleftrightarrow{R S}$, and $\overline{V W}$ are all bisectors of $\overline{A B}$.

For Exercises 13-16, refer to the number line at the right.
13. Find $B D$.
14. Find the length of $\overline{A C}$.
15. Find the distance between B and E.

16. Find the coordinate of the midpoint of $\overline{A E}$.
17. Find the value of x.

18. In the diagram, $\overline{A C} \cong \overline{C E}$ and B is the midpoint of $\overline{A C}$. $C D=2$ and $A B=3$. Find $B C, A C$, and $D E$.

I. Vocabulary

- Point
- Line
- Plane
- Space
- Collinear
- Coplaner
- Ray
- Segment
- Distance
- Congruent
- Segment Bisector
- Midpoint of a Segment
II. A is the midpoint of $\overline{D E}$. Solve for x.
$B A=3 x+6, A C=18, B C=5 x-12$

$$
x=
$$

$D A=3 x+60, E A=10 x-17, x=$

In the following diagram, C is the midpoint of $\overline{A E}$. B is the midpoint of $\overline{A C} . C D=4$ and $A B=9.5$

$A C=$ \qquad
$D E=$ \qquad
Coordinate for $D=$ \qquad
Coordinate for $C=$ \qquad

Section 1-4: Angles

Angle - figure formed by 2 rays that have the same endpoint
The rays are the \qquad .

The common endpoint is the \qquad
When naming an angle, use \qquad letters, \qquad letter, or \qquad number.
 Name the angle.

Vertex = \qquad
Sides $=$ \qquad and \qquad

Angles are measured in \qquad
There are 4 classifications of angles.
\qquad

Measures between \qquad and \qquad Measure \qquad

Measures between \qquad and \qquad Measure \qquad

Protractor Postulate: Given $\angle Q O P$, if $\overrightarrow{O P}$ is paired with \times and $\overrightarrow{O Q}$ is paired with y , then $\mathrm{m} \angle \mathrm{QOP}=|x-y|$.

Example $1 \quad 20^{\circ}$ and 90°

Example $2 \quad 90^{\circ}$ and 120°

Example $3 \quad 90^{\circ}$ and 40°

Angle Addition Postulate: If point B lies in the interior of $\angle A O C$, then $\mathrm{m} \angle A O B+\mathrm{m} \angle B O C=\mathrm{m} \angle A O C$.

Angle Addition Postulate: If $\angle A O C$ is a straight angle, then $m \angle A O B+$ $m \angle B O C=180^{\circ}$.

congruent angles - angles that have \qquad adjacent angles - 2 angles in a \qquad that have a \qquad and $a \ldots$, but
no common interior points

bisector of an angle - a \qquad that divides an angle into 2
\qquad angles

Ex. Given: $\overrightarrow{E C}$ bisects $\angle B E D, m \angle A E B=19 x, m \angle B E C=8 x+20$
Find: $x \& m \angle C E D$

Examples:

Give another name for each angle.

1. $\angle \mathrm{DEB}$
2. $\angle \mathrm{CBE}$
3. $\angle \mathrm{BEA}$
4. $\angle \mathrm{DAB}$
5. $\angle 7$
6. $\angle 9$
7. $\mathrm{m} \angle 1+\mathrm{m} \angle 2=\mathrm{m} \angle$ \qquad
8. $\mathrm{m} \angle 3+\mathrm{m} \angle 4=\mathrm{m} \angle$ \qquad

9. $\mathrm{m} \angle 5+\mathrm{m} \angle 6=\mathrm{m} \angle$ \qquad or \qquad
10. Name the vertex of $\angle 3$.
11. Name the right angle.

State another name for each angle.
12. $\angle 1$
13. $\angle 6$
14. $\angle \mathrm{EBD}$

15. $\angle 4$
16. $\angle \mathrm{BDE}$ or $\angle \mathrm{BDA}$
17. $\angle 2$
18. $\angle 5$
19. $\angle 9$

1-4 Angles

Objectives: Name angles and find their measures. Use the Angle Addition Postulate.
angle A figure formed by two rays with the same endpoint is an angle. In $\angle X Y Z, \overrightarrow{Y X}$ and $\overrightarrow{Y Z}$ are the sides of the angle. Y is called the vertex of the angle. Another name for $\angle X Y Z$ is $\angle Y$.

Example 1

a. Name three different angles in the diagram.
b. Give another name for $\angle P Q R$ and for $\angle 3$.

Solution

a. $\angle P Q S, \angle P Q R, \angle R Q S$
b. $\angle P Q R$ can be called $\angle 2 ; \angle 3$ can be called $\angle R Q S$.

In this figure, you could not call any of the angles $\angle Q$
because it would not be clear which angle with vertex Q you meant.

Refer to the diagram at the right.

1. Name the vertex and sides of $\angle X A C$.
2. How many angles have A as the vertex?

List them.
3. Give another name for $\angle 6, \angle A B C, \angle A D C$, and $\angle 4$.

measure of an angle
You can use a protractor to find a number associated with each side of an angle. To find the measure in degrees of an angle ($m \angle X Y Z$), compute the absolute value of the difference of these numbers.

Example 2

Find $m \angle C O D$ and $m \angle B O E$.

Solution

As you can see, $\overrightarrow{O D}$ is on 60 and $\overrightarrow{O C}$ is on 145 .
$m \angle C O D=|60-145|$
$=|-85|$
$=85$
$m \angle B O E=|25-0|$
$=25$

Referring to the protractor and angles in Example 2 above:
$\angle X O C$ is acute since $0<m \angle X O C<90$.
$\angle A O E$ is obtuse since $90<m \angle A O E<180$.
$\angle A O X$ is a right angle since $m \angle A O X=90$.
$\angle A O B$ is a straight angle since $m \angle A O B=180$.

1-4 Angles (continued)

State whether each angle appears to be acute, right, obtuse, or straight. Then estimate its measure.
4. $\angle Q$
5. $\angle 1$
6. $\angle R P M$
7. $\angle L M N$
8. $\angle P M Q$
9. $\angle P M L$

Angle Addition Postulate
If a point Y lies in the
interior of $\angle X O Z$, then interior of $\angle X O Z$, then $m \angle X O Y+m \angle Y O Z=m \angle X O Z$.

Example 3

Given: $m \angle A O D=4 y-8 ; m \angle D O C=y-11$; $m \angle C O B=y+13$
Find the measure of $\angle A O D$.

Solution

$$
\begin{aligned}
m \angle A O D+m \angle D O C+m \angle C O B & =180(\text { by the Angle Addition Postulate) } \\
4 y-8+y-11+y+13 & =180 \\
6 y-6 & =180 \\
6 y & =186 \\
y & =31 \\
m \angle A O D=4 y-8=4(31)-8= & 116
\end{aligned}
$$

congruent angles Two angles with equal measures are congruent. If $m \angle 5=m \angle 6$, then $\angle 5 \cong \angle 6$.
bisector of an angle The ray that divides an angle into two congruent angles is the angle bisector.
If $\overrightarrow{Q R}$ bisects $\angle P Q S$, then $\angle 5 \cong \angle 6$,
 or $m \angle 5=m \angle 6$.
adjacent angles Coplanar angles with a common vertex and a common side but no common interior points are adjacent angles. $\angle 1$ is adjacent to $\angle 2$.

Complete.

10. $\angle 2$ and $\angle 3$ are adjacent. Name their common vertex and common side.
11. $\angle 1$ is adjacent to acute $\angle-$.
12. $m \angle D Z E=$ \qquad $m \angle C Z D=$ \qquad $m \angle A Z C=$ \qquad
13. If $\overrightarrow{Z B}$ bisects $\angle A Z C$, then $m \angle$ \qquad $=m \angle$ \qquad $=$.

14. $m \angle 1+m \angle 2+m \angle 3=$ \qquad
15. If $m \angle 3=20, m \angle 2=3 x-5$, and $m \angle 1=2 x+10$, find the value of x.

Practice 2

Lessons 1-3, 1-4
Supplementary Practice
In Exercises 1-8, L is the midpoint of $\overline{K M}$.

1. The ray opposite to $\overrightarrow{K N}$ is \qquad .
2. The coordinate of L is \qquad
3. Another name for $\overrightarrow{L M}$ is \qquad
4. $M J=$ \qquad
5. The length of $\overline{L N}$ is \qquad
6. A segment congruent to $\overline{K M}$ is \qquad
7. The point on $\overrightarrow{L M}$ whose distance from L is 2 is \qquad —.
8. The point on $\overrightarrow{L K}$ whose distance from L is 2 is \qquad
In Exercises 9-12, refer to the diagram and classify each angle as acute, right, obtuse, or straight.
9. $\angle A$ \qquad
10. $\angle A B C$ \qquad
11. $\angle B D C$ \qquad
12. $\angle A D C$ \qquad
13. An angle adjacent to $\angle A D B$ is \qquad .
14. Can you conclude from the diagram that A, B, and E are

Exs. 9-19 collinear? \qquad
15. Can you conclude from the diagram that $\overline{B E} \cong \overline{B D}$? \qquad
16. Name the postulate that allows you to conclude that
$m \angle A B D+m \angle D B C=m \angle A B C$. \qquad
17. $\overrightarrow{C B}$ is a side of angle \qquad —.
18. $m \angle C B E=$ \qquad
19. $m \angle A D B=$ \qquad
In Exercises 20 and 21, $\angle P O S$ is a right angle and $\overrightarrow{O R}$ bisects $\angle Q O S$. Find the value of x.
20. If $m \angle 1=2 x+15$ and $m \angle 2=5 x-18$, then $x=$ \qquad
21. If $m \angle 1=x+7$ and $m \angle 3=2 x$, then $x=$ \qquad

Exs. 20-21

Segments and Distance; Angles

The numbers given are the coordinates of two points on a number line. State the distance between the points.

1. -3 and 5 \qquad 2. -15 and -8
2. -1 and 9 \qquad 4. -11 and -27

Name each of the following.
5. The point on $\overrightarrow{G C}$ whose distance from G is 3 \qquad
6. Two points whose distance from I is 4 \qquad

7. The midpoint of $\overline{D J}$ \qquad 8. The coordinate of the midpoint of $\overline{C G}$ \qquad
9. The ray opposite to $\overrightarrow{D F}$ \qquad 10. A segment congruent to $\overline{D L}$
R is the midpoint of $\overline{P S}$. Find the value of x.
11. $P R=3 x+2, R S=5 x-4$ \qquad
12. $P R=6 x-1, P S=8 x$

Name each of the following.
13. The vertex of $\angle 1$ \qquad 14. The sides of $\angle 5$ \qquad
State another name for the given angle.
15. $\angle 7$ \qquad 16. $\angle C B E$
\qquad
State whether the angle appears to be acute, right, obtuse, or straight.

Exs. 13-27
17. $\angle 2$
18. $\angle D E C$ \qquad
19. $\angle A E C$ \qquad 20. $\angle C B A$

Complete.
21. $\angle D E C$ and \qquad are adjacent angles.
22. $m \angle 1+m \angle 2=m \angle$ \qquad
23. If $m \angle 5=3 x-6$, and $m \angle 6=4 x+4$, then $x=$ \qquad .

Tell whether you can reach the conclusion shown based on the diagram. Write Yes or No.
24. $\overline{D B}$ bisects $\overline{A C}$. \qquad
26. E is on $\overleftrightarrow{A C}$. \qquad
25. $m \angle D A B=90$ \qquad
27. $\overrightarrow{A C}$ bisects $\angle D A B$. \qquad

Section 1-5: Postulates and Theorems Relating Points, Lines, and Planes

Recall that we have accepted, without proof, the following four basic assumptions.

These postulates deal with segments, lengths, angles, and measures. The following five basic assumptions deal with the way points, lines, and planes are related.

Postulate 5

A line contains at least \qquad points; a plane contains at least \qquad points not all in one line; space contains at least \qquad points not all in one plane.

Postulate 6

Through any two points there is exactly \qquad line.

Postulate 7

Through any three points there is at least \qquad plane, and through any three noncollinear points there is exactly \qquad plane.

Postulate 8

If two points are in a plane, then the \qquad that contains the points is in that plane.

Postulate 9

If two planes intersect, then their intersection is a \qquad .

Important statements that are \qquad are called \qquad . In classroom Exercise 1 you will see how Theorem 1-1 follows from postulates. In Written Exercise 20 you will complete an argument that justifies Theorem 1-2. You will learn about writing proofs in the next chapter.

Theorem 1-1

If two lines interest, then they intersect in exactly \qquad point.

Theorem 1-2

Through a line and a point not in the line there is exactly one \qquad .

Theorem 1-3

If two lines intersect, then exactly one \qquad contains the lines.

The phrase "exactly one" appears several times in the postulates and theorems of this section. The phrase "one and only one" has the same meaning. For example, here is another correct form of Theorem 1-1;

If two lines intersect, then they intersect in one and only one \qquad .

The theorem states that a point of intersection \qquad (there is at least one point of intersection) and the point of intersection is \qquad (no more than one such point exists).

Examples:

Classify each statement as true or false.

1. A postulate is a statement assumed to be true without proof.
2. The phrase "exactly one" has the same meaning as the phrase "one and only one."
3. Three points determine a plane.
4. Through any two points there is exactly one plane.
5. Through a line and a point not on the line there is one and only one plane.

Postulates and Theorems Relating Points, Lines, and Planes

For use after Section 1-5

Classify each statement as true or false.

1. Two points can lie in each of two different lines. \qquad
2. Three noncollinear points can lie in each of two different planes. \qquad
3. Three collinear points lie in only one plane. \qquad
4. Two intersecting lines are contained in exactly one plane. \qquad
5. If two lines intersect, then they intersect in exactly one point. \qquad
6. If two planes intersect, then their intersection is a line. \qquad
Name each of the following.
7. The plane that contains $\overleftrightarrow{B F}$ and $\overleftrightarrow{F G}$ \qquad
8. The plane that contains points B, F, and H \qquad
9. The plane that intersects $A D H E$ in $\overleftrightarrow{A E}$ \qquad
10. The plane that doesn't intersect $A B C D$ \qquad

Exs. 7-18
Exs. 7-18
11. The intersection of planes $A D H E, D C G H$, and $A B C D$ \qquad
12. The plane that doesn't contain $\overleftrightarrow{D G}$ and doesn't intersect $\overleftrightarrow{D G}$ \qquad
13. Two lines that don't intersect plane $E F G H$ \qquad
14. Three planes that don't intersect $\overleftrightarrow{C G}$ and don't contain $\overleftrightarrow{C G}$ \qquad
Write the postulate or theorem that justifies the statement about the diagram.
15. Plane $B C G F$ is the only plane containing $\overleftrightarrow{F G}$ and point C. \qquad
16. Lines $\overleftrightarrow{B F}$ and $\overleftrightarrow{F G}$ intersect in only one point. \qquad
17. $\overleftrightarrow{F H}$ is contained in the plane $F G H E$. \qquad
18. Planes $A D H E$ and $E F G H$ intersect in only one line. \qquad

1-5 Postulates and Theorems Relating Points, Lines, and Planes (continued)

Draw a figure to represent each of the following:

1. Three coplanar lines that do not intersect
2. Three coplanar lines that intersect in exactly one point
3. A line that intersects each of two coplanar non-intersecting lines
4. Three planes that do not intersect
5. Three planes that intersect in one line
6. A plane that intersects two non-intersecting planes
7. Three planes that intersect in exactly one point

In Exercises 8-15 you will have to visualize certain lines and planes not shown in the diagram. When you name a plane, name

 it by using four points, no three of which are collinear. Often, more than one answer is possible.8. Name a plane that contains $\overleftrightarrow{P R}$.
9. Name a plane that contains $\overleftrightarrow{P R}$ but is not shown in the diagram.
10. Name a plane that contains $\stackrel{\leftrightarrow}{P Q}$ and \overleftrightarrow{W},
11. Name a plane that contains $\overleftrightarrow{T W}$ and $\overleftrightarrow{R Q}$.
12. Name the intersection of plane $T W R Q$ and plane $P S W T$.
13. Name five lines in the diagram that don't intersect plane $U V R Q$.
14. Name one line that is not shown in the diagram that does not
 intersect plane $U V R Q$.
15. Name three planes that don't intersect $\overleftrightarrow{S R}$ and don't contain $\overleftrightarrow{S R}$.

Classify each statement as true or false.

16. The intersection of a line and a plane may be the line itself.
17. Two points can determine two lines.
18. Postulates are statements to be proved.
19. A line and a point not on it determine one plane.
20. Line l always has at least two points on it.
21. Any three points are always coplanar.
22. Two intersecting lines determine a plane.
23. If points A, B, C, and D are noncoplanar, then no one plane contains all four of them.
24. Three planes can intersect in exactly one point.
25. Three noncollinear points determine exactly one line.
26. Two lines can intersect in exactly one point.
27. Two points determine a plane.
28. A plane contains at least three noncollinear points.
29. Theorems are statements to be proved.
30. It is possible that points P and Q are in plane M but $\overleftrightarrow{P Q}$ is not.
31. Two planes can intersect in two lines.
32. Two planes can intersect in exactly one point.
33. A line and a plane can intersect in exactly one point.

Practice 3
 Definitions and Postulates

Lessons 1-3 through 1-5

Refer to the diagram and name each of the following.

1. An angle adjacent to $\angle P Q T$ \qquad
2. The ray opposite to $\overrightarrow{T S}$ \qquad
3. An obtuse angle \qquad
4. The sides of $\angle T Q R$ \qquad and \qquad
5. Two right angles \qquad and \qquad
6. A point on $\overrightarrow{P Q}$ that is not on $\overline{P Q}$ \qquad
7. The vertex of the 20° angle \qquad
8. The point between P and R \qquad
Classify each statement as true or false.
9. Through any two points there is exactly one line. \qquad
10. Through any three points there is exactly one line. \qquad
11. Through any three points there is exactly one plane. \qquad
12. Two lines intersect in exactly one point. \qquad
13. Two planes intersect in exactly one point. \qquad
14. Two planes intersect in a line. \qquad
15. A line and a plane can intersect in a point. \qquad
Complete each statement with the word always, sometimes, or never.
16. Adjacent angles are \qquad congruent.
17. If points A and B are in plane R and point C is on $\overleftrightarrow{A B}$, then C is \qquad in R.
18. Two intersecting lines \qquad lie in exactly one plane.
19. A line and a point not on the line \qquad lie in more than one plane.
20. A line \qquad contains at least two points.

Practice 4

Chapter 1 Practice

In Exercises 1-3, answer on the basis of what appears to be true.

1. Describe the points that are equidistant from X and Y.
2. Describe the points that are 1 cm from Z.
3. How many points are 1 cm from Z and equidistant from X and Y ?

Refer to the diagram at the right.
4. Name an obtuse angle. \qquad
5. Name a straight angle. \qquad
6. Name two lines that intersect at X. \qquad
7. Name the ray opposite to $\overrightarrow{B A}$. \qquad
8. Name the sides of $\angle 2$. \qquad
9. Name three noncollinear points. \qquad
10. How many planes contain $\overleftrightarrow{A B}$ and $\overleftrightarrow{B D}$? \qquad

Exs. 4-16
11. How many planes contain points A, B, and C ? \qquad
12. How many planes contain points A, B, and D ? \qquad
13. If $m \angle 2=50$, then $m \angle F B C=$ \qquad and $m \angle 1=$ \qquad
14. Can you conclude from the figure that $\angle 1 \cong \angle 2$?
15. Name the postulate that allows you to conclude that $C X+X D=C D$.
16. If $\overrightarrow{B X}$ bisects $\angle D B C$, then \qquad \cong \qquad $-$
17. x is the number paired with the bisector of $\angle L M N$.

18. Find the value of y.

$y=$ \qquad
19. M is the midpoint of $\overline{A B}$.

The coordinate of A is
\qquad

Points, Lines, Planes, and Angles

For use after Chapter 1

Complete.

1. $\overleftrightarrow{G H}$ intersects plane R at point \qquad .
2. D, E, and \qquad are collinear.
3. $m \angle A E C+m \angle C E B=$ \qquad .
4. If E is the midpoint of $\overline{A B}, A E=21$, and $E B=2 x-3$, then the value of x is \qquad .

Exs. 1-4

Exs. 5-8

7. What is the distance $J M$? \qquad
\qquad
8. Which ray is opposite to $\overrightarrow{L M}$? \qquad
9. State another name for $\angle 1$. \qquad
10. $m \angle A H E+m \angle E H C=$ \qquad
11. State whether $\angle C H G$ appears to be acute, right, obtuse, or straight. \qquad
Write the name of the definition or postulate that justifies the statement about the diagram.

Exs. 9-19
12. $m \angle 1+m \angle 2=m \angle A H F$ \qquad
13. If H is the midpoint of $\overline{C D}$, then $D H=C H$. \qquad
14. If $\overrightarrow{H C}$ bisects $\angle B H F$, then $\angle 3 \cong \angle 4$. \qquad
15. $C H+H D=C D$ \qquad
Name each of the following.
16. The sides of $\angle E H B$ \qquad 17. A right angle \qquad
18. An angle bisector \qquad 19. Two congruent adjacent angles \qquad
Classify each statement as true or false.
20. Two planes intersect in exactly one point. \qquad
21. Two intersecting lines are always coplanar. \qquad
22. Three collinear points lie in exactly one plane. \qquad
23. There is exactly one line through two points. \qquad

Review for Chapter 1 Test

1. Name a plane that contains $\overleftrightarrow{H F}$.
2. Name the intersection of planes R and Y.
3. How many lines can contain points X and F ?
4. How many planes can contain points B, E, and X?
5. How many planes can contain points B and E?

Complete each statement with a number and/or the words line, point, or plane.
6. If h is a line and P is a point not on the line, then h and P are contained in exactly \qquad .
7. If two lines intersect, then their intersection is a \qquad .
8. Space contains at least \qquad noncoplanar points.
9. Any line contains at least \qquad points.
10. If two planes intersect, then their intersection is a \qquad .
11. Given any three noncollinear points, there is exactly \qquad containing them.
12. Given any two points, there is exactly \qquad containing the two points.

A is the midpoint of $\overline{D J}$ and $\angle L A M \cong \angle$ MAJ.
13. Name two congruent segments.
14. Name a ray opposite to $\overrightarrow{A J}$.
15. $\mathrm{UA}+\mathrm{AL}=$ \qquad . (letters)
16. The sides of $\angle \mathrm{DAU}$ are \qquad -.
17. A is the \qquad of $\angle \mathrm{DAU}$.

18. Name an angle bisector.
19. If $\mathrm{m} \angle \mathrm{UAD}=60$, then $\mathrm{m} \angle \mathrm{DAL}=$ \qquad .
20. $\mathrm{m} \angle \mathrm{DAL}+\mathrm{m} \angle \mathrm{LAM}=\mathrm{m} \angle$ \qquad .
21. What type of angle is $\angle \mathrm{DAL}$?
22. If $\mathrm{m} \angle \mathrm{LAJ}=50$, then $\mathrm{m} \angle \mathrm{MAJ}=$ \qquad .

V is the midpoint of $\overline{S R}$ and $\mathrm{SU}=2$.
23. $\quad \mathrm{VR}=$ \qquad .
24. $\mathrm{UV}=$ \qquad .

25. Find the coordinate of the midpoint of $\overline{S V}$.
26. K is the midpoint of $\overline{P Q}$. If $\mathrm{PK}=5 \mathrm{x}+9, \mathrm{KQ}=8 \mathrm{x}-6$, then $\mathrm{x}=$ \qquad .
27. If $\mathrm{m} \angle 3=8 \mathrm{x}+7$ and $\mathrm{m} \angle 4=2 \mathrm{x}+13$, then $\mathrm{x}=$ \qquad .

Fill in the Blank
28. \qquad are points all in one plane.
29. \qquad : If B is between A and C , then $\mathrm{AB}+\mathrm{BC}=\mathrm{AC}$. (True or False)
30. \qquad angle is an angle that measures exactly 90 degrees.
31. \qquad are two angles in the same plane that have a common vertex and a common side but no common interior points.

