
Chapter 1: Principle of Operating System
Introduction, Operations System Concepts: Processes, files, shell, system calls, security and Operating System structure:
Monolithic systems, Layered, Virtual Machines, Client – Server and Evolution of Operating Systems: User driven, operator
driven, simple batch system, off – line batch system, directly coupled off – line system, multi- programmed spooling
system, on-line timesharing system, multiprocessor systems, multi-computer/ distributed systems, Real time Operating
Systems

 Operating System Introduction:
Computer Software can roughly be divided into two types:

a). Application Software: Which perform the actual work the user wants.
b). System Software: Which manage the operation of the computer itself.

The most fundamental system program is the operating system, whose job is to control all the computer's resources and
provide a base upon which the application program can be written. Operating system acts as an intermediary between a user
of a computer and the computer hardware.

A computer system can be divided roughly into four components: the hardware, the operating system, the application
program, and the users as shown in the fig 1.1
An operating system is similar to a government. Like a government it performs no useful function by itself. It simply
provides an environment within which other programs can do useful work.

Page:1 Compiled by: Daya Ram Budhathoki

Fig 1.1 Abstract view of the components of a Computer System.

Two views of the Operating System:

Operating System as an Extended Machine or Virtual Machine(or As a
User/computer interface)
The operating system masks or hides the details of the Hardware form the programmers and general users and provides a
convenient interface for using the system. The program that hides the truth about the hardware from the user and presents a
nice simple view of named files that can be read and written is of course the operating system. In this view the function of
OS is to present the user with the equivalent of an extended machine or virtual machine that is easier to program than
underlying hardware. Just as the operating system shields the user from the disk hardware and presents a simple file-
oriented interface, it also conceals a lot of unpleasant business concerning interrupts, timers,memory management and other
low level features.
The placement of OS is as shown in fig1.2 A major function of OS is to hide all the complexity presented by the underlying
hardware and gives the programmer a more convenient set of instructions to work with.

Operating System as a Resource Manager
A computer system has many resources. Modern computers consist of processors, memories, timers, disks, mice, network
interfaces, printers, and a wide variety of other devices. In the alternative view, the job of the operating system is to provide
for an orderly and controlled allocation of the processors, memories, and I/O devices among the various programs
competing for them.
Imagine what would happen if three programs running on some computer all tried to print their output simultaneously on
the same printer. The first few lines of printout might be from program 1, the next few from program 2, then some from
program 3, and so forth. The result would be chaos. The operating system can bring order to the potential chaos by buffering
all the output destined for the printer on the disk. When one program is finished, the operating system can then copy its
output from the disk file where it has been stored to the printer, while at the same time the other program can continue
generating more output, oblivious to the fact that the output is not really going to the printer (yet).

Figure 1.3 suggests the main resources that are managed by the OS. A portion of the OS is in main memory. This includes
Kernel or nucleus. The remainder of main memory contains user programs and data. The allocation of this resource (main
memory) is controlled jointly by the OS and memory management hardware in the processor

Page:2 Compiled by: Daya Ram Budhathoki

Fig1.2: Computer system consists of Hardware, system program and
application program

computer System organization:
A modern general purpose computer system consists of one or more cpus and a number of device controllers connected
through a common bus that provides access to shared memory

Page:3 Compiled by: Daya Ram Budhathoki

Fig1.3: The Operating system as Resource manger

Fig 1.4: A Modern Computer System

Files:

A major function of the operating system is to hide the peculiarities of the disks and other I/O devices
and present the programmer with a nice, clean abstract model of device-independent files. System calls
are obviously needed to create files, remove files, read files, and write files. Before a file can be read, it
must be opened, and after it has been read it should be closed, so calls are provided to do these things.

To provide a place to keep files, most operating system has the concept of a directory as a way of
grouping files together. A student, for example, might have one directory for each course he is taking
(for the programs needed for that course), another directory for his electronic mail, and still another
directory for his World Wide Web home page. System calls are then needed to create and remove
directories. Calls are also provided to put an existing file into a directory, and to remove a file from a
directory. Directory entries may be either files or other directories. This model also gives rise to a
hierarchy of the file system as shown in fig.

Every file within the directory hierarchy can be specified by giving its path name from the top of the
directory hierarchy, the root directory. Such absolute path names consist of the list of directories that
must be traversed from the root directory to get to the file, with slashes separating the components. In
Fig. 1-6, the path for file CS101 is /Faculty/Prof.Brown/Courses/CS101. The leading slash indicates
that the path is absolute, that is, starting at the root directory. As an aside, in Windows, the backslash (\)
character is used as the separator instead of the slash (/) character, so the file path given above would
be written as \Faculty\Prof.Brown\Courses\CS101.

Page:4 Compiled by: Daya Ram Budhathoki

System Call:

In computing, a system call is how a program requests a service from an operating system's kernel.
This may include hardware related services (e.g. accessing the hard disk), creating and executing new
processes, and communicating with integral kernel services (like scheduling). System calls provide the
interface between a process and the operating system.
On Unix, Unix-like and other POSIX-compatible operating systems, popular system calls are open,
read, write, close, wait, execve, fork, exit, and kill. Many of today's operating systems have hundreds
of system calls. For example, Linux has over 300 different calls.

System calls can be roughly grouped into five major categories:
1. Process Control.

• load
• execute
• create process
• terminate process
• get/set process attributes
• wait for time, wait event, signal event
• allocate, free memory

2. File management.
• create file, delete file
• open, close
• read, write, reposition
• get/set file attributes

3. Device Management.
• request device, release device
• read, write, reposition
• get/set device attributes
• logically attach or detach devices

4. Information Maintenance.
• get/set time or date
• get/set system data
• get/set process, file, or device attributes

5. Communication.
• create, delete communication connection
• send, receive messages
• transfer status information
• attach or detach remote devices

Shell:
A shell is a program that provides the traditional text only user interface for Linux and other Unix
operating system. Its primary function is to read commands typed into a console or terminal window
and then execute it. The term shell derives its name form the fact that it is an outer layer of the OS. A
shell is an interface between the user and the internal part of the operating system.
A user is in shell(i.e interacting with the shell) as soon as the user has logged into the system. A shell is
the most fundamental way that user can interact with the system and the shell hides the detail of the
underlying system from the user.

Page:5 Compiled by: Daya Ram Budhathoki

Example:
Bourne Shell
Bash shell
Korn Shell
C shell

Kernel:
In computing, the kernel is the main component of most computer operating systems; it is a bridge
between applications and the actual data processing done at the hardware level. The kernel's
responsibilities include managing the system's resources (the communication between hardware and
software components). Usually as a basic component of an operating system, a kernel can provide the
lowest-level abstraction layer for the resources (especially processors and I/O devices) that application
software must control to perform its function. It typically makes these facilities available to application
processes through inter-process communication mechanisms and system calls.
Operating system tasks are done differently by different kernels, depending on their design and
implementation. While monolithic kernels execute all the operating system code in the same address
space to increase the performance of the system, microkernels run most of the operating system
services in user space as servers, aiming to improve maintainability and modularity of the operating
system. A range of possibilities exists between these two extremes.

Operating System Structure:
The structure of an operating system is dictated by the model employed in building them. An operating
system model is a broad framework that unifies the many features and services the operating system
provides and tasks it performs. Operating systems are broadly classified into following categories,
based on the their structuring mechanism as follows:

a. Monolithic System
b. Layered System
c. Virtual Machine
d. Exokernels
e. Client-Server Model

Page:6 Compiled by: Daya Ram Budhathoki

Monolithic System
The components of monolithic operating system are organized haphazardly and any module can call
any other module without any reservation. Similar to the other operating systems, applications in
monolithic OS are separated from the operating system itself. That is, the operating system code runs in
a privileged processor mode (referred to as kernel mode), with access to system data and to the
hardware; applications run in a non-privileged processor mode (called the user mode), with a limited
set of interfaces available and with limited access to system data. The monolithic operating system
structure with separate user and kernel processor mode is shown in Figure.

This approach might well be subtitled "The Big Mess." The structure is that there is no structure. The
operating system is written as a collection of procedures, each of which can call any of the other ones
whenever it needs to. When this technique is used, each procedure in the system has a well-defined
interface in terms of parameters and results, and each one is free to call any other one, if the latter
provides some useful computation that the former needs.

Page:7 Compiled by: Daya Ram Budhathoki

Example Systems: CP/M and MS-DOS

Layered Operating System

The layered approach consists of breaking the operating system into the number of layers(level), each
built on the top of lower layers. The bottom layer (layer 0) is the hardware layer; the highest layer is the
user interface.
The main advantages of the layered approach is modularity. The layers are selected such that each uses
functions (operations) and services of only lower-level layers. This approach simplifies debugging and
system verifications. That is in this approach, the Nth layer can access services provided by the (N-
1)th layer and provide services to the (N+1)th layer. This structure also allows the operating system to
be debugged starting at the lowest layer, adding one layer at a time until the whole system works
correctly. Layering also makes it easier to enhance the operating system; one entire layer can be
replaced without affecting other parts of the system.

Page:8 Compiled by: Daya Ram Budhathoki

The layer approach to design was first used in the THE operating system at the Technische Hogeschool
Eindhoven. The THE system was defined in the six layers , as shown in the fig below.

Example Systems: VAX/VMS, Multics, UNIX

Virtual Machines:

Virtual machine approach provides an interface that is identical to the underlying bare hardware. Each
process is provided with a (virtual) copy of the underlying computer as shown in the fig. The resources
of the physical computer are shared to create the virtual machine. CPU scheduling can be used to share
the CPU and to create the appearance that users have their own processors.

Page:9 Compiled by: Daya Ram Budhathoki

Fig: a). Non Virtual Machine b). Virtual Machine.

Although the virtual machine concept is useful, it is difficult to implement. Much effort is required to
provide an exact duplicate of the underlying machine.

Example. Java

Client-Server or Microkernel

The advent of new concepts in operating system design, microkernel, is aimed at migrating traditional
services of an operating system out of the monolithic kernel into the user-level process. The idea is to
divide the operating system into several processes, each of which implements a single set of services -
for example, I/O servers, memory server, process server, threads interface system. Each server runs in
user mode, provides services to the requested client. The client, which can be either another operating
system component or application program, requests a service by sending a message to the server. An
OS kernel (or microkernel) running in kernel mode delivers the message to the appropriate server; the
server performs the operation; and microkernel delivers the results to the client in another message, as
illustrated in Figure.

Fig: The client-server model.

Page:10 Compiled by: Daya Ram Budhathoki

Fig: The client-server model in a distributed system.

Function of Operating system:
1. Memory management function
2. processors management function
3. I/O Device management function
4. File management function

Evolution of Operating System:

Evolution of Operating Systems: User driven, operator driven, simple batch system, off – line batch
system, directly coupled off – line system, multi- programmed spooling system, online timesharing
system, multiprocessor systems, multi-computer/ distributed systems, Real time Operating Systems.

1. Serial processing
2. Batch processing
3. Multiprogramming
4. Multitasking or time sharing System
5. Network Operating system
6. Distributed Operating system
7. Multiprocessor Operating System
8. Real Time Operating System
9. Modern Operating system

Serial Processing:
● Early computer from late 1940 to the mid 1950.
● The programmer interacted directly with the computer hardware.
● These machine are called bare machine as they don't have OS.
● Every computer system is programmed in its machine language.
● Uses Punch Card, paper tapes and language translator

Page:11 Compiled by: Daya Ram Budhathoki

 These system presented two major problems.
1. Scheduling
2. Set up time:

Scheduling:
Used sign up sheet to reserve machine time. A user may sign up for an hour but finishes his job in 45 minutes. This would
result in wasted computer idle time, also the user might run into the problem not finish his job in alloted time.

Set up time:
A single program involves:

● Loading compiler and source program in memory
● Saving the compiled program (object code)
● Loading and linking together object program and common function

Each of these steps involves the mounting or dismounting tapes on setting up punch cards. If an error occur user had to go
the beginning of the set up sequence. Thus, a considerable amount of time is spent in setting up the program to run.

This mode of operation is turned as serial processing ,reflecting the fact that users access the computer in series.

Simple Batch Processing:
● Early computers were very expensive, and therefore it was important to maximize processor utilization.
● The wasted time due to scheduling and setup time in Serial Processing was unacceptable.
● To improve utilization, the concept of a batch operating system was developed.
● Batch is defined as a group of jobs with similar needs. The operating system allows users to form batches.

Computer executes each batch sequentially, processing all jobs of a batch considering them as a single process
called batch processing.

 The central idea behind the simple batch-processing scheme is the use of a piece of software known as the monitor.
With this type of OS, the user no longer has direct access to the processor. Instead, the user submits the job on cards or tape
to a computer operator, who batches the jobs together sequentially

and places the entire batch on an input device, for use by the monitor. Each program is constructed to

 branch back to the monitor when it completes processing, at which point the monitor automatically begins loading the next
program.

Page:12 Compiled by: Daya Ram Budhathoki

Fig.1.5: Memory Layout for resident memory

 With a batch operating system, processor time alternates between execution of user programs and execution of the
monitor. There have been two sacrifices: Some main memory is now given over to the monitor and some processor time is
consumed by the monitor. Both of these are forms of overhead.

Multiprogrammed Batch System:
A single program cannot keep either CPU or I/O devices busy at all times.
Multiprogramming increases CPU utilization by organizing jobs in such a manner that CPU has always one job to execute.

If computer is required to run several programs at the same time, the processor could be kept busy for the most of the time
by switching its attention from one program to the next.

Additionally I/O transfer could overlap the processor activity i.e, while one program is awaiting for an I/O transfer, another
program can use the processor.

So CPU never sits idle or if comes in idle state then after a very small time it is again busy. This is illustrated in fig below.

Page:13 Compiled by: Daya Ram Budhathoki

Multitasking or Time Sharing System:
● Multiprogramming didn't provide the user interaction with the computer system.
● Time sharing or Multitasking is a logical extension of Multiprogramming that provides user interaction.
● There are more than one user interacting the system at the same time
● The switching of CPU between two users is so fast that it gives the impression to user that he is only working on

the system but actually it is shared among different users.
● CPU bound is divided into different time slots depending upon the number of users using the system.
● just as multiprogramming allows the processor to handle multiple batch jobs at a time, multiprogramming can also

be used to handle multiple interactive jobs. In this latter case, the technique is referred to as time sharing, because
processor time is shared among multiple users

● A multitasking system uses CPU scheduling and multiprogramming to provide each user with a small portion of a
time shared computer. Each user has at least one separate program in memory.

● Multitasking are more complex than multiprogramming and must provide a mechanism for jobs synchronization
and communication and it may ensure that system does not go in deadlock.

Although batch processing is still in use but most of the system today available uses the concept of multitasking and
Multiprogramming.

Page:14 Compiled by: Daya Ram Budhathoki

Fig 1.6. Multiprogramming example

Distributed System:
Multiprocessor system:
- General term for the use of two or more CPUs for a computer system.
- Can vary with context, mostly as a function of how CPUs are defined.
- The term multiprocessing is sometimes used to refer to the execution of multiple concurrent software
processes in a system as opposed to a single process at any one instant.

Multiprogramming:
Multiprogramming is more appropriate to describe concept which is implemented mostly in softwares,
whereas multiprocessing is more appropriate to describe the use of multiple hardware CPUs.
A system can be both multiprocessing and multiprogramming, only one of the two or neither of the
two.

Processor Coupling:
Its the logical connection of the CPUs. Multiprocessor system have more than one processing unit
sharing memory/peripherals devices. They have greater computing power and higher reliability.
Multiprocessor system can be classified into two types:

1. Tightly coupled
2. Losely coupled(distributed). Each processor has its own memory and copy of the OS.

Tightly Coupled(Multiprocessor System): Tightly coupled multiprocessor system contain multiple
CPUs that are connected at the bus level. Each processor is assigned a specific duty but processor work
in close association, possibly sharing one memory module.
chip multiprocessors also known as multi-core computing involves more than one processor placed on
a single chip and can be thought as the most extreme form of tightly coupled multiprogramming.
Dual core, Core-2 Duo, Intel Core I5 etc are the brand name used for various mid-range to high end
consumers and business multiprocessor made by Intel.

Loosely Coupled(Distributed System):
Loosely coupled system often referred to as clusters are based on multiple stand-alone single or dual
processors commodity computers interconnected via a high speed communication system. distributed
system are connected via a distributed operating system.

Multiprocessor operating system:
Multiprocessor operating system aims to support high performance through the use of multiple CPUs.
It consists of a set of processors that share a set of physical memory blocks over an interconnected
network. An important goal is to make the number of CPUs transparent to the application. Achieving
such transparency is relatively easy because the communication between different (parts of)
application uses the same primitives as those in uni-processor OS.
The idea is that all communication is done by manipulating data at the shared memory locations and
that we only have to protect that data segment against simultaneous access. Protection is done through
synchronization primitives like semaphores and monitors.

Page:15 Compiled by: Daya Ram Budhathoki

Fig: Multiprocessor System.

Distributed Operating System:
A recent trend in computer system is to distribute computation among several processors. In contrasts
to the tightly coupled system the processors do not share memory or a clock. Instead, each processor
has its own local memory. The processors communicate with one another through various
communication lines such as computer network.
Distributed operating system are the operating system for a distributed system(a network of
autonomous computers connected by a communication network through a message passing
mechanisms). A distributed operating system controls and manages the hardware and software
resources of a distributed system. When a program is executed on a distributed system, user is not
aware of where the program is executed or the location of the resources accessed.

Fig: Architecture of a Distributed system.

Page:16 Compiled by: Daya Ram Budhathoki

Example of Distributed OS: Amoeba, Chorus, Alpha Kernel.

Real Time Operating System:
Primary objective of Real Time Operating System is to provide quick response time and thus to meet a
scheduling deadline. User convenience and resource utilization are secondary concern to these systems.
Real time systems has many events that must be accepted and processed in a short time or within
certain deadline. Such applications include:
Rocket launching, flight control, robotics, real time simulation, telephone switching equipments etc.

Real time systems are classified into two categories:
a). Soft Real time System: If certain deadlines are missed then system continues its working with no
failure but its performance degrade.

b). Hard Real time System: If any deadline is missed then system will fail to work or does not work
properly. This system gurantees that critical task is completed on time.

Modern Operating System:

Operating System Structure

Distributed System:
Shell
Kernel
Files
System Call
Real time operating system.

Chapter-2 Processes and Threads
Process Concepts: Introduction, Definition of Process, Process states and transition, PCB (Process Control Block),
Concurrent Process: Introduction, Parallel Processing, IPC (Inter-process Communication), Critical Regions and conditions,
Mutual Exclusion, Mutual Exclusion Primitives and Implementation, Dekker’s Algorithm, Peterson’s Algorithm, TSL (test
and set lock), Locks, Producer and consumer problem, monitors, Message Passing, Classical IPC problems, Deadlock
and Indefinite Postponement: Introduction, Preemptable and Nonpreemptable Resources, Conditions for deadlock,
deadlock modeling, deadlock prevention, deadlock avoidance, dadlock detection and recovery, Starvation, Threads:
Introduction, thread model, thread usage, advantages of threads.

Introduction to process:
A process is an instance of a program in execution. A program by itself is not a process; a program is a passive entity, such
as a file containing a list of instructions stored on disks. (often called an executable file), whereas a process is an active

Page:17 Compiled by: Daya Ram Budhathoki

entity, with a program counter specifying the next instruction to execute and a set of associated resources. A program
becomes a process when an executable file is loaded into memory.

Program: A set of instructions a computer can interpret and execute.

Process:
– Dynamic
– Part of a program in execution
– a live entity, it can be created, executed and terminated.
– It goes through different states

wait
running
Ready etc

– Requires resources to be allocated by the OS
– one or more processes may be executing the same code.

Program:
– static
– no states

This example illustrate the difference between a process and a program:

main ()
 {

int i , prod =1;
for (i=0;i<100;i++)
prod = pord*i;

 }

It is a program containing one multiplication statement (prod = prod * i) but the process will execute 100 multiplication, one
at a time through the 'for' loop.
Although two processes may be associated with the same program, they are nevertheless considered two separate execution
sequences. For instance several users may be running different copies of mail program, or the same user may invoke many
copies of web browser program. Each of these is a separate process, and although the text sections are equivalent, the data,
heap and stack section may vary.

The process Model

Page:18 Compiled by: Daya Ram Budhathoki
Fig:1.1: (a) Multiprogramming of four programs. (b) Conceptual model of
four independent, sequential processes. (c) Only one program is active at any
instant.

 A process is just an executing program, including the current values of the program counter, registers, and variables.
Conceptually, each process has its own virtual CPU. In reality, of course, the real CPU switches back and forth from process
to process, but to understand the system, it is much easier to think about a collection of processes running in (pseudo)
parallel, than to try to keep track of how the CPU switches from program to program. This rapid switching back and forth is
called multiprogramming

Process Creation:
There are four principal events that cause processes to be created:
1. System initialization.
2. Execution of a process creation system call by a running process.
3. A user request to create a new process.
4. Initiation of a batch job.

Parent process create children processes, which, in turn create other processes, forming a tree of processes . Generally,
process identified and managed via a process identifier (pid)

When an operating system is booted, often several processes are created.

Some of these are foreground processes, that is, processes that interact with (human) users and perform work for them.

Others are background processes, which are not associated with particular users, but instead have some specific function.
For example, a background process may be designed to accept incoming requests for web pages hosted on that machine,
waking up when a request arrives to service the request. Processes that stay in the background to handle some activity such
as web pages, printing, and so on are called daemons
In addition to the processes created at boot time, new processes can be created afterward as well. Often a running process
will issue system calls to create one or more new processes to help it do its job.

In interactive systems, users can start a program by typing a command or double clicking an icon.
In UNIX there is only one system call to create a new process: fork. This call creates an exact clone of the calling process.
After the fork, the two processes, the parent and the child, have the same memory image, the same environment strings, and
the same open files. That is all there is. Usually, the child process then executes execve or a similar system call to change its
memory image and run a new program. For example, when a user types a command, say, sort, to the shell, the shell forks off
a child process and the child executes sort.

The C program shown below describes the system call, fork and exec used in UNIX. We now have two different process
running a copy of the same program. The value of the PID for the child process is zero; that for the parent is an integer value
greater than zero. The child process overlays its address space with the UNIX command /bin/ls using the execlp() system
call. (execlp is version of the exec). The parent waits for the child process to complete with the wait() system call. When the
child process completes (by either implicitly or explicitly invoking the exit()) the parent process resumes from the call to
wait, where it completes using the exit() system call. This is also illustrated in the fig. below.

#include<stdio.h>
#include<unistd.h>
#include<sys/types.h>
int main()

Page:19 Compiled by: Daya Ram Budhathoki

{
pid_t pid;
 /* fork another process */
 pid = fork();
 if (pid < 0) { /* error occurred */
 fprintf(stderr, "Fork Failed");
 printf("%d", pid);
 exit(-1);
 }
 else if (pid == 0) { /* child process */
 execlp("/bin/ls", "ls", NULL);
 }
 else { /* parent process */
 /* parent will wait for the child to complete */
 wait (NULL);
 printf ("Child Complete\n");
 printf("%d",pid);
 exit(0);
 }
}
The last situation in which processes are created applies only to the batch systems found on large mainframes. Here users
can submit batch jobs to the system (possibly remotely). When the operating system decides that it has the resources to run
another job, it creates a new process and runs the next job from the input queue in it.

UNIX System Call:
 fork system call creates new process
 exec system call used after a fork to replace the process’ memory space with a new
program

Process Control Block:
In operating system each process is represented by a process control block(PCB) or a
task control block. Its a data structure that physically represent a process in the
memory of a computer system. It contains many pieces of information associated with
a specific process that includes the following.

• Identifier: A unique identifier associated with this process, to distinguish it
 from all other processes.
• State: If the process is currently executing, it is in the running state.
• Priority: Priority level relative to other processes.
• Program counter: The address of the next instruction in the program to be
 executed.
• Memory pointers: Includes pointers to the program code and data associated
 with this process, plus any memory blocks shared with other processes.
• Context data: These are data that are present in registers in the processor
 while the process is executing.
• I/O status information: Includes outstanding I/O requests, I/O devices (e.g., tape
 drives) assigned to this process, a list of files in use by the process, and so on.
• Accounting information: May include the amount of processor time and clock

Page:20 Compiled by: Daya Ram Budhathoki

Fig1.2: Process Control Block

 time used, time limits, account numbers, and so on.

Process Termination:
After a process has been created, it starts running and does whatever its job is: After some time it will terminate due to one
of the following conditions.

1. Normal exit (voluntary).
2. Error exit (voluntary).
3. Fatal error (involuntary).
4. Killed by another process (involuntary).

Process States:
Each process may be in one of the following states:

● New: The process is being created.
● Running:Instructions are being executed.
● Waiting: The process is waiting for some event to occur (such as I/O completion or reception of a signal)
● Ready:The process is waiting to be assigned to a processor.
● Terminated: The process has finished execution.

Page:21 Compiled by: Daya Ram Budhathoki

Fig1.3: Process state Transition diagram

Implementation of Process:
Operating system maintains a table (an array of structure) known as process table with one entry per process to implement
the process. The entry contains detail about the process such as, process state, program counter, stack pointer, memory
allocation, the status of its open files, its accounting information, scheduling information and everything else about the
process that must be saved when the process is switched from running to ready or blocked state, so that it can be restarted
later as if it had never been stopped.

Process Management Memory Management File management

Register
program counter
Program status word
stack pointer
process state
priority
Scheduling parameter
Process ID
parent process
process group
Signals
Time when process started
CPU time used
Children's CPU time
Time of next alarm

Pointer to text segment
pinter to data segment
pinter to stack segment

Root directory
Working directory
File descriptors
USER ID
GROUP ID

Each I/O device class is associated with a location (often near the bottom of the memory) called the Interrupt Vector. It
contains the address of interrupt service procedure. Suppose that user process 3 is running when a disk interrupt occurs.
User process 3's program counter, program status word and possibly one or more registers are pushed onto the (current)
stack by the interrupt hardware. The computer then jumps to the address specified in the disk interrupt vector. That is all the
hardware does. From here on, it is up to the software in particular the interrupt service procedure.

Interrupt handling and scheduling are summarized below.
1. Hardware stack program counter etc.
2. Hardware loads new program counter from interrupt vector
3. Assembly languages procedures save registers.
4. Assembly language procedures sets up new stack.
5. C interrupt service runs typically reads and buffer input.
6. Scheduler decides which process is to run next.
7. C procedures returns to the assembly code.
8. Assembly language procedures starts up new current process.

Page:22 Compiled by: Daya Ram Budhathoki

Fig:The above points lists the Skeleton of what the lowest level of the operating system does when an interrupt
occurs.

Context Switching:
Switching the CPU to another
process requires performing a state
save of the current process and a
state restore restore of a different
process. This task is known as
context switch. When a context
switch occurs, the kernel saves the
the context of the old process in its
PCB and loads the saved context of
the new process scheduled to run.
Context switch time is pure
overhead, because the system does
no useful work while switching. Its
speed varies from machine to
machine, depending on the
memory speed, the number of
registers that must be copied etc.

Threads:
A thread is a basic unit of CPU utilization, it comprises a thread ID, a program counter, a register set, and a stack. It shares
with other threads belonging to the same process its code section, data section, and other operating system resources, such
as open files and signals. A traditional (or heavy weight) process has a single thread of control. If a process has multiple
thread of control, it can perform more than one task at a time. Fig below illustrate the difference between single threaded
process and a multi-threaded process.

Page:23 Compiled by: Daya Ram Budhathoki

Fig: CPU switch from one process to another

Thread simply enable us to split up a program into logically separate pieces and have the pieces run independently of
one another until they need to communicate. In a sense threads are a further level of object orientation for
multitasking system.

Multithreading:
Many software package that run on modern desktop pcs are multi-threaded. An application is implemented as a separate
process with several threads of control. A web browser might have one thread to display images or text while other thread
retrieves data from the network. A word-processor may have a thread for displaying graphics, another thread for reading the
character entered by user through the keyboard, and a third thread for performing spelling and grammar checking in the
background.

Why Multithreading:
In certain situations, a single application may be required to perform several similar task such as a web server accepts client
requests for web pages, images, sound, graphics etc. A busy web server may have several clients concurrently accessing it.
So if the web server runs on traditional single threaded process, it would be able to service only one client at a time. The
amount of time that the client might have to wait for its request to be serviced is enormous.

One solution of this problem can be thought by creation of new process. When the server receives a new request, it creates a
separate process to service that request. But this method is heavy weight. In fact this process creation method was common
before threads become popular. Process creation is time consuming and resource intensive. If the new process perform the
same task as the existing process, why incur all that overhead? It is generally more efficient for one process that contains
multiple threads to serve the same purpose. This approach would multithreaded the web server process. The server would
cerate a separate thread that would listen for clients requests. When a request is made, rather than creating another process,
it will create a separate thread to service the request.

Benefits of Multi-threading:
Responsiveness: Mutlithreaded interactive application continues to run even if part of it is blocked or performing a lengthy
operation, thereby increasing the responsiveness to the user.

Resource Sharing: By default, threads share the memory and the resources of the process to which they belong. It allows
an application to have several different threads of activity withing the same address space.

Economy:Allocating memory and resources for process creation is costly. Since thread shares the resources of the process
to which they belong, it is more economical to create and context switch threads. It is more time consuming to create and
manage process than threads.

Utilization of multiprocessor architecture: The benefits of multi threading can be greatly increased in multiprocessor
architecture, where threads may be running in parallel on different processors. Mutlithreading on a multi-CPU increases
concurrency.

Process VS Thread:

Process Thread

Page:24 Compiled by: Daya Ram Budhathoki

Heavy weight Light weight

Unit of Allocation
– Resources, privileges etc

Unit of Execution
– PC, SP, registers
PC—Program counter, SP—Stack pointer

 Inter-process communication is expensive: need to
 context switch
 Secure: one process cannot corrupt another process

 Inter-thread communication cheap: can use process
 memory and may not need to context switch
Not secure: a thread can write the memory used by
 another thread

Process are Typically independent Thread exist as subsets of a process

Process carry considerable state information. Multiple thread within a process share state as well as
memory and other resources.

Processes have separate address space Thread share their address space

processes interact only through system-provided inter-
process communication mechanisms.

Context switching between threads in the same process is
typically faster than context switching between processes.

Threads Model:

Page:25 Compiled by: Daya Ram Budhathoki
Fig: One to one Threading model

Interprocess Communication:

co-operating Process: A process is independent if it can't affect or be affected by another process. A
process is co-operating if it can affects other or be affected by the other process. Any process that
shares data with other process is called co-operating process. There are many reasons for providing an
environment for process co-operation.

1.Information sharing: Several users may be interested to access the same piece of information(for instance a shared file).
We must allow concurrent access to such information.

2.Computation Speedup: Breakup tasks into sub-tasks.

3.Modularity: construct a system in a modular fashion.

4.convenience:

co-operating process requires IPC. There are two fundamental ways of IPC.
a. Shared Memory
b. Message Passing

Page:26 Compiled by: Daya Ram Budhathoki

Fig: Many to one Fig:Many to Many

Shared Memory:
– Here a region of memory that is shared by co-operating process is established.
– Process can exchange the information by reading and writing data to the shared region.
– Shared memory allows maximum speed and convenience of communication as it can be done at the speed of memory

within the computer.
– System calls are required only to establish shared memory regions. Once shared memory is established no assistance

from the kernel is required,all access are treated as routine memory access.

Message Passing:
– communication takes place by means of messages exchanged between the co-operating process
– Message passing is useful for exchanging the smaller amount of data since no conflict need to be avoided.
– Easier to implement than shared memory.
– Slower than that of Shared memory as message passing system are typically implemented using system call which

requires more time consuming task of Kernel intervnetion.

Interprocess Communication:
Processes frequently needs to communicate with each other. For example in a shell pipeline, the output of the first process
must be passed to the second process and so on down the line. Thus there is a need for communication between the process,
preferably in a well-structured way not using the interrupts.

IPC enables one application to control another application, and for several applications to share the same data without

Page:27 Compiled by: Daya Ram Budhathoki

Fig: Communication Model a. Message Passing b. Shared Memory

interfering with one another. Inter-process communication (IPC) is a set of techniques for the exchange of data among
multiple threads in one or more processes. Processes may be running on one or more computers connected by a network.
IPC techniques are divided into methods for message passing, synchronization, shared memory, and remote procedure
calls (RPC).

Race Condition:

The situation where two or more processes are reading or writing some shared data & the final results depends on who runs
precisely when are called race conditions.

To see how interprocess communication works in practice, let us consider a simple but common example, a print spooler.
When a process wants to print a file, it enters the file name in a special spooler directory. Another process, the printer
daemon, periodically checks to see if there are any files to be printed, and if there are, it prints them and removes their
names from the directory.

Imagine that our spooler directory has a large number of slots, numbered 0, 1, 2, ..., each one capable of holding a file name.
Also imagine that there are two shared variables,
out: which points to the next file to be printed
in: which points to the next free slot in the directory.
 At a certain instant, slots 0 to 3 are empty (the files have already been printed) and slots 4 to 6 are full (with the names of
files to be printed). More or less simultaneously, processes A and B decide they want to queue a file for printing as shown in
the fig.

Process A reads in and stores the value, 7, in a local variable called next_free_slot. Just then a clock interrupt occurs and the
CPU decides that process A has run long enough, so it switches to process B. Process B also reads in, and also gets a 7, so it
stores the name of its file in slot 7 and updates in to be an 8. Then it goes off and does other things.

Eventually, process A runs again, starting from the place it left off last time. It looks at next_free_slot, finds a 7 there, and
writes its file name in slot 7, erasing the name that process B just put there. Then it computes next_free_slot + 1, which is 8,
and sets in to 8. The spooler directory is now internally consistent, so the printer daemon will not notice anything wrong,
but process B will never receive any output.

Spooling: Simultaneous peripheral operations online

Page:28 Compiled by: Daya Ram Budhathoki

Another Example for Race Condition:

When two or more concurrently running threads/processes access a shared data item or resources and
final results depends on the order of execution, we have race condition. Suppose we have two threads A
and B as shown below. Thread A increase the share variable count by 1 and Thread B decrease the
count by 1.

If the current value of Count is 10, both execution orders yield 10 because Count is increased by 1
followed by decreased by 1 for the former case, and Count is decreased by 1 followed by increased by
1 for the latter. However, if Count is not protected by mutual exclusion, we might get difference
results. Statements Count++ and Count-- may be translated to machine instructions as shown below:

If both statements are not protected, the execution of the instructions may be interleaved due to context
switching. More precisely, while thread A is in the middle of executing Count++, the system may
switch A out and let thread B run. Similarly, while thread B is in the middle of executing Count--, the
system may switch B out and let thread A run. Should this happen, we have a problem. The following
table shows the execution details. For each thread, this table shows the instruction executed and the
content of its register. Note that registers are part of a thread's environment and different threads have
different environments. Consequently, the modification of a register by a thread only affects the thread
itself and will not affect the registers of other threads. The last column shows the value of Count in
memory. Suppose thread A is running. After thread A executes its LOAD instruction, a context switch
switches thread A out and switches thread B in. Thus, thread B executes its three instructions, changing
the value of Count to 9. Then, the execution is switched back to thread A, which continues with the
remaining two instructions. Consequently, the value of Count is changed to 11!

Page:29 Compiled by: Daya Ram Budhathoki

The following shows the execution flow of executing thread B followed by thread A, and the result is
9!

This example shows that without mutual exclusion, the access to a shared data item may generate
different results if the execution order is altered. This is, of course, a race condition. This race
condition is due to no mutual exclusion.

Avoiding Race Conditions:

1. Critical Section:
To avoid race condition we need Mutual Exclusion. Mutual Exclusion is someway of making sure that if one process is
using a shared variable or file, the other processes will be excluded from doing the same things.

The difficulty above in the printer spooler occurs because process B started using one of the shared variables before process
A was finished with it.

That part of the program where the shared memory is accessed is called the critical region or critical section. If we could
arrange matters such that no two processes were ever in their critical regions at the same time, we could avoid race

Page:30 Compiled by: Daya Ram Budhathoki

conditions.
Although this requirement avoids race conditions, this is not sufficient for having parallel processes cooperate correctly and
efficiently using shared data.

(Rules for avoiding Race Condition) Solution to Critical section problem:
1. No two processes may be simultaneously inside their critical regions. (Mutual Exclusion)
2. No assumptions may be made about speeds or the number of CPUs.
3. No process running outside its critical region may block other processes.
4. No process should have to wait forever to enter its critical region.

Techniques for avoiding Race Condition:
1. Disabling Interrupts
2. Lock Variables
3. Strict Alteration
4. Peterson's Solution
5. TSL instruction
6. Sleep and Wakeup
7. Semaphores
8. Monitors
9. Message Passing

1.Disabling Interrupts:
The simplest solution is to have each process disable all interrupts just after entering its critical region and re-enable them

Page:31 Compiled by: Daya Ram Budhathoki

Fig:Mutual Exclusion using Critical Region

just before leaving it. With interrupts disabled, no clock interrupts can occur.

The CPU is only switched from process to process as a result of clock or other interrupts, after all, and with interrupts
turned off the CPU will not be switched to another process. Thus, once a process has disabled interrupts, it can examine and
update the shared memory without fear that any other process will intervene.

Disadvantages:
1. It is unattractive because it is unwise to give user processes the power to turn off interrupts. Suppose that one of them
did, and then never turned them on again?
2.Furthermore, if the system is a multiprocessor, with two or more CPUs, disabling interrupts affects only the CPU that
executed the disable instruction. The other ones will continue running and can access the shared memory.

Advantages:
 it is frequently convenient for the kernel itself to disable interrupts for a few instructions while it is updating variables or
lists. If an interrupt occurred while the list of ready processes, for example, was in an inconsistent state, race conditions
could occur.

2.Lock Variables
– a single, shared, (lock) variable, initially 0.
– When a process wants to enter its critical region, it first tests the lock.
– If the lock is 0, the process sets it to 1 and enters the critical region. If the lock is already 1, the process just waits until

it becomes 0. Thus, a 0 means that no process is in its critical region, and a 1 means that some process is in its critical
region.

Drawbacks:
Unfortunately, this idea contains exactly the same fatal flaw that we saw in the spooler directory. Suppose that one process
reads the lock and sees that it is 0. Before it can set the lock to 1, another process is scheduled, runs, and sets the lock to 1.
When the first process runs again, it will also set the lock to 1, and two processes will be in their critical regions at the same
time.

3.Strict Alteration:

while (TRUE){ while (TRUE) {
 while(turn != 0) /* loop* /; while(turn != 1) /* loop* /;
 critical_region(); critical_region();
 turn = 1; turn = 0;
 noncritical_region(); noncritical_region();
} }
 (a) (b)

 A proposed solution to the critical region problem. (a) Process 0. (b) Process 1. In both cases, be sure to note the
semicolons terminating the while statements.

Integer variable turn is initially 0.
It keeps track of whose turn it is to enter the critical region and examine or update the shared memory.

Page:32 Compiled by: Daya Ram Budhathoki

Initially, process 0 inspects turn, finds it to be 0, and enters its critical region. Process 1 also finds it to be 0 and therefore
sits in a tight loop continually testing turn to see when it becomes 1.

 Continuously testing a variable until some value appears is called busy waiting. It should usually be avoided, since it wastes
CPU time. Only when there is a reasonable expectation that the wait will be short is busy waiting used. A lock that uses
busy waiting is called a spin lock.

When process 0 leaves the critical region, it sets turn to 1, to allow process 1 to enter its critical region. This way no two
process can enters critical region simultaneously.

Drawbacks:
Taking turn is is not a good idea when one of the process is much slower than other. This situation requires that two
processes strictly alternate in entering their critical region.

Example:
● Process 0 finishes the critical region it sets turn to 1 to allow process 1 to enter critical region.
● Suppose that process 1 finishes its critical region quickly so both process are in their non critical region with turn

sets to 0.
● Process 0 executes its whole loop quickly, exiting its critical region & setting turn to 1. At this point turn is 1 and

both processes are executing in their noncritical regions.
● Suddenly, process 0 finishes its noncritical region and goes back to the top of its loop. Unfortunately, it is not

permitted to enter its critical region now since turn is 1 and process 1 is busy with its noncritical region.

This situation violates the condition 3 set above: No process running outside the critical region may block other process. In
fact the solution requires that the two processes strictly alternate in entering their critical region.

4.Peterson's Solution:

#define FALSE 0
#define TRUE 1
#define N 2 /* number of processes */
int turn; /* whose turn is it? */
int interested[N]; /* all values initially 0 (FALSE)*/
void enter_region(int process) /* process is 0 or 1 */
{
 int other; /* number of the other process */
 other = 1 - process; /* the opposite of process */
 interested[process] = TRUE; /* show that you are interested */
 turn = process; /* set flag */
 while (turn == process && interested[other] == TRUE) /* null statement */;
}
void leave_region(int process) /* process: who is leaving */
{
 interested[process] = FALSE; /* indicate departure from critical region */
}

 Peterson's solution for achieving mutual exclusion.

Initially neither process is in critical region. Now process 0 calls enter_region. It indicates its interest by setting its array
element and sets turn to 0. Since process 1 is not interested, enter_region returns immediately. If process 1 now calls

Page:33 Compiled by: Daya Ram Budhathoki

enter_region, it will hang there until interested[0] goes to FALSE, an event that only happens when process 0 calls
leave_region to exit the critical region.
Now consider the case that both processes call enter_region almost simultaneously. Both will store their process number in
turn. Whichever store is done last is the one that counts; the first one is lost. Suppose that process 1 stores last, so turn is 1.
When both processes come to the while statement, process 0 executes it zero times and enters its critical region. Process 1
loops and does not enter its critical region.

5. The TSL Instruction
TSL RX,LOCK
(Test and Set Lock) that works as follows: it reads the contents of the memory word LOCK into register RX and then stores
a nonzero value at the memory address LOCK. The operations of reading the word and storing into it are guaranteed to be
indivisibleno other processor can access the memory word until the instruction is finished. The CPU executing the TSL
instruction locks the memory bus to prohibit other CPUs from accessing memory until it is done.

enter_region:
 TSL REGISTER,LOCK |copy LOCK to register and set LOCK to 1
 CMP REGISTER,#0 |was LOCK zero?
 JNE enter_region |if it was non zero, LOCK was set, so loop
 RET |return to caller; critical region entered
leave_region:
 MOVE LOCK, #0 |store a 0 in LOCK
 RET |return to caller

One solution to the critical region problem is now straightforward. Before entering its critical region, a process calls
enter_region, which does busy waiting until the lock is free; then it acquires the lock and returns. After the critical region
the process calls leave_region, which stores a 0 in LOCK. As with all solutions based on critical regions, the processes must
call enter_region and leave_region at the correct times for the method to work. If a process cheats, the mutual exclusion will
fail.

Problems with mutual Exclusion:
The above techniques achieves the mutual exclusion using busy waiting. Here while one process is busy updating shared
memory in its critical region, no other process will enter its critical region and cause trouble.
Mutual Exclusion with busy waiting just check to see if the entry is allowed when a process wants to enter its critical region,
if the entry is not allowed the process just sits in a tight loop waiting until it is

1. This approach waste CPU time
2. There can be an unexpected problem called priority inversion problem.

Priority Inversion Problem:
Consider a computer with two processes, H, with high priority and L, with low priority, which share a critical region. The
scheduling rules are such that H is run whenever it is in ready state. At a certain moment, with L in its critical region, H
becomes ready to run (e.g., an I/O operation completes). H now begins busy waiting, but since L is never scheduled while H
is running, L never gets the chance to leave its critical region, so H loops forever. This situation is sometimes referred to as
the priority inversion problem.

Page:34 Compiled by: Daya Ram Budhathoki

Let us now look at some IPC primitives that blocks instead of wasting CPU time when they are not allowed to enter
their critical regions. Using blocking constructs greatly improves the CPU utilization

Sleep and Wakeup:
Sleep and wakeup are system calls that blocks process instead of wasting CPU time when they are not allowed to enter their
critical region. sleep is a system call that causes the caller to block, that is, be suspended until another process wakes it up.
The wakeup call has one parameter, the process to be awakened.

Examples to use Sleep and Wakeup primitives:

Producer-consumer problem (Bounded Buffer):
Two processes share a common, fixed-size buffer. One of them, the producer, puts information into the buffer, and the other
one, the consumer, takes it out.
Trouble arises when

1. The producer wants to put a new data in the buffer, but buffer is already full.
Solution: Producer goes to sleep and to be awakened when the consumer has removed data.

2. The consumer wants to remove data the buffer but buffer is already empty.
Solution: Consumer goes to sleep until the producer puts some data in buffer and wakes consumer up.

#define N 100 /* number of slots in the buffer */
int count = 0; /* number of items in the buffer */
void producer(void)
{
 int item;
 while (TRUE){ /* repeat forever */
 item = produce_item(); /* generate next item */
 if (count == N) sleep(); /* if buffer is full, go to sleep */
 insert_item(item); /* put item in buffer */
 count = count + 1; /* increment count of items in buffer */
 if (count == 1) wakeup(consumer); /* was buffer empty? */
 }
}
void consumer(void)
{
 int item;
 while (TRUE){ /* repeat forever */
 if (count == 0) sleep(); /* if buffer is empty, got to sleep */
 item = remove_item(); /* take item out of buffer */
 count = count - 1; /* decrement count of items in
 buffer */
 if (count ==N - 1) wakeup(producer); /* was buffer full? */
 consume_item(item); /* print item */
 }
}

Fig:The producer-consumer problem with a fatal race condition.
N Size of Buffer→
Count--> a variable to keep track of the no. of items in the buffer.
Producers code:
The producers code is first test to see if count is N. If it is, the producer will go to sleep ; if it is not the producer will add an
item and increment count.

Page:35 Compiled by: Daya Ram Budhathoki

Consumer code:
It is similar as of producer. First test count to see if it is 0. If it is, go to sleep; if it nonzero remove an item and decrement
the counter.
Each of the process also tests to see if the other should be awakened and if so wakes it up.
This approach sounds simple enough, but it leads to the same kinds of race conditions as we saw in the spooler directory.

1. The buffer is empty and the consumer has just read count to see if it is 0.
2. At that instant, the scheduler decides to stop running the consumer temporarily and start running the producer.

(Consumer is interrupted and producer resumed)
3. The producer creates an item, puts it into the buffer, and increases count.
4. Because the buffer was empty prior to the last addition (count was just 0), the producer tries to wake up the

consumer.
5. Unfortunately, the consumer is not yet logically asleep, so the wakeup signal is lost.
6. When the consumer next runs, it will test the value of count it previously read, find it to be 0, and go to sleep.
7. Sooner or later the producer will fill up the buffer and also go to sleep. Both will sleep forever.

The essence of the problem here is that a wakeup sent to a process that is not (yet) sleeping is lost. For temporary solution
we can use wakeup waiting bit to prevent wakeup signal from getting lost, but it can't work for more processes.

Semaphore:
In computer science, a semaphore is a protected variable or abstract data type that constitutes a classic method of controlling
access by several processes to a common resource in a parallel programming environment. A semaphore generally takes one
of two forms: binary and counting. A binary semaphore is a simple "true/false" (locked/unlocked) flag that controls access
to a single resource. A counting semaphore is a counter for a set of available resources. Either semaphore type may be
employed to prevent a race condition.
Semaphore operations:
P or Down, or Wait: P stands for proberen for "to test
V or Up or Signal: Dutch words. V stands for verhogen ("increase"

wait(sem) -- decrement the semaphore value. if negative, suspend the process and place in queue. (Also referred to as P(),
down in literature.)

signal(sem) -- increment the semaphore value, allow the first process in the queue to continue. (Also referred to as V(), up in
literature.)

#define N 100 /* number of slots in the buffer */
typedef int semaphore; /* semaphores are a special kind of int */
semaphore mutex = 1; /* controls access to critical region */
semaphore empty = N; /* counts empty buffer slots */
semaphore full = 0; /* counts full buffer slots */
void producer(void)
{
 int item;
 while (TRUE){ /* TRUE is the constant 1 */
 item = produce_item(); /* generate something to put in buffer */
 down(&empty); /* decrement empty count */
 down(&mutex); /* enter critical region */
 insert_item(item); /* put new item in buffer */
 up(&mutex); /* leave critical region */

Page:36 Compiled by: Daya Ram Budhathoki

http://en.wikipedia.org/wiki/Dutch_language

 up(&full); /* increment count of full slots */
 }
}
void consumer(void)
{
 int item;
 while (TRUE){ /* infinite loop */
 down(&full); /* decrement full count */
 down(&mutex); /* enter critical region */
 item = remove_item(); /* take item from buffer */
 up(&mutex); /* leave critical region */
 up(&empty); /* increment count of empty slots */
 consume_item(item); /* do something with the item */
 }
}

Fig: The producer-consumer problem using semaphores.

This solution uses three semaphore.
1. Full: For counting the number of slots that are full, initially 0
2. Empty: For counting the number of slots that are empty, initially equal to the no. of slots in the buffer.
3. Mutex: To make sure that the producer and consumer do not access the buffer at the same time, initially 1.

Here in this example seamphores are used in two different ways.
1.For mutual Exclusion: The mutex semaphore is for mutual exclusion. It is designed to guarantee that only one process at
at time will be reading or writing the buffer and the associated variable.
2.For synchronization: The full and empty semaphores are needed to guarantee that certain certain event sequences do or
do not occur. In this case, they ensure that producer stops running when the buffer is full and the consumer stops running
when it is empty.

Advantages of semaphores:
• Processes do not busy wait while waiting for resources. While waiting, they are in a ``suspended'' state, allowing

the CPU to perform other chores.

• Works on (shared memory) multiprocessor systems.

• User controls synchronization.

Disadvantages of semaphores:
•can only be invoked by processes--not interrupt service routines because interrupt routines cannot block
•user controls synchronization--could mess up.

Monitors:
With semaphores IPC seems easy, but Suppose that the two downs in the producer's code were reversed in order, so mutex
was decremented before empty instead of after it. If the buffer were completely full, the producer would block, with mutex
set to 0. Consequently, the next time the consumer tried to access the buffer, it would do a down on mutex, now 0, and block
too. Both processes would stay blocked forever and no more work would ever be done. This unfortunate situation is called a

Page:37 Compiled by: Daya Ram Budhathoki

deadlock.

● A higher level synchronization primitive.
● A monitor is a collection of procedures, variables, and data structures that are all grouped together in a special

kind of module or package.
● Processes may call the procedures in a monitor whenever they want to, but they cannot directly access the monitor's

internal data structures from procedures declared outside the monitor.
● This rule, which is common in modern object-oriented languages such as Java, was relatively unusual for its time,
● Figure below illustrates a monitor written in an imaginary language, Pidgin Pascal.

monitor example
 integer i;
 condition c;
 procedure producer (x);
 .
 .
 .
 end;
 procedure consumer (x);
 .
 .
 .
 end;
end monitor;

Fig: A monitor

Message Passing:
Message passing in computer science, is a form of communication used in parallel computing, object-oriented
programming, and interprocess communication. In this model processes or objects can send and receive messages
(comprising zero or more bytes, complex data structures, or even segments of code) to other processes. By waiting for
messages, processes can also synchronize.

Message passing is a method of communication where messages are sent from a sender to one or more recipients. Forms of
messages include (remote) method invocation, signals, and data packets. When designing a message passing system
several choices are made:

• Whether messages are transferred reliably

• Whether messages are guaranteed to be delivered in order

• Whether messages are passed one-to-one, one-to-many (multicasting or broadcasting), or many-to-one (client–
server).

• Whether communication is synchronous or asynchronous.

This method of interprocess communication uses two primitives, send and receive, which, like semaphores and unlike
monitors, are system calls rather than language constructs. As such, they can easily be put into library procedures, such as

Page:38 Compiled by: Daya Ram Budhathoki

 send(destination, &message);
and

 receive(source, &message);

Synchronous message passing systems requires the sender and receiver to wait for each other to transfer the message

Asynchronous message passing systems deliver a message from sender to receiver, without waiting for the receiver to be
ready.

Page:39 Compiled by: Daya Ram Budhathoki

Chapter 4: Scheduling:
In a multiprogramming system, frequently multiple process competes for the CPU at the same time. When two or more
process are simultaneously in the ready state a choice has to be made which process is to run next. This part of the OS is
called Scheduler and the algorithm is called scheduling algorithm.

Process Behavior:

Fig: . Bursts of CPU usage alternate with periods of waiting for I/O. (a) A CPU-bound process. (b) An I/O-bound process.
CPU Bound(or compute bound)
– tend to have long CPU burst
– example: Matrix multiplication
I/O Bound:
– tend to have short CPU burst
– example: Firefox

Scheduling Criteria:
Many criteria have been suggested for comparison of CPU scheduling algorithms.

CPU utilization: we have to keep the CPU as busy as possible. It may range from 0 to 100%. In a real system it should
range from 40 – 90 % for lightly and heavily loaded system.

Throughput: It is the measure of work in terms of number of process completed per unit time. For long process this rate
may be 1 process per hour, for short transaction, throughput may be 10 process per second.

Turnaround Time: It is the sum of time periods spent in waiting to get into memory, waiting in ready queue, execution on
the CPU and doing I/O. The interval form the time of submission of a process to the time of completion is the turnaround
time. Waiting time plus the service time.
Turnaround time= Time of completion of job - Time of submission of job. (waiting time + service time or burst time)

Waiting time: its the sum of periods waiting in the ready queue.

Response time: in interactive system the turnaround time is not the best criteria. Response time is the amount of time it
takes to start responding, not the time taken to output that response.

Page:40 Compiled by: Daya Ram Budhathoki

Types of Scheduling:
1.Preemptive Scheduling
2.Non preemptive Scheduling

In preemptive scheduling we preempt the currently executing process.
In non preemptive we allow the current process to finish its CPU burst time.

A scheduling discipline is non-preemptive if, once a process has been given the CPU, the CPU cannot be taken away
from that process.
Following are some characteristics of nonpreemptive scheduling

1. In nonpreemptive system, short jobs are made to wait by longer jobs but the overall treatment of all processes is
fair.

2. In nonpreemptive system, response times are more predictable because incoming high priority jobs can not displace
waiting jobs.

3. In nonpreemptive scheduling, a scheduler executes jobs in the following two situations.
a. When a process switches from running state to the waiting state.
b. When a process terminates.

Preemptive Scheduling

A scheduling discipline is preemptive if, once a process has been given the CPU can taken away. The strategy of
allowing processes that are logically runable to be temporarily suspended is called Preemptive Scheduling and it is contrast
to the "run to completion" method.

Scheduling Algorithms:

1. First come First Serve:
FCFS is the simplest non-preemptive algorithm. Processes are assigned the CPU in the order they request it. That is the
process that requests the CPU first is allocated the CPU first. The implementation of FCFS is policy is managed with a
FIFO(First in first out) queue. When the first job enters the system from the outside in the morning, it is started immediately
and allowed to run as long as it wants to. As other jobs come in, they are put onto the end of the queue. When the running
process blocks, the first process on the queue is run next. When a blocked process becomes ready, like a newly arrived job, it
is put on the end of the queue.

Advantages:
1.Easy to understand and program. With this algorithm a single linked list keeps track of all ready processes.
2.Equally fair.,
3.Suitable specially for Batch Operating system.

Page:41 Compiled by: Daya Ram Budhathoki

Disadvantages:
1.FCFS is not suitable for time-sharing systems where it is important that each user should get the CPU for an equal amount
of arrival time.

Consider the following set of processes having their burst time mentioned in milliseconds. CPU burst time indicates that for
how much time, the process needs the cpu.

Process Burst Time

P1 24

P2 3

P3 3

Calculate the average waiting time if the processes arrive in the order of:
a). P1, P2, P3
b). P2, P3, P1

a. The processes arrive the order P1, P2, P3. Let us assume they arrive in the same time at 0 ms in the system. We get the
following gantt chart.

Waiting time for P1= 0ms , for P2 = 24 ms for P3 = 27ms
Avg waiting time: (0+24+27)/3= 17

b.) If the process arrive in the order P2,P3, P1

Average waiting time: (0+3+6)/3=3. Average waiting time vary substantially if the process CPU burst time vary greatly.

2. Shortest Job First:
When several equally important jobs are sitting in the i/p queue waiting to be started, the scheduler picks the shortest jobs
first.

A B C D

Original order: (Turn Around time)

Here we have four jobs A,B,C ,D with run times of 8 , 4, 4 and 4 minutes respectively. By running them in that order the
turnaround time for A is 8 minutes, for B 12 minutes, for C 16 minutes and for D 20 minutes for an average of 14 minutes.

Page:42 Compiled by: Daya Ram Budhathoki

P1 P2 P3
0 27 3024

0 3

P1P2 P3
6 30

8 4 4 4

Now let us consider running these jobs in the shortest Job First.

B C D and then A.

the turnaround times are now , 4, 8, 12 and 20 minutes giving the average of 11. Shortest job first is probably optimal.
Consider the four jobs with run times of a, b,c,d. The first job finished at a, the second at a+b and so on. So the mean
turnaround time is (4a+3b+2c+d)/4. It is clear that the a contributes more to the average than any other. So it should be the
shortest one.

The disadvantages of this algorithm is the problem to know the length of time for which CPU is needed by a process. The
SJF is optimal when all the jobs are available simultaneously.

The SJF is either preemptive or non preemptive. Preemptive SJF scheduling is sometimes called Shortest Remaining Time
First scheduling. With this scheduling algorithms the scheduler always chooses the process whose remaining run time is
shortest.
When a new job arrives its total time is compared to the current process remaining time. If the new job needs less time to
finish than the current process, the current process is suspended and the new job is started. This scheme allows new
short jobs to get good service.

Q). Calculate the average waiting time in 1). Preemptive SJF and 2). Non Preemptive SJF
Note: SJF Default: (Non Preemptive)

Process Arrival Time Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

a. Preemptive SJF (Shortest Remaining Time First):

At t=0ms only one process P1 is in the system, whose burst time is 8ms; starts its execution. After 1ms i.e., at t=1, new
process P2 (Burst time= 4ms) arrives in the ready queue. Since its burst time is less than the remaining burst time of P1
(7ms) P1 is preempted and execution of P2 is started.
Again at t=2, a new process P3 arrive in the ready queue but its burst time (9ms) is larger than remaining burst time of
currently running process (P2 3ms). So P2 is not preempted and continues its execution. Again at t=3 , new process P4
(burst time 5ms) arrives . Again for same reason P2 is not preempted until its execution is completed.

Waiting time of P1: 0ms + (10 – 1)ms = 9ms
Waiting time of P2: 1ms – 1ms = 0ms
Waiting time of P3: 17ms – 2ms = 15ms
Waiting time of P4: 5ms – 3ms = 2ms

Page:43 Compiled by: Daya Ram Budhathoki

Avg waiting time: (9+0+15+2)/4 = 6.5ms

Non-preemptive SJF:

Since its non-preemptive process is not preempted until it finish its execution.
Waiting time for P1: 0ms
Waiting time for P2: (8-1)ms = 7ms
Waiting time for P3: (17 – 2) ms = 15ms
Waiting time for P4: (12 – 3)ms = 9ms

Average waiting time: (0+7+15+9)/4 = 7.75ms

3. Round-Robin Scheduling Algorithms:

•One of the oldest, simplest, fairest and most widely used algorithm is round robin (RR).

•In the round robin scheduling, processes are dispatched in a FIFO manner but are given a limited amount of CPU time
called a time-slice or a quantum.

•If a process does not complete before its CPU-time expires, the CPU is preempted and given to the next process waiting in
a queue. The preempted process is then placed at the back of the ready list.

•If the the process has blocked or finished before the quantum has elapsed the CPU switching is done.

•Round Robin Scheduling is preemptive (at the end of time-slice) therefore it is effective in time-sharing environments in
which the system needs to guarantee reasonable response times for interactive users.

•The only interesting issue with round robin scheme is the length of the quantum. Setting the quantum too short causes too
many context switches and lower the CPU efficiency. On the other hand, setting the quantum too long may cause poor
response time and approximates FCFS.

•In any event, the average waiting time under round robin scheduling is on quite long.

Consider the following set of processes that arrives at time 0 ms.

Process Burst Time

P1 20

P2 3

P3 4

If we use time quantum of 4ms then calculate the average waiting time using R-R scheduling.

Page:44 Compiled by: Daya Ram Budhathoki

According to R-R scheduling processes are executed in FCFS order. So, firstly P1(burst time=20ms) is executed but after
4ms it is preempted and new process P2 (Burst time = 3ms) starts its execution whose execution is completed before the
time quantum. Then next process P3 (Burst time=4ms) starts its execution and finally remaining part of P1 gets executed
with time quantum of 4ms.

Waiting time of Process P1: 0ms + (11 – 4)ms = 7ms
Waiting time of Process P2: 4ms
Waiting time of Process P3: 7ms

Average Waiting time: (7+4+7)/3=6ms

4. Priority Scheduling:
A priority is associated with each process, and the CPU is allocated to the process with the highest priority. Equal priority
processes are scheduled in the FCFS order.

Assigning priority:
1.To prevent high priority process from running indefinitely the scheduler may decrease the priority of the currently running
process at each clock interrupt. If this causes its priority to drop below that of the next highest process, a process switch
occurs.
2.Each process may be assigned a maximum time quantum that is allowed to run. When this quantum is used up, the next
highest priority process is given a chance to run.

Priorities can be assigned statically or dynamically. For UNIX system there is a command nice for assigning static priority.
It is often convenient to group processes into priority classes and use priority scheduling among the classes but round-robin
scheduling within each class.

Problems in Priority Scheduling:
Starvation:
Low priority process may never execute.
Solution: Aging: As time progress increase the priority of Process.

Page:45 Compiled by: Daya Ram Budhathoki

Fig: A scheduling algo. with four Priority classes

Multilevel Queue Scheduling:
In this scheduling processes are classified into different groups. A common example may be foreground(or Interactive
processes) or background (or batch processes).

Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

Let us look at an example of a multilevel queue scheduling algorithm with five queues, listed below in the order of priority.
1.System processes
2.Interactive processes
3.Interactive editing processes
4.Batch processes
5.Student processes
Each queue has absolute priority over lower priority queues. No processes in the batch queue, for example could run unless
the queue for System processes , interactive processes and interactive editing processes were all empty. If an interactive
editing process enters the ready queue while a batch process was running the batch process would be preempted.
Another possibility is to time slice between the queues. For instance foreground queue can be given 80% of the CPU time
for RR scheduling among its processes, whereas the background receives 20% of the CPU time.

Guaranteed Scheduling:
•Make real promises to the users about performance.
•If there are n users logged in while you are working, you will receive about 1 /n of the CPU power.
•Similarly, on a single-user system with n processes running, all things being equal, each one should get 1 /n of the CPU
cycles.
•To make good on this promise, the system must keep track of how much CPU each process has had since its creation.
•CPU Time entitled= (Time Since Creation)/n
•Then compute the ratio of Actual CPU time consumed to the CPU time entitled.
•A ratio of 0.5 means that a process has only had half of what it should have had, and a ratio of 2.0 means that a process has

Page:46 Compiled by: Daya Ram Budhathoki

had twice as much as it was entitled to.
•The algorithm is then to run the process with the lowest ratio until its ratio has moved above its closest competitor.

Lottery Scheduling:
Lottery Scheduling is a probabilistic scheduling algorithm for processes in an operating system.
Processes are each assigned some number of lottery tickets for various system resources such as CPU time.;and the
scheduler draws a random ticket to select the next process. The distribution of tickets need not be uniform; granting a
process more tickets provides it a relative higher chance of selection. This technique can be used to approximate other
scheduling algorithms, such as Shortest job next and Fair-share scheduling.

Lottery scheduling solves the problem of starvation. Giving each process at least one lottery ticket guarantees that it has
non-zero probability of being selected at each scheduling operation.

More important process can be given extra tickets to increase their odd of winning. If there are 100 tickets outstanding, &
one process holds 20 of them it will have 20% chance of winning each lottery. In the long run it will get 20% of the CPU. A
process holding a fraction f of the tickets will get about a fraction of the resource in questions.

Two-Level Scheduling:
Performs process scheduling that involves swapped out processes. Two-level scheduling is needed when memory is too
small to hold all the ready processes .
Consider this problem: A system contains 50 running processes all with equal priority. However, the system's memory can
only hold 10 processes in memory simultaneously. Therefore, there will always be 40 processes swapped out written on
virtual memory on the hard disk
It uses two different schedulers, one lower-level scheduler which can only select among those processes in memory to run.
That scheduler could be a Round-robin scheduler. The other scheduler is the higher-level scheduler whose only concern is to
swap in and swap out processes from memory. It does its scheduling much less often than the lower-level scheduler since

swapping takes so much time. the higher-level scheduler selects among those processes in memory that have
run for a long time and swaps them out

Scheduling in Real Time System:
Time is crucial and plays an essential role.
eg. the computer in a compact disc player gets the bits as they come off the drive and must convert them into music with a
very tight time interval. If the calculation takes too long the music sounds peculiar. Other example includes
– Auto pilot in Aircraft
– Robot control in automated factory.
– Patient monitoringin Factory. (ICU)

Two types:
1. Hard Real Time system: There are absolute deadline that must be met.
2. Soft Real Time system: Missing an occasional deadline is undesirable but nevertheless tolerable.

In both cases real time behavior is achieved by dividing the program into a no. of processes, each of whose behavior is
predictable & known in advance. These processes are short lived and can run to completion. Its the job of schedulers to
schedule the process in such a way that all deadlines are met.

If there are m periodic events and event i occurs with period Pi and requires Ci seconds of CPU time to handle each event,
then the load can only be handled if

Page:47 Compiled by: Daya Ram Budhathoki

A real-time system that meets this criteria is said to be schedulable.

Policy VS Mechanism:
The separation of mechanism and policy[1] is a design principle in computer science. It states that mechanisms (those parts
of a system implementation that control the authorization of operations and the allocation of resources) should not dictate
(or overly restrict) the policies according to which decisions are made about which operations to authorize, and

● All the processes in the system belong to different users and are thus competing for the CPU.
● sometimes it happens that one process has many children running under its control. For example, a database

management system process may have many children. Each child might be working on a different request, or each
one might have some specific function to perform (query parsing, disk access, etc.)

● Unfortunately, none of the schedulers discussed above accept any input from user processes about scheduling
decisions. As a result, the scheduler rarely makes the best choice.

● The solution to this problem is to separate the scheduling mechanism from the scheduling policy.
● What this means is that the scheduling algorithm is parameterized in some way, but the parameters can be filled in

by user processes.
● Let us consider the database example once again. Suppose that the kernel uses a priority scheduling algorithm but

provides a system call by which a process can set (and change) the priorities of its children. In this way the parent
can control in detail how its children are scheduled, even though it does not do the scheduling itself. Here the
mechanism is in the kernel but policy is set by a user process.

Page:48 Compiled by: Daya Ram Budhathoki

Chapter:6 Input/Output:
Introduction, Principals of I/O hardware: I/O devices, device controllers, memory – mapped I/O, DMA
(Direct Memory Access), Principles of I/O software: Polled I/O versus Interrupt driven I/O, Character
User Interface and Graphical User Interface, Goals of I/O software, device drivers, device independent
I/O software, Disk, disk hardware arm scheduling algorithms, RAID (Redundant Array of Inexpensive
Disks)

What about I/O?
• Without I/O, computers are useless (disembodied brains?)
• But… thousands of devices, each slightly different
• How can we standardize the interfaces to these devices?
• Devices unreliable: media failures and transmission errors
• How can we make them reliable???
• Devices unpredictable and/or slow
• How can we manage them if we don’t know what they will do or how they will perform?

Some operational parameters:
Byte/Block

Page:49 Compiled by: Daya Ram Budhathoki

Some devices provide single byte at a time (e.g. keyboard)
Others provide whole blocks (e.g. disks, networks, etc)
Sequential/Random
Some devices must be accessed sequentially (e.g. tape)
Others can be accessed randomly (e.g. disk, cd, etc.)

Polling/Interrupts
Some devices require continual monitoring
Others generate interrupts when they need service

I/O devices can be roughly divided into two categories: block devices and character devices. A block device is one that
stores information in fixed-size blocks, each one with its own address. Common block sizes range from 512 bytes to 32,768
bytes. The essential property of a block device is that it is possible to read or write each block independently of all the other
ones. Disks are the most common block devices.

The other type of I/O device is the character device. A character device delivers or accepts a stream of characters, without
regard to any block structure. It is not addressable and does not have any seek operation. Printers, network interfaces, mice
(for pointing), rats (for psychology lab experiments), and most other devices that are not disk-like can be seen as character
devices.

Block Devices: e.g. disk drives, tape drives, DVD-ROM
Access blocks of data
Commands include open() , read() , write() , seek()
Raw I/O or file-system access
Memory-mapped file access possible

Character Devices: e.g. keyboards, mice, serial ports, some USB devices
Single characters at a time
Commands include get() , put()
Libraries layered on top allow line editing

Network Devices: e.g. Ethernet, Wireless, Bluetooth
Different enough from block/character to have own interface
Unix and Windows include socket interface
Separates network protocol from network operation
Includes select() functionality
Usage: pipes, FIFOs, streams, queues, mailboxes

Device Controllers:
A device controller is a hardware unit which is attached with the input/output bus of the computer and provides a hardware
interface between the computer and the input/output devices. On one side it knows how to communicate with input/output
devices and on the other side it knows how to communicate with the computer system though input/output bus. A device
controller usually can control several input/output devices.

Page:50 Compiled by: Daya Ram Budhathoki

Typically the controller is on a card (eg. LAN card, USB card etc). Device Controller play an important role in order to
operate that device. It's just like a bridge between device and operating system.

Most controllers have DMA(Direct Memory Access) capability, that means they can directly read/write memory in the
system. A controller without DMA capability provide or accept the data, one byte or word at a time; and the processor takes
care of storing it, in memory or reading it from the memory. DMA controllers can transfer data much faster than non-DMA
controllers. Presently all controllers have DMA capability.

DMA is a memory-to-device communication method that by passes the CPU.

Memory-mapped Input/Output:
Each controller has a few registers that are used for communicating with the CPU. By writing into these registers, the
operating system can command the device to deliver data, accept data, switch itself on or off, or otherwise perform some
action. By reading from these registers, the operating system can learn what the device's state is, whether it is prepared to
accept a new command, and so on.
In addition to the control registers, many devices have a data buffer that the operating system can read and write. For
example, a common way for computers to display pixels on the screen is to have a video RAM, which is basically just a
data buffer, available for programs or the operating system to write into.
There are two alternatives that the CPU communicates with the control registers and the device data buffers.

Port-mapped I/O :
each control register is assigned an I/O port number, an 8- or 16-bit integer. Using a special I/O instruction such as

IN REG,PORT

the CPU can read in control register PORT and store the result in CPU register REG. Similarly, using

OUT PORT,REG

the CPU can write the contents of REG to a control register. Most early computers, including nearly all mainframes, such as
the IBM 360 and all of its successors, worked this way.

In this scheme, the address spaces for memory and I/O are different, as shown in Fig. (a).Port-mapped I/O uses a special

Page:51 Compiled by: Daya Ram Budhathoki

Fig: A model for connecting the CPU, memory, controllers, and I/O devices

class of CPU instructions specifically for performing I/O.

On other computers, I/O registers are part of the regular memory address space, as shown in Fig.(b). This scheme is called
memory-mapped I/O, and was introduced with the PDP-11 minicomputer.Memory-mapped I/O (not to be confused with
memory-mapped file I/O) uses the same address bus to address both memory and I/O devices, and the CPU instructions
used to access the memory are also used for accessing devices. In order to accommodate the I/O devices, areas of the CPU's
addressable space must be reserved for I/O.

DMA: (Direct Memory Access)
Short for direct memory access, a technique for transferring data from main memory to a device without passing it through
the CPU. Computers that have DMA channels can transfer data to and from devices much more quickly than computers
without a DMA channel can. This is useful for making quick backups and for real-time applications.
Direct Memory Access (DMA) is a method of allowing data to be moved from one location to another in a computer without
intervention from the central processor (CPU).

First the CPU programs the DMA controller by setting its registers so it knows what to transfer where (step 1 in Fig.). It also
issues a command to the disk controller telling it to read data from the disk into its internal buffer and verify the checksum.
When valid data are in the disk controller's buffer, DMA can begin.
The DMA controller initiates the transfer by issuing a read request over the bus to the disk controller (step 2). This read
request looks like any other read request, and the disk controller does not know or care whether it came from the CPU or
from a DMA controller. Typically, the memory address to write to is on the address lines of the bus so when the disk
controller fetches the next word from its internal buffer, it knows where to write it. The write to memory is another standard

Page:52 Compiled by: Daya Ram Budhathoki

Fig:(a) Separate I/O and memory space. (b) Memory-mapped I/O. (c) Hybrid.

http://en.wikipedia.org/wiki/Address_bus
http://en.wikipedia.org/wiki/Memory-mapped_file

bus cycle (step 3). When the write is complete, the disk controller sends an acknowledgement signal to the disk controller,
also over the bus (step 4). The DMA controller then increments the memory address to use and decrements the byte count. If
the byte count is still greater than 0, steps 2 through 4 are repeated until the count reaches 0. At this point the controller
causes an interrupt. When the operating system starts up, it does not have to copy the block to memory; it is already there.

Layers of the I/O software system:

Fig. Layers of the I/O system and the main functions of each layer.

The arrows in fig above show the flow of control. When a user program tries to read a block from a file, for example, the
operating system is invoked to carry out the call. The device-independent software looks for it in the buffer cache, for
example. If the needed block is not there, it calls the device driver to issue the request to the hardware to go get it from the
disk. The process is then blocked until the disk operation has been completed.
When the disk is finished, the hardware generates an interrupt. The interrupt handler is run to discover what has happened,
that is, which device wants attention right now. It then extracts the status from the device and wakes up the sleeping process
to finish off the I/O request and let the user process continue.

Device Driver:
In computing, a device driver or software driver is a computer program allowing higher-level computer programs to interact
with a hardware device.
A driver typically communicates with the device through the computer bus or communications subsystem to which the

Page:53 Compiled by: Daya Ram Budhathoki

hardware connects. When a calling program invokes a routine in the driver, the driver issues commands to the device. Once
the device sends data back to the driver, the driver may invoke routines in the original calling program. Drivers are
hardware-dependent and operating-system-specific. They usually provide the interrupt handling required for any necessary
asynchronous time-dependent hardware interface.

Each device controller has registers used to give it commands or to read out its status or both. The number of registers and
the nature of the commands vary radically from device to device. For example, a mouse driver has to accept information
from the mouse telling how far it has moved and which buttons are currently depressed. In contrast, a disk driver has to
know about sectors, tracks, cylinders, heads, arm motion, motor drives, head settling times, and all the other mechanics of
making the disk work properly. Obviously, these drivers will be very different.

Thus, each I/O device attached to a computer needs some device-specific code for controlling it. This code, called the
device driver, is generally written by the device's manufacturer and delivered along with the device on a CD-ROM. Since
each operating system needs its own drivers, device manufacturers commonly supply drivers for several popular operating
systems.

Each device driver normally handles one device type, or one class of closely related devices. For example, it would
probably be a good idea to have a single mouse driver, even if the system supports several different brands of mice. As
another example, a disk driver can usually handle multiple disks of different sizes and different speeds, and perhaps a CD-
ROM as well. On the other hand, a mouse and a disk are so different that different drivers are necessary.

Ways to do INPUT/OUTPUT:
There are three fundamentally different ways to do I/O.

1. Programmed I/O
2. Interrupt-driven
3. Direct Memory access

 . . .

Page:54 Compiled by: Daya Ram Budhathoki

BUS

Device

CPU Memory I/O

DMA

Programmed I/O
The processor issues an I/O command, on behalf of a process, to an I/O module; that process then busy waits for the
operation to be completed before proceeding.

When the processor is executing a program and encounters an instruction relating to input/output, it executes that instruction
by issuing a command to the appropriate input/output module. With the programmed input/output, the input/output module
will perform the required action and then set the appropriate bits in the input/output status register. The input/output module
takes no further action to alert the processor. In particular it doesn't interrupt the processor. Thus, it is the responsibility of
the processor to check the status of the input/output module periodically, until it finds that the operation is complete.

It is simplest to illustrate programmed I/O by means of an example . Consider a process that wants to print the Eight
character string ABCDEFGH.

1. It first assemble the string in a buffer in user space as shown in fig.
2. The user process then acquires the printer for writing by making system call to open it.

Fig. Steps in Printing a string
3. If printer is in use by other the call will fail and enter an error code or will block until printer is available,

depending on OS and the parameters of the call.
4. Once it has printer the user process makes a system call to print it.
5. OS then usually copies the buffer with the string to an array, say P in the kernel space where it is more easily

accessed since the kernel may have to change the memory map to get to user space.
6. As the printer is available the OS copies the first character to the printer data register, in this example using

memory mapped I/O. This action activates the printer. The character may not appear yet because some printers
buffer a line or a page before printing.

7. As soon as it has copied the first character to the printer the OS checks to see if the printer is ready to accept
another one.

8. Generally printer has a second register which gives its status
The action followed by the OS are summarized in fig below. First data are copied to the kernel, then the OS enters a tight
loop outputting the characters one at a time. The essentials aspects of programmed I/O is after outputting a character, the
CPU continuously polls the device to see if it is ready to accept one. This behavior is often called polling or Busy waiting.

copy_from_user(buffer,p,count); /*P is the kernel buffer*/
for(i=0;i<count;i++) { /* loop on every characters*/
while(*printer_status_reg!=READY); /*loop until ready*/
printer_data_register=P[i]; /*output one character */

Page:55 Compiled by: Daya Ram Budhathoki

String to be
printed

ABCD
EFGH

Printed
page

Kernel
space

User
space

ABDC
EFGH

next
A

ABCD
EFGH

next AB

}
return_to_user();

Programmed I/O is simple but has disadvantages of tying up the CPU full time until all the I/O is done. In an embedded
system where the CPU has nothing else to do, busy waiting is reasonable. However in more complex system where the cpu
has to do other things, busy waiting is inefficient. A better I/O method is needed.

Interrupt-driven I/O:
The problem with the programmed I/O is that the processor has to wait a long time for the input/output module of concern
to be ready for either reception or transmission of more data. The processor, while waiting, must repeatedly interrogate the
status of the Input/ Output module. As a result the level of performance of entire system is degraded.

An alternative approach for this is interrupt driven Input / Output. The processor issue an Input/Output command to a
module and then go on to do some other useful work. The input/ Output module will then interrupt the processor to request
service, when it is ready to exchange data with the processor. The processor then executes the data transfer as before and
then resumes its former processing. Interrupt-driven input/output still consumes a lot of time because every data has to pass
with processor.

DMA:
The previous ways of I/O suffer from two inherent drawbacks.

1. The I/O transfer rate is limited by the speed with which the processor can test and service a device.
2. The processor is tied up in managing an I/O transfer;a number of instructions must be executed for each I/O

transfer.
When large volumes of data are to be moved, a more efficient technique is required:Direct memory access. The DMA
function can be performed by a separate module on the system bus, or it can be incorporated into an I/O module. In either
case , the technique works as follow.
When the processor wishes to read or write a block of data, it issues a command to the DMA module by sending the
following information.

• Whether a read or write is requested.
• The address of the I/O devices.
• Starting location in memory to read from or write to.
• The number of words to be read or written.

Page:56 Compiled by: Daya Ram Budhathoki

Issues Read/Write
Block command
to I/O Module

Read Status of
DMA Module

cpu-->DMA

----->Do something else

------>Interrupt

DMA-->CPU

The processor then continues with other work. It has delegated this I/O operation to the DMA module, and that module will
take care of it. The DMA module transfers the entire block of data, one word at at time, directly to or from memory, without
going through the processor. When the transfer is complete, the DMA module sends an interrupt signal to the processor.
Thus the processor is involved only at the beginning and at the end of the transfer.

In programmed I/O cpu takes care of whether the device is ready or not. Data may be lost. Whereas in Interrupt-driven
I/O, device itself inform the cpu by generating an interrupt signal. if the data rate of the i/o is too fast. Data may be lost.
In this case cpu most be cut off, since cpu is too slow for the particular device. the initial state is too fast.
it is meaningful to allow the device to put the data directly to the memory. This is called DMA.
dma controller will take over the task of cpu. Cpu is general purpose but the dma controller is specific purpose.

A DMA module controls the exchange of data between main memory and an I/O module. The processor sends a request for
the transfer of a block of data to the DMA module and is interrupted only after the entire block has been transferred.

Disks:
All real disks are organized into cylinders, each one containing as many tracks as there are heads stacked vertically. The
tracks are divided into sectors, with the number of sectors around the circumference typically being 8 to 32 on floppy disks,
and up to several hundred on some hard disks. The simplest designs have the same number of sectors on each track.
Disk Arm Scheduling Algorithms:

1. First come First server FCFS
2. Shortest Seek First Shortest Seek First (SSF) disk scheduling algorithm.
3. The elevator algorithm for scheduling disk requests.

Consider a disk with 40 cylinders. A request comes in to read a block on cylinder 11. While the seek to cylinder 11 is
in progress, new requests come in for cylinders 1, 36, 16, 34, 9, and 12, in that order.

 Shortest Seek First (SSF) disk scheduling algorithm.
Pick the request closet to the head.

Page:57 Compiled by: Daya Ram Budhathoki

Next Instruction

Fig:DMA

Total no of Cylinder movement: 61

The elevator algorithm for scheduling disk requests:
Keep moving in same direction until there are no more outstanding requests in that direction, then they switch direction.
The elevator algorithm requires software to maintain 1 bit, the current direction bit. UP or DOWN. If it is UP the arm is
moved to the next highest pending request and if it is DOWN if it moved to the next lowest pending request if any.

the elevator algorithm using the same seven requests as shown above, assuming the direction bit was initially UP. The order
in which the cylinders are serviced is 12, 16, 34, 36, 9, and 1, which yields arm motions of 1, 4, 18, 2, 27, and 8, for a total
of 60 cylinders.

Page:58 Compiled by: Daya Ram Budhathoki

Questions:

The disk requests come in to the disk driver for cylinders 10, 20, 22,2,40,6 and 30, in the order. A seek takes 6
msec/cylinder moved. How much seek time is needed for:

i) FCFS

ii) Shortest Seek First

iii) Elevator algorithm

Terminals:

For decades, users have communicated with computers using devices consisting of a keyboard for user input and a display
for computer output. For many years, these were combined into free-standing devices called terminals, which were
connected to the computer by a wire. Large mainframes used in the financial and travel industries sometimes still use these
terminals, typically connected to the mainframe via a modem, especially when they are far from the mainframe.

Terminal
types.

Clock:
clock also called timers are essential to the operation of any multiprogrammed system for variety of reasons.

• maintain time of day
• prevent one process from monopolizing the CPU among other things.
• clock software can take the form of device driver, but it is neither a block device like disk neither a character like

mouse.
Two clock:
the simpler clock is tied to 110 or 220 volt power line and causes and interrupt on every voltage cycle at 50 or 60hz.
the other kind of clock built of 3 components a crystal oscillator, a counter and a holding register.

Chapter 4:Deadlock:

Resources
 – passive entities needed by threads to do their work
CPU time, disk space, memory

Page:59 Compiled by: Daya Ram Budhathoki

Two types of resources:
Preemptable – can take it away
CPU, Embedded security chip,Memory
Non-preemptable – must leave it with the thread
Disk space, printer, chunk of virtual address space,Critical section
Resources may require exclusive access or may be sharable
Read-only files are typically sharable
Printers are not sharable during time of printing
One of the major tasks of an operating system is to manage resources
Deadlocks may occur when processes have been granted exclusive access to Resources. A resource may be a hardware
device (eg. A tape drive) file or a piece of information (a locked record in a database). In general Deadlocks involves non
preemptable resources. The sequence of events required to use a resource is:

1. Request the resource
Use the resource

2. Release the resource

What is Deadlock?
In Computer Science a set of process is said to be in deadlock if each process in the set is waiting for an event that only
another process in the set can cause. Since all the processes are waiting, none of them will ever cause any of the events that
would wake up any of the other members of the set & all the processes continue to wait forever.

Example 1:
● Two process A and B each want to recored a scanned document on a CD.
● A requests permission to use Scanner and is granted.
● B is programmed differently and requests the CD recorder first and is also granted.
● Now, A ask for the CD recorder, but the request is denied until B releases it. Unfortunately, instead of releasing the

CD recorder B asks for Scanner. At this point both processes are blocked and will remain so forever. This situation
is called Deadlock.

Example:2
Bridge Crossing Example:

Page:60 Compiled by: Daya Ram Budhathoki

Res 2Res 1

Thr
ead
B

Thr
ead
A

Wait
For

Wait
For

Owned
By

Owned
By

Each segment of road can be viewed as a resource
– Car must own the segment under them
– Must acquire segment that they are moving into
For bridge: must acquire both halves
– Traffic only in one direction at a time
– Problem occurs when two cars in opposite directions on bridge: each acquires one segment and needs next
If a deadlock occurs, it can be resolved if one car backs up (preempt resources and rollback)
- Several cars may have to be backed up
Starvation is possible
– East-going traffic really fast ==>no one goes west

Starvation vs. Deadlock
Starvation: thread waits indefinitely

Example, low-priority thread waiting for resources constantly in use by high-priority threads
Deadlock: circular waiting for resources

Thread A owns Res 1 and is waiting for Res 2 Thread B owns Res 2 and is waiting for Res 1
Deadlock ==> Starvation but not vice versa

Starvation can end (but doesn’t have to)
Deadlock can’t end without external intervention

Conditions for Deadlock:
Coffman et al. (1971) showed that four conditions must hold for there to be a deadlock:

1. Mutual exclusion
Only one process at a time can use a resource.

2. Hold and wait
Process holding at least one resource is waiting to acquire additional resources held by other processes.

3. No preemption
Resources are released only voluntarily by the process holding the resource, after the process is finished with it

4. Circular wait
There exists a set {P1 , …, Pn } of waiting processes.
P1 is waiting for a resource that is held by P2
P2 is waiting for a resource that is held by P3
…
Pn is waiting for a resource that is held by P1

All of these four conditions must be present for a deadlock to occur. If one or more of these conditions is absent, no
Deadlock is possible.

Deadlock Modeling:
 Deadlocks can be described more precisely in terms of
Resource allocation graph. Its a set of vertices V and a set of edges E.
V is partitioned into two types:
 P = {P1, P 2, ..., P n}, the set consisting of all the processes in
 the system.
 R = {R1, R2 , ..., Rm}, the set consisting of all resource types
 in the system.
request edge – directed edge Pi Rj

Page:61 Compiled by: Daya Ram Budhathoki

assignment edge – directed edge Rj Pi

Basic Facts:
If graph contains no cycles no deadlock.⇒
If graph contains a cycle ⇒

● If only one instance per resource type, then deadlock.
● If several instances per resource type, possibility of Deadlock

Methods for Handling Deadlock:
Allow system to enter deadlock and then recover

Page:62 Compiled by: Daya Ram Budhathoki

Symbols

P1 P2

R1

R2a). P1 is
holding R1

P1

R1

b). P1
requests
R1

P1

R1

a).eg. of a Resource
allocation graph

b).Resource allocation graph
with Deadlock

c).Resource Allocation graph with a
Cycle but no Deadlock

● Requires deadlock detection algorithm
● Some technique for forcibly preempting resources and/or terminating tasks

Ensure that system will never enter a deadlock
● Need to monitor all lock acquisitions
● Selectively deny those that might lead to deadlock

Ignore the problem and pretend that deadlocks never occur in the system
● Used by most operating systems, including UNIX

Deadlock Prevention
To prevent the system from deadlocks, one of the four discussed conditions that may create a deadlock should be discarded.
The methods for those conditions are as follows:

1. Mutual Exclusion:
In general, we do not have systems with all resources being sharable. Some resources like printers, processing units are non-
sharable. So it is not possible to prevent deadlocks by denying mutual exclusion.

2. Hold and Wait:
One protocol to ensure that hold-and-wait condition never occurs says each process must request and get all of its resources
before it begins execution.
Another protocol is “Each process can request resources only when it does not occupies any resources.”

The second protocol is better. However, both protocols cause low resource utilization and starvation. Many resources are
allocated but most of them are unused for a long period of time. A process that requests several commonly used resources
causes many others to wait indefinitely.

3. No Preemption:
One protocol is “If a process that is holding some resources requests another resource and that resource cannot be allocated
to it, then it must release all resources that are currently allocated to it.”
Another protocol is “When a process requests some resources, if they are available, allocate them. If a resource it requested
is not available, then we check whether it is being used or it is allocated to some other process waiting for other resources. If
that resource is not being used, then the OS preempts it from the waiting process and allocate it to the requesting process. If
that resource is used, the requesting process must wait.” This protocol can be applied to resources whose states can easily be
saved and restored (registers, memory space). It cannot be applied to resources like printers.

4. Circular Wait:
One protocol to ensure that the circular wait condition never holds is “Impose a linear ordering of all resource types.” Then,
each process can only request resources in an increasing order of priority.

For example, set priorities for r1 = 1, r2 = 2, r3 = 3, and r4 = 4. With these priorities, if process P wants to use r1 and r3, it
should first request r1, then r3.

Another protocol is “Whenever a process requests a resource rj, it must have released all resources rk with priority(rk) ≥
priority (rj).

Deadlock Avoidance:
Given some additional information on how each process will request resources, it is possible to construct an algorithm that
will avoid deadlock states. The algorithm will dynamically examine the resource allocation operations to ensure that there
won't be a circular wait on resources.

Two deadlock avoidance algorithms:
• resource-allocation graph algorithm

Page:63 Compiled by: Daya Ram Budhathoki

• Banker's algorithm
Resource-allocation graph algorithm

• only applicable when we only have 1 instance of each resource type
• claim edge (dotted edge), like a future request edge
• when a process requests a resource, the claim edge is converted to a request edge
• when a process releases a resource, the assignment edge is converted to a claim edge

Bankers Algorithms:
The Banker’s algorithm is a resource allocation and deadlock avoidance algorithm developed by Edsger Dijkstra . Resource
allocation state is defined by the number of available and allocated resources and the maximum demand of the processes.

When a process requests an available resource, system must decide if immediate allocation leaves the system in
a safe state.

The system is in a safe state if there exists a safe sequence of all processes:
Sequence < P1, P2, ... Pn > is safe for the current allocation state if, for each Pi, the resources which Pi can still request can
be satisfied by

• the currently available resources plus
• the resources held by all of the Pj's, where j < i.

If the system is in a safe state, there can be no deadlock. If the system is in an unsafe state, there is the possibility of
deadlock.
A state is safe if the system can allocate resources to each process in some order avoiding a deadlock. A deadlock state is an
unsafe state.

Customer =Processes
Units = Resource say tape drive
Bankers=OS
The Banker algorithm does the simple task
– If granting the request leads to an unsafe state the request is denied.
– If granting the request leads to safe state the request is carried out.

Basic Facts:
● If a system is in safe state no deadlocks. ⇒
● If a system is in unsafe state possibility of deadlock. ⇒
● Avoidance ensure that a system will never enter an unsafe state. ⇒

Bankers Algorithms for a single resource:

Customer Used Max

A 0 6

B 0 5

C 0 4

D 0 7

Available units: 10

Page:64 Compiled by: Daya Ram Budhathoki

In the above fig, we see four customers each of whom has been granted a certain no. of credit units (eg. 1 unit=1K dollar).
The Banker reserved only 10 units rather than 22 units to service them since not all customer need their maximum credit
immediately.

At a certain moment the situation becomes:

Customer Used Max

A 1 6

B 1 5

C 2 4

D 4 7

Available units: 2
Safe State:
With 2 units left, the banker can delay any requests except C's, thus letting C finish and release all four of his resources.
With four in hand, the banker can let either D or B have the necessary units & so on.

Unsafe State:
B requests one more unit and is granted.

Customer Used Max

A 1 6

B 2 5

C 2 4

D 4 7

Available units: 1
this is an unsafe condition. If all of the customer namely A, B,C & D asked for their maximum loans, then Banker couldn't
satisfy any of them and we would have deadlock.

It is important to note that an unsafe state does not imply the existence or even eventual existence of a deadlock. What an
unsafe does imply is that some unfortunate sequence of events might lead a deadlock.

Page:65 Compiled by: Daya Ram Budhathoki

Bankers Algorithms for Multiple Resources:

The algorithm for checking to see if a state is safe can now be stated.
1. Look for a row, R, whose unmet resource needs are all smaller than or equal to A. If no such row exists, the system

will eventually deadlock since no process can run to completion.
2. Assume the process of the row chosen requests all the resources it needs (which is guaranteed to be possible) and

finishes. Mark that process as terminated and add all its resources to the A vector.

Page:66 Compiled by: Daya Ram Budhathoki

3. Repeat steps 1 and 2 until either all processes are marked terminated, in which case the initial state was safe, or
until a deadlock occurs, in which case it was not.

E (Existing Resources): (6 3 4 2)
P (Processed Resources): (5 3 2 2)
A (Available Resources): (1 0 2 0)

Solution:
Process A, B & C can't run to completion since for Process for each process, Request is greater than Available Resources.
Now process D can complete since its requests row is less than that of Available resources.

Step 1:
 When D run to completion the total available resources is:
A = (1, 0, 2, 0) + (1, 1, 0 , 1)= (2, 1, 2, 1)

Now Process E can run to completion

Step 2:
Now process E can also run to completion & return back all of its resources.
==> A = (0 , 0, 0, 0) + (2, 1, 2, 1) = (2, 1, 2, 1)

Step 3:
Now process A can also run to completion leading A to
 (3, 0, 1, 1) + (2, 1, 2, 1) = (5, 1, 3, 2)

Step 4:
Now process C can also run to completion leading A to
(5, 1, 3, 2) + (1, 1, 1, 0) = (6, 2, 4, 2)

Step 5:
Now process B can run to completion leading A to

Page:67 Compiled by: Daya Ram Budhathoki

a). Current Allocation Matrix b). Request Matrix

(6, 2, 4, 2) + (0, 1, 0 , 0) = (6, 3, 4, 2)

This implies the state is safe and Dead lock free.

Questions:

A system has three processes and four allocable resources. The total four resource types
exist in the amount as E= (4, 2, 3, 1). The current allocation matrix and request matrix are as
follows: Using Bankers algorithm, explain if this state is deadlock safe or unsafe.

Current Allocation Matrix
 Process Ro R1 R2 R3
P0 0 0 1 0
P1 2 0 0 1
P1 0 1 2 0

Allocation Request Matrix
Process Ro R1 R2 R3
P0 2 0 0 1
P1 1 0 1 0
P1 2 1 0 0

Q). Consider a system with five processes P0 through P4 and three resources types A, B, C. Resource type A has 10
instances, B has 5 instances and type C has 7 instances. Suppose at time t0 following snapshot of the system has been taken

Process Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

1) What will be the content of the need Matrix?
2) Is the system in safe state? If yes, then what is the safe sequence?

1. Need [i,j]= Max [i,j] – Allocation[i,j]

content of Need Matrix is

A B C

Page:68 Compiled by: Daya Ram Budhathoki

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

1. applying Safety alog.

For Pi if Needi <= Available, then pi is in Safe sequence,
Available = Available + Allocationi

For P0, need0=7,4,3
Available = 3,3,2
==> Condition is false, So P0 must wait.

For P1 ,need1= 1,2,2
Available=3,3,2
need1< Available
So P1 will be kept in safe sequence. & Available will be updated as:
Available= 3,3,2 + 2,0,0 = 5,3,2

For P2, need2= 6,0,0
Available = 5,3,2
==> condition is again false, so P2 also have to wait.

For P3, need3= 0,1,1
Available= 5,3,2
==> condition is true , P3 will be in safe sequence.
Available = 5,3,2 + 2,1,1 = 7,4,3

For P4, need4= 4,3,1
Available = 7,4,3
==> condition Needi <= Available is true, so P4 will be in safe sequence
Available = 7,4,3 + 0,0,2 = 7,4,5

Now we have two processes P0 and P2 in waiting state. Either P0 or P1 can be choosen.
Let us take P2 whose need = 6,0,0
Available = 7,4,5

Since condition is true, P2 now comes in safe state leaving the
Available = 7,4,5 + 3,0,2 = 10, 4,7

Next P0 whose need = 7, 4, 3

Page:69 Compiled by: Daya Ram Budhathoki

Available = 10,4,7
since condition is true P0 also can be kept in safe state.
So system is in safe state & the safe sequence is <P1, P3, P4, P2, P0>

 Detection and Recovery
A second technique is detection and recovery. When this technique is used, the system does not do anything except monitor
the requests and releases of resources. Every time a resource is requested or released, the resource graph is updated, and a
check is made to see if any cycles exist. If a cycle exists, one of the processes in the cycle is killed. If this does not break the
deadlock, another process is killed, and so on until the cycle is broken.

 The Ostrich Algorithm
The simplest approach is the ostrich algorithm: stick your head in the sand and pretend there is no problem at all.[] Different
people react to this strategy in very different ways. Mathematicians find it completely unacceptable and say that deadlocks
must be prevented at all costs.

Most operating systems, including UNIX, MINIX 3, and Windows, just ignore the problem on the assumption that most
users would prefer an occasional deadlock to a rule restricting all users to one process, one open file, and one of everything.
If deadlocks could be eliminated for free, there would not be much discussion. The problem is that the price is high, mostly
in terms of putting inconvenient restrictions on processes. Thus we are faced with an unpleasant trade-off between
convenience and correctness, and a great deal of discussion about which is more important, and to whom. Under these
conditions, general solutions are hard to find.

Chapter 5: Memory Management

Types of Memory:
Primary Memory (eg. RAM)
Holds data and programs used by a process that is executing
Only type of memory that a CPU deals with
Secondary Memory (eg. hard disk)
Non-volatile memory used to store data when a process is not executing.

Page:70 Compiled by: Daya Ram Budhathoki

Memory Management:
Memory management is the act of managing computer memory. In its simpler forms, this involves providing ways to
allocate portions of memory to programs at their request, and freeing it for reuse when no longer needed. The management
of main memory is critical to the computer system.

In a uniprogramming system, Main memory is divided into two parts:
– one part for the OS
– one part for the program currently being executed.

In a multiprogramming system, the user part of the memory must be further subdivided to accommodate multiple processes.
The task of subdivision is carried out dynamically by the Operating System and is known as Memory Management.

Two major schemes for memory management.
1.Contiguous Memory Allocation

Page:71 Compiled by: Daya Ram Budhathoki

Fig:Types of Memory management

Memory Management Scheme

Contiguous Memory
Allocation

Non-contiguous Memory
Allocation

Bare Machine

Segmentation
(User view)

Paging
(system view)

Variable Partition

Resident Memory
Multi
Programming

Fixed Partition

2.Non-contiguous memory Allocation

Contiguous allocation
It means that each logical object is placed in a set of memory locations with strictly consecutive addresses.

Non-contiguous allocation
It implies that a single logical object may be placed in non-consecutive sets of memory locations. Paging (System view) and
Segmentation (User view) are the two mechanisms that are used to mange non-contiguous memory allocation.

Memory Partitioning:

1. Fixed Partitioning:
Main memory is divided into a no. of static partitions at system generation time. A process may be loaded into a partition of
equal or greater size.

Memory Manager will allocate a region to a process that best fits it

Unused memory within an allocated partition called internal fragmentation

Advantages:
Simple to implement
Little OS overhead

Disadvantages:
Inefficient use of Memory due to internal fragmentation. Main memory utilization is extremely inefficient. Any program, no
matter how small, occupies an entire partition. This phenomenon, in which there is wasted space internal to a partition due
to the fact that the block of data loaded is smaller than the partition, is referred to as internal fragmentation.
Two possibilities:
a). Equal size partitioning
b). Unequal size Partition

Not suitable for systems in which process memory requirements not known ahead of time; i.e. timesharing systems.

Page:72 Compiled by: Daya Ram Budhathoki

When the queue for a large partition is empty but the queue for a small partition is full, as is the case for partitions 1 and 3.
Here small jobs have to wait to get into memory, even though plenty of memory is free

 An alternative organization is to maintain a single queue as in Fig. 4-2(b). Whenever a partition becomes free, the job
closest to the front of the queue that fits in it could be loaded into the empty partition and run.

2.Dynamic/Variable Partitioning:
To overcome some of the difficulties with fixed partitioning, an approach known as dynamic partitioning was developed .
The partitions are of variable length and number. When a process is brought into main memory, it is allocated exactly as
much memory as it requires and no more. An example, using 64 Mbytes of main memory, is shown in Figure

Eventually it leads to a situation in which there are a lot of small holes in memory. As time goes on, memory
becomes more and more fragmented, and memory utilization declines. This phenomenon is referred to as external
fragmentation, indicating that the memory that is external to all partitions becomes increasingly fragmented.

One technique for overcoming external fragmentation is compaction: From time to time, the operating system shifts the
processes so that they are contiguous and so that all of the free memory is together in one block. For example, in Figure h,
compaction will result in a block of free memory of length 16M. This may well be sufficient to load in an additional
process. The difficulty with compaction is that it is a time consuming procedure and wasteful of processor time.

Page:73 Compiled by: Daya Ram Budhathoki

(a) Fixed memory partitions with separate input queues for each partition.
(b) Fixed memory partitions with a single input queue.

Page:74 Compiled by: Daya Ram Budhathoki

Fig.The Effect of dynamic partitioning

Memory Management with Bitmaps:
When memory is assigned dynamically, the operating system must manage it. With a bitmap, memory is divided up into
allocation units, perhaps as small as a few words and perhaps as large as several kilobytes. Corresponding to each allocation
unit is a bit in the bitmap, which is 0 if the unit is free and 1 if it is occupied (or vice versa). Figure below shows part of
memory and the corresponding bitmap.

The size of the allocation unit is an important design issue. The smaller the allocation unit, the larger the bitmap. A bitmap
provides a simple way to keep track of memory words in a fixed amount of memory because the size of the bitmap depends
only on the size of memory and the size of the allocation unit. The main problem with it is that when it has been decided to
bring a k unit process into memory, the memory manager must search the bitmap to find a run of k consecutive 0 bits in the
map. Searching a bitmap for a run of a given length is a slow operation.

Memory Management with Linked Lists
Another way of keeping track of memory is to maintain a linked list of allocated and free memory segments, where a
segment is either a process or a hole between two processes.

Page:75 Compiled by: Daya Ram Budhathoki

Fig:(a) A part of memory with five processes and three holes. The tick marks show the memory
allocation units. The shaded regions (0 in the bitmap) are free. (b) The corresponding bitmap. (c)
The same information as a list.

Each entry in the list specifies a hole (H) or process (P), the address at which it starts, the length, and a pointer to the next
entry. In this example, the segment list is kept sorted by address. Sorting this way has the advantage that when a process
terminates or is swapped out, updating the list is straightforward. A terminating process normally has two neighbors (except
when it is at the very top or very bottom of memory). These may be either processes or holes, leading to the four
combinations shown in fig above.

When the processes and holes are kept on a list sorted by address, several algorithms can be used to allocate memory for a
newly created process (or an existing process being swapped in from disk). We assume that the memory manager knows
how much memory to allocate.

First Fit: The simplest algorithm is first fit. The process manager scans along the list of segments until it finds a hole that is
big enough. The hole is then broken up into two pieces, one for the process and one for the unused memory, except in the
statistically unlikely case of an exact fit. First fit is a fast algorithm because it searches as little as possible.

Next Fit: It works the same way as first fit, except that it keeps track of where it is whenever it finds a suitable hole. The
next time it is called to find a hole, it starts searching the list from the place where it left off last time, instead of always at
the beginning, as first fit does.

Best Fit: Best fit searches the entire list and takes the smallest hole that is adequate. Rather than breaking up a big hole that
might be needed later, best fit tries to find a hole that is close to the actual size needed.

Worst Fit: Always take the largest available hole, so that the hole broken off will be big enough to be useful. Simulation
has shown that worst fit is not a very good idea either.

Quick Fit: maintains separate lists for some of the more common sizes requested. For example, it might have a table with n
entries, in which the first entry is a pointer to the head of a list of 4-KB holes, the second entry is a pointer to a list of 8-KB
holes, the third entry a pointer to 12-KB holes, and so on. Holes of say, 21 KB, could either be put on the 20-KB list or on a
special list of odd-sized holes. With quick fit, finding a hole of the required size is extremely fast, but it has the same
disadvantage as all schemes that sort by hole size, namely, when a process terminates or is swapped out, finding its
neighbors to see if a merge is possible is expensive. If merging is not done, memory will quickly fragment into a large
number of small holes into which no processes fit.

Buddy-system:
Both fixed and dynamic partitioning schemes have drawbacks. A fixed partitioning scheme limits the number of active
processes and may use space inefficiently if there is a poor match between available partition sizes and process sizes. A
dynamic partitioning scheme is more complex to maintain and includes the overhead of compaction. An interesting

Page:76 Compiled by: Daya Ram Budhathoki

Fig:Four neighbor combinations for the terminating process, X.

compromise is the buddy system .

In a buddy system, memory blocks are available of size 2K words, L≤K≤ U, where
2L = smallest size block that is allocated
2U=largest size block that is allocated; generally 2U is the size of the entire memory available for allocation

In a buddy system, the entire memory space available for allocation is initially treated as a single block whose size is a
power of 2. When the first request is made, if its size is greater than half of the initial block then the entire block is
allocated. Otherwise, the block is split in two equal companion buddies. If the size of the request is greater than half of one
of the buddies, then allocate one to it. Otherwise, one of the buddies is split in half again. This method continues until the
smallest block greater than or equal to the size of the request is found and allocated to it.

In this method, when a process terminates the buddy block that was allocated to it is freed. Whenever possible, an
unallocated buddy is merged with a companion buddy in order to form a larger free block. Two blocks are said to be
companion buddies if they resulted from the split of the same direct parent block.

The following fig. illustrates the buddy system at work, considering a 1024k (1-megabyte) initial block and the process
requests as shown at the left of the table.

Swapping:
A process must be in memory to be executed. A process, however can be swapped temporarily out of memory to a backing
store and then brought back into memory for continued execution. For example assume a multiprogramming environment
with a Round Robin CPU scheduling algorithms. When a quantum expires, the memory manger will start to swap out the
process that just finished and to swap another process into the memory space that has been freed.

Page:77 Compiled by: Daya Ram Budhathoki

Fig: Example of buddy system

Logical Address VS Physical Address:
An address generated by the CPU is commonly referred to as a logical address, whereas address seen by the memory unit-
that is the one loaded into the memory-address register of the memory- is commonly referred to as a physical address.
 The compile time and load time address binding methods generate identical logical and physical addresses. However the
execution time address binding scheme results in differing logical and physical address. In that case we usually refer to the
logical address as Virtual address.
The run time mapping from virtual address to physical address is done by a hardware called Memory management unit
(MMU).
Set of all logical address space generated by a program is known as logical address space and the set of all physical
addresses which corresponds to these logical addresses is called physical address space.

Non-contiguous Memory allocation:
Fragmentation is a main problem is contiguous memory allocation. We have seen a method called compaction to resolve
this problem. Since its an I/O operation system efficiency gets reduced. So, a better method to overcome the fragmentation
problem is to make our logical address space non-contiguous.

Consider a system in which before applying compaction, there are holes of size 1K and 2K. If a new process of size 3K
wants to be executed then its execution is not possible without compaction. An alternative approach is divide the size of
new process P into two chunks of 1K and 2K to be able to load them into two holes at different places.

1. If the chunks have to be of same size for all processes ready for the execution then the memory management scheme is
 called PAGING.
2. If the chunks have to be of different size in which process image is divided into logical segments of different sizes then
this method is called SEGMENTATION.
3. If the method can work with only some chunks in the main memory and the remaining on the disk which can be brought
into main memory only when its required, then the system is called VIRTUAL MEORY MANAGEMENT SYSTEM.

Page:78 Compiled by: Daya Ram Budhathoki

Fig: Swapping of two processes using a disk as a backing store

Virtual Memory:
The basic idea behind virtual memory is that the combined size of the program, data, and stack may exceed the amount of
physical memory available for it. The operating system keeps those parts of the program currently in use in main memory,
and the rest on the disk. For example, a 512-MB program can run on a 256-MB machine by carefully choosing which 256
MB to keep in memory at each instant, with pieces of the program being swapped between disk and memory as needed.
Virtual memory can also work in a multiprogramming system, with bits and pieces of many programs in memory at once.
While a program is waiting for part of itself to be brought in, it is waiting for I/O and cannot run, so the CPU can be given
to another process, the same way as in any other multiprogramming system.

Virtual memory systems separate the memory addresses used by a process from actual physical addresses, allowing
separation of processes and increasing the effectively available amount of RAM using disk swapping.

Paging:
Most virtual system uses a techniques called paging that permits the physical address space of a process to be non-
contiguous. These program-generated addresses are called virtual addresses and form the virtual address space.

On computers without virtual memory, the virtual address is put directly onto the memory bus and causes the physical
memory word with the same address to be read or written. When virtual memory is used, the virtual addresses do not go
directly to the memory bus. Instead, they go to an MMU (Memory Management Unit) that maps the virtual addresses onto
the physical memory addresses as illustrated in Fig

The basic method for implementing paging involves breaking physical memory into fixed size block called frames and
breaking logical memory into blocks of the same size called pages. size is power of 2, between 512 bytes and 8,192 bytes
When a process is to be executed, its pages are loaded into any available memory frames from the backing store. The

Page:79 Compiled by: Daya Ram Budhathoki

Fig:The position and function of the MMU. Here the MMU is shown as being
a part of the CPU chip because it commonly is nowadays

http://en.wikipedia.org/wiki/Paging
http://en.wikipedia.org/wiki/Virtual_memory

backing store is divided into fixed-size block that are of the same size as memory frames.
Backing store(2) is typically part of a hard disk that is used by a paging or swapping system to store information not
currently in main memory. Backing store is slower and cheaper than main memory.

A very simple example of how this mapping works is shown in Fig. below. In this example, we have a computer that can
generate 16-bit addresses, from 0 up to 64K. These are the virtual addresses. This computer, however, has only 32 KB of
physical memory, so although 64-KB programs can be written, they cannot be loaded into memory in their entirety and run.

With 64 KB of virtual address space and 32 KB of physical memory, we get 16 virtual pages and 8 page frames. Transfers
between RAM and disk are always in units of a page.
When the program tries to access address 0, for example, using the instruction

MOV REG,0

virtual address 0 is sent to the MMU. The MMU sees that this virtual address falls in page 0 (0 to 4095), which according to
its mapping is page frame 2 (8192 to 12287). It thus transforms the address to 8192 and outputs address 8192 onto the bus.
The memory knows nothing at all about the MMU and just sees a request for reading or writing address 8192, which it
honors. Thus, the MMU has effectively mapped all virtual addresses between 0 and 4095 onto physical addresses 8192 to
12287.

Similarly, an instruction MOV REG,8192 is effectively transformed into MOV REG,24576. because virtual address 8192
is in virtual page 2 and this page is mapped onto physical page frame 6 (physical addresses 24576 to 28671). As a third
example, virtual address 20500 is 20 bytes from the start of virtual page 5 (virtual addresses 20480 to 24575) and maps onto
physical address 12288 + 20 = 12308.

Page:80 Compiled by: Daya Ram Budhathoki

Fig:The relation between virtual addresses and physical
memory addresses is given by the page table.

PAGE Fault:

What happens if the program tries to use an unmapped page, for example, by using the instruction

MOV REG,32780

which is byte 12 within virtual page 8 (starting at 32768)? The MMU notices that the page is unmapped (indicated by a
cross in the figure) and causes the CPU to trap to the operating system. This trap is called a page fault. The operating
system picks a little-used page frame and writes its contents back to the disk. It then fetches the page just referenced into the
page frame just freed, changes the map, and restarts the trapped instruction.

In computer storage technology, a page is a fixed-length block of memory that is used as a unit of transfer between physical
memory and external storage like a disk, and a page fault is an interrupt (or exception) to the software raised by the
hardware, when a program accesses a page that is mapped in address space, but not loaded in physical memory.
An interrupt that occurs when a program requests data that is not currently in real memory. The interrupt triggers the
operating system to fetch the data from a virtual memory and load it into RAM.

An invalid page fault or page fault error occurs when the operating system cannot find the data in virtual memory. This
usually happens when the virtual memory area, or the table that maps virtual addresses to real addresses, becomes corrupt.

Paging Hardware:
The hardware support for the paging is as shown in fig. Every address generated by the CPU is divided into two parts:
a page number(p) and a page offset (d)

Page number (p) – used as an index into a page table which contains base address of each page in physical
memory.

Page offset (d) – combined with base address to define the physical memory address that is sent to the memory
unit.

Page:81 Compiled by: Daya Ram Budhathoki

Fig:Paging Hardware

When we use a paging scheme, we have no external fragmentation. Any free frame can be allocated to a process that needs
it. However we may have some internal fragmentation.

Page:82 Compiled by: Daya Ram Budhathoki

page number page offset

p d

m - n n

Fig:Paging model of Logical and Physical Memory

Page Replacement Algorithms:
When a page fault occurs, the operating system has to choose a page to remove from memory to make room for the page
that has to be brought in. The page replacement is done by swapping the required pages from backup storage to main
memory and vice-versa. If the page to be removed has been modified while in memory, it must be rewritten to the disk to
bring the disk copy up to date. If, however, the page has not been changed (e.g., it contains program text), the disk copy is
already up to date, so no rewrite is needed. The page to be read in just overwrites the page being evicted.

A page replacement algorithm is evaluated by running the particular algorithm on a string of memory references and
compute the page faults.

Referenced string is a sequence of pages being referenced. Page fault is not an error. Contrary to what their name might
suggest, page faults are not errors and are common and necessary to increase the amount of memory available to programs
in any operating system that utilizes virtual memory, including Microsoft Windows, Mac OS X, Linux and Unix.

Each operating system uses different page replacement algorithms. To select the particular algorithm, the algorithm with
lowest page fault rate is considered.
1.Optimal page replacement algorithm
2.Not recently used page replacement
3.First-In, First-Out page replacement
4.Second chance page replacement
5.Clock page replacement
6.Least recently used page replacement

The Optimal Page Replacement Algorithm:
The algorithm has lowest page fault rate of all algorithm. This algorithm state that: Replace the page which will not be used
for longest period of time i.e future knowledge of reference string is required.

•Often called Balady's Min
•Basic idea: Replace the page that will not be referenced for the longest time.
•Impossible to implement

Page:83 Compiled by: Daya Ram Budhathoki

FIFO: (First In First Out)
•The oldest page in the physical memory is the one selected for replacement.

•Very simple to implement.

- Keep a list

On a page fault, the page at the head is removed and the new page added to the tail of the list

Issues:

•poor replacement policy

•FIFO doesn't consider the page usage.

LRU(Least Recently Used):
 In this algorithm, the page that has not been used for longest period of time is selected for replacement.

Although LRU is theoretically realizable, it is not cheap. To fully implement LRU, it is necessary to maintain a linked list of
all pages in memory, with the most recently used page at the front and the least recently used page at the rear. The difficulty
is that the list must be updated on every memory reference. Finding a page in the list, deleting it, and then moving it to the
front is a very time-consuming operation, even in hardware (assuming that such hardware could be built).

Page:84 Compiled by: Daya Ram Budhathoki

The Not Recently Used Page Replacement Algorithm

Two status bit associated with each page. R is set whenever the page is referenced (read or written). M is set
when the page is written to (i.e., modified).

When a page fault occurs, the operating system inspects all the pages and divides them into four categories based
on the current values of their R and M bits:

Class 0: not referenced, not modified.

Class 1: not referenced, modified.

Class 2: referenced, not modified.

Class 3: referenced, modified.

The NRU (Not Recently Used) algorithm removes a page at random from the lowest numbered nonempty class.

The Second Chance Page Replacement Algorithm:
A simple modification to FIFO that avoids the problem of heavily used page. It inspects the R bit If it is 0, the

page is both old and unused, so it is replaced immediately. If the R bit is 1, the bit is cleared, the page is put
onto the end of the list of pages, and its load time is updated as though it had just arrived in memory. Then
the search continues.

Page:85 Compiled by: Daya Ram Budhathoki

The Clock Page Replacement Algorithm
 keep all the page frames on a circular list in the form of a clock, as shown in Fig. A hand points to the oldest page.

When a page fault occurs, the page being pointed to by the hand is inspected. If its R bit is 0, the page is evicted, the new
page is inserted into the clock in its place, and the hand is advanced one position. If R is 1, it is cleared and the hand is
advanced to the next page. This process is repeated until a page is found with R = 0

Page:86 Compiled by: Daya Ram Budhathoki

question:

Calculate the no. of page fault for FIFO, LRU and Optimal for the reference string 7,0,1,2,0,3,0,4,2,3,0,3. Assume there are
three Frames available in the memory.

External fragmentation:

• free space divided into many small pieces

• result of allocating and deallocating pieces of the storage space of many different sizes

• one may have plenty of free space, it may not be able to all used, or at least used as efficiently as one would like to

• Unused portion of main memory

Internal fragmentation:

• result of reserving a piece of space without ever intending to use it

• Unused portion of page

Segmentation:
segmentation is another techniques of non-contiguous memory allocation method. Its different from paging as pages are
physical in nature and hence are fixed in size, whereas the segments are logical in nature and hence are variable size.

It support the user view of the memory rather than system view as supported by paging. In segmentation we divide the the
logical address space into different segments. The general division can be: main program, set of subroutines, procedures,
functions and set of data structures(stack, array etc). Each segment has a name and length which is loaded into physical
memory as it is. For simplicity the segments are referred by a segment number, rather than a segment name. Virtual address
space is divided into two parts in which high order units refer to 's' i.e., segment number and lower order units refer to 'd'
i.e.,displacement (limit value).

Page:87 Compiled by: Daya Ram Budhathoki

15 13 0

Segment
number

Displacement

s d

Fig:Virtual address space or logical address
space (16 bit)

Segmentation maintains multiple separate virtual address spaces per process. Allows each table to grow or shrink,
independently.

Paging Vs Segmentation:

Sno. Paging Segmentation

1
Block replacement easy
 Fixed-length blocks

Block replacement hard

Variable-length blocks

Need to find contiguous, variable-sized, unused part of main
memory

2 Invisible to application programmer Visible to application programmer.

3
No external fragmentation, But there is Internal
Fragmentation unused portion of page.

No Internal Fragmentation, But there is external
Fragmentation unused portion of main memory.

4 Units of code and date are broken into separate
pages.

Keeps blocks of code or data as a single units.

5
segmentation is a logical unit visible to the user's
program and id of arbitrary size

paging is a physical unit invisible to the user's view and is of
fixed size

6
Segmentation maintains multiple address spaces
per process..

Paging maintains one address space.

7
No sharing of procedures between users is
facilitated.

sharing of procedures between users is facilitated.

Page:88 Compiled by: Daya Ram Budhathoki

Chapter:6 File-systems

What is File-System?
From the user point of view one of the most important part of the operating system is file-system. The file-system provides
the resource abstraction typically associated with secondary storage. The file system permits users to create data collections,
called files, with desirable properties, such as

• Long-term existence: Files are stored on disk or other secondary storage and do not disappear when a user logs
off.

• Sharable between processes: Files have names and can have associated access permissions that permit
controlled sharing.

• Structure: Depending on the file system, a file can have an internal structure that is convenient for particular
applications. In addition, files can be organized into hierarchical or more complex structure to reflect the
relationships among files.

File Naming
Files are an abstraction mechanism. They provide a way to store information on the disk and read it back later. This must be
done in such a way as to shield the user from the details of how and where the information is stored, and how the disks
actually work.

Probably the most important characteristic of any abstraction mechanism is the way the objects being managed are named,
so we will start our examination of file systems with the subject of file naming. When a process creates a file, it gives the
file a name. When the process terminates, the file continues to exist and can be accessed by other processes using its name.

Operation Performed on Files:
1. Creating a File
2. Writing a file
3. Reading a file
4. Repositioning a file
5. Deleting a file
6. Truncating a file

File Attributes
Every file has a name and its data. In addition, all operating systems associate other information with each file, for example,
the date and time the file was created and the file's size. We will call these extra items the file's attributes although some
people called them metadata. The list of attributes varies considerably from system to system.

Attribute Meaning

Protection Who can access the file and in what way

Password Password needed to access the file

Creator ID of the person who created the file

Owner Current owner

Read-only flag 0 for read/write; 1 for read only

Hidden flag 0 for normal; 1 for do not display in listings

System flag 0 for normal files; 1 for system file

Page:89 Compiled by: Daya Ram Budhathoki

Archive flag 0 for has been backed up; 1 for needs to be backed
up

ASCII/binary flag 0 for ASCII file; 1 for binary file

Random access flag 0 for sequential access only; 1 for random access

Temporary flag 0 for normal; 1 for delete file on process exit

Lock flags 0 for unlocked; nonzero for locked

Record length Number of bytes in a record

Key position Offset of the key within each record

Key length Number of bytes in the key field

Creation time Date and time the file was created

Time of last access Date and time the file was last accessed

Time of last change Date and time the file has last changed

Current size Number of bytes in the file

Maximum size Number of bytes the file may grow to

File Operations
Files exist to store information and allow it to be retrieved later. Different systems provide different operations to allow
storage and retrieval. Below is a discussion of the most common system calls relating to files.

1. Create. The file is created with no data. The purpose of the call is to announce that the file is coming and to set
some of the attributes.

2. Delete. When the file is no longer needed, it has to be deleted to free up disk space. A system call for this purpose
is always provided.

3. Open. Before using a file, a process must open it. The purpose of the open call is to allow the system to fetch the
attributes and list of disk addresses into main memory for rapid access on later calls.

4. Close. When all the accesses are finished, the attributes and disk addresses are no longer needed, so the file should
be closed to free up some internal table space. Many systems encourage this by imposing a maximum number of
open files on processes. A disk is written in blocks, and closing a file forces writing of the file's last block, even
though that block may not be entirely full yet.

5. Read. Data are read from file. Usually, the bytes come from the current position. The caller must specify how
much data are needed and must also provide a buffer to put them in.

6. Write. Data are written to the file, again, usually at the current position. If the current position is the end of the file,
the file's size increases. If the current position is in the middle of the file, existing data are overwritten and lost
forever.

7. Append. This call is a restricted form of write. It can only add data to the end of the file. Systems that provide a
minimal set of system calls do not generally have append, but many systems provide multiple ways of doing the
same thing, and these systems sometimes have append.

8. Seek. For random access files, a method is needed to specify from where to take the data. One common approach
is a system call, seek, that repositions the file pointer to a specific place in the file. After this call has completed,
data can be read from, or written to, that position.

Page:90 Compiled by: Daya Ram Budhathoki

9. Get attributes. Processes often need to read file attributes to do their work. For example, the UNIX make program
is commonly used to manage software development projects consisting of many source files. When make is called,
it examines the modification times of all the source and object files and arranges for the minimum number of
compilations required to bring everything up to date. To do its job, it must look at the attributes, namely, the
modification times.

10. Set attributes. Some of the attributes are user settable and can be changed after the file has been created. This
system call makes that possible. The protection mode information is an obvious example. Most of the flags also fall
in this category.

11. Rename. It frequently happens that a user needs to change the name of an existing file. This system call makes that
possible. It is not always strictly necessary, because the file can usually be copied to a new file with the new name,
and the old file then deleted.

12. Lock. Locking a file or a part of a file prevents multiple simultaneous access by different process. For an airline
reservation system, for instance, locking the database while making a reservation prevents reservation of a seat for
two different travelers.

File Structure:

Three kinds of files. (a) Byte sequence. (b) Record sequence. (c) Tree.

a. Byte Sequence:
The file in Fig. (a) is just an unstructured sequence of bytes. In effect, the operating system does not know or care what is in
the file. All it sees are bytes. Any meaning must be imposed by user-level programs. Both UNIX and Windows 98 use this
approach.

b. Record Sequence:
In this model, a file is a sequence of fixed-length records, each with some internal structure. Central to the idea of a file
being a sequence of records is the idea that the read operation returns one record and the write operation overwrites or
appends one record. As a historical note, when the 80-column punched card was king many (mainframe) operating systems
based their file systems on files consisting of 80-character records, in effect, card images

Page:91 Compiled by: Daya Ram Budhathoki

c. Record Sequence:
 In this organization, a file consists of a tree of records, not necessarily all the same length, each containing a key field in a
fixed position in the record. The tree is sorted on the key field, to allow rapid searching for a particular key.

Files Organization and Access Mechanism:
When a file is used then the stored information in the file must be accessed and read into the memory of a computer system.
Various mechanism are provided to access a file from the operating system.

i. Sequential access
ii. Direct Access
iii. Index Access

Sequential Access:
It is the simplest access mechanism, in which informations stored in a file are accessed in an order such that one record is
processed after the other. For example editors and compilers usually access files in this manner.

Direct Access:
It is an alternative method for accessing a file, which is based on the disk model of a file, since disk allows random access to
any block or record of a file. For this method, a file is viewed as a numbered sequence of blocks or records which are
read/written in an arbitrary manner, i.e. there is no restriction on the order of reading or writing. It is well suited for
Database management System.

Index Access:
In this method an index is created which contains a key field and pointers to the various block. To find an entry in the file
for a key value , we first search the index and then use the pointer to directly access a file and find the desired entry.

With large files , the index file itself may become too large to be keep in memory. One solution is to create an index for the
index file. The primary index file would contain pointers to secondary index files, which would point to the actual data
items.

File Allocation Method:
1. Contiguous Allocation
2. Linked List Allocation
3. Linked List Allocation Using a Table in Memory
4. I-Nodes

Contiguous allocation:
It requires each file to occupy a set of contiguous addresses on a disk. It sore each file as a contiguous run of disk blocks.
Thus on a disk with 1-KB blocks, a 50-KB file would be allocated 50 consecutive blocks. Both sequential and direct access
is supported by the contiguous allocation method.
Contiguous disk space allocation has two significant advantages.

1. First, it is simple to implement because keeping track of where a file's blocks are is reduced to remembering two
numbers: the disk address of the first block and the number of blocks in the file. Given the number of the first
block, the number of any other block can be found by a simple addition.

2. Second, the read performance is excellent because the entire file can be read from the disk in a single operation.
Only one seek is needed (to the first block). After that, no more seeks or rotational delays are needed so data come

Page:92 Compiled by: Daya Ram Budhathoki

in at the full bandwidth of the disk.
 Thus contiguous allocation is simple to implement and has high performance.

Unfortunately, contiguous allocation also has a major drawback: in time, the disk becomes fragmented, consisting of files
and holes. It needs compaction to avoid this.

Example of contiguous allocation: CD and DVD ROMs

Linked List Allocation:
keep each file as a linked list of disk blocks as shown in the fig. The first word of each block is used as a pointer to the next
one. The rest of the block is for data.

Unlike contiguous allocation, every disk block can be used in this method. No space is lost to disk fragmentation. The major
problem with linked allocation is that it can be used only for sequential access files. To find the ith block of a file, we must
start at the beginning of that file, and follow the pointers until we get the ith block. It is inefficient to support direct access
capability for linked allocation of files.

Another problem of linked list allocation is reliability. Since the files are linked together with the pointer scattered all over
the disk. Consider what will happen if a pointer is lost or damaged.

Page:93 Compiled by: Daya Ram Budhathoki

Fig:Storing a file as a linked list of disk blocks.

Indexed allocation (I-Nodes):
It solves the external fragmentation and size declaration problems of contiguous allocation. In this allocation all pointers are
brought together into one location called Index block.
Each file has its own index block, which is an array of disk-block addresses. The ith entry in the index block points to the
ith block of the file. The directory contains the address of the index block.

To read the ith block, we use the pointer in the ith index block entry to find and read the desired block. This scheme is similar
to the paging scheme.

Page:94 Compiled by: Daya Ram Budhathoki

Inex alloction of Disk sapce

Page:95 Compiled by: Daya Ram Budhathoki

Page:96 Compiled by: Daya Ram Budhathoki

Page:97 Compiled by: Daya Ram Budhathoki

Page:98 Compiled by: Daya Ram Budhathoki

Page:99 Compiled by: Daya Ram Budhathoki

Page:100 Compiled by: Daya Ram Budhathoki

File System Layout:

Page:101 Compiled by: Daya Ram Budhathoki

Fig: An i-node with three levels of indirect blocks.

Fig:A possible file system layout.

Directories:
To keep track of files, file systems normally have directories or folders, which, in many systems, are themselves files. In this
section we will discuss directories, their organization, their properties, and the operations that can be performed on them.

Simple Directories
A directory typically contains a number of entries, one per file. One possibility is shown in Fig. (a), in which each entry
contains the file name, the file attributes, and the disk addresses where the data are stored.

Page:102 Compiled by: Daya Ram Budhathoki

Three file system designs. (a) Single directory shared by all users. (b) One directory per
user. (c) Arbitrary tree per user. The letters indicate the directory or file's owner.

	Chapter 1: Principle of Operating System
	 Operating System Introduction:
	Two views of the Operating System:
	Operating System as an Extended Machine or Virtual Machine(or As a User/computer interface)
	Operating System as a Resource Manager

	computer System organization:
	Files:
	System Call:

	Kernel:
	Operating System Structure:
	Monolithic System
	Layered Operating System
	Virtual Machines:
	Client-Server or Microkernel
	Function of Operating system:
	Evolution of Operating System:
	Serial Processing:
	Simple Batch Processing:
	Multiprogrammed Batch System:
	Multitasking or Time Sharing System:

	Distributed System:
	Distributed Operating System:
	Real Time Operating System:
	Chapter-2 Processes and Threads
	Introduction to process:
	The process Model
	Process Creation:
	Process Control Block:
	Process Termination:

	Process States:
	Implementation of Process:
	Context Switching:
	Threads:
	Multithreading:
	Benefits of Multi-threading:
	Process VS Thread:
	Threads Model:

	Interprocess Communication:
	Shared Memory:
	Message Passing:
	Interprocess Communication:
	Race Condition:
	The situation where two or more processes are reading or writing some shared data & the final results depends on who runs precisely when are called race conditions.

	Avoiding Race Conditions:
	1. Critical Section:

	Techniques for avoiding Race Condition:
	1.Disabling Interrupts:
	2.Lock Variables
	3.Strict Alteration:
	4.Peterson's Solution:
	5. The TSL Instruction
	Problems with mutual Exclusion:
	Priority Inversion Problem:
	Let us now look at some IPC primitives that blocks instead of wasting CPU time when they are not allowed to enter their critical regions. Using blocking constructs greatly improves the CPU utilization
	Sleep and Wakeup:
	Examples to use Sleep and Wakeup primitives:
	Producer-consumer problem (Bounded Buffer):

	Semaphore:
	Advantages of semaphores:
	Disadvantages of semaphores:

	Monitors:
	Message Passing:

	Chapter 4: Scheduling:
	Scheduling Criteria:
	Types of Scheduling:
	Scheduling Algorithms:
	1. First come First Serve:
	2. Shortest Job First:
	3. Round-Robin Scheduling Algorithms:
	4. Priority Scheduling:
	Multilevel Queue Scheduling:
	Guaranteed Scheduling:
	Lottery Scheduling:
	Two-Level Scheduling:
	Scheduling in Real Time System:
	Policy VS Mechanism:

	Chapter:6 Input/Output:
	What about I/O?
	Some operational parameters:
	Device Controllers:
	Memory-mapped Input/Output:
	Port-mapped I/O :

	DMA: (Direct Memory Access)
	Device Driver:

	Ways to do INPUT/OUTPUT:
	Programmed I/O
	Interrupt-driven I/O:
	DMA:
	Disks:
	Terminals:

	Clock:

	Chapter 4:Deadlock:
	Resources
	What is Deadlock?
	Starvation vs. Deadlock
	Conditions for Deadlock:

	Deadlock Modeling:
	Methods for Handling Deadlock:
	Deadlock Prevention

	Deadlock Avoidance:
	Bankers Algorithms:

	Bankers Algorithms for Multiple Resources:
	 Detection and Recovery
	 The Ostrich Algorithm

	Chapter 5: Memory Management
	Types of Memory:
	Memory Management:
	Two major schemes for memory management.
	Contiguous allocation
	Non-contiguous allocation

	Memory Partitioning:
	1. Fixed Partitioning:
	2.Dynamic/Variable Partitioning:
	Memory Management with Bitmaps:
	Memory Management with Linked Lists

	Swapping:
	Logical Address VS Physical Address:
	Non-contiguous Memory allocation:

	Virtual Memory:
	Paging:
	PAGE Fault:
	Paging Hardware:
	Page Replacement Algorithms:
	The Optimal Page Replacement Algorithm:
	FIFO: (First In First Out)
	LRU(Least Recently Used):
	The Second Chance Page Replacement Algorithm:
	The Clock Page Replacement Algorithm

	Segmentation:
	Paging Vs Segmentation:

	Chapter:6 File-systems
	What is File-System?
	File Naming
	File Attributes
	File Operations
	File Structure:
	Files Organization and Access Mechanism:
	File Allocation Method:
	Contiguous allocation:
	Linked List Allocation:
	Indexed allocation (I-Nodes):

	File System Layout:
	Directories:

