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Abstract
This chapter presents an evolutionary method for creating an artificial neural
network based controller for an autonomous land vehicle. Previous studies which
have used evolutionary procedures to evolve artificial neural networks have been
constrained to small problems by extremely high computational costs. In this
chapter, methods for reducing the computational burden are explored. Previous
connectionist based approaches to this task are discussed. The evolutionary
algorithrm used in this study, Population-Based Incremental Learning (PBIL), is a
variant of the traditional genetic algorithm. It is described in detail in this chapter.
The results indicate that the evolutionary algorithm is able to generalize to
unseen situations better than the standard method of error backpropagation; an
improvement of approximately 18% is achieved on this task. The networks
evolved are efficient; they use only approximately half of the possible
connections. However, the evolutionary algorithm may require considerably more
computational resources on large problems.
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1.1 Overview
In this chapter, evolutionary optimization methods are used to improve the
generalization capabilities of feed-forward artificial neural networks. Many of the
previous studies involving evolutionary optimization techniques applied to
artificial neural networks (ANNs) have concentrated on relatively small problems.
This chapter presents a study of evolutionary optimization on a "real-world"
problem, that of autonomous navigation of Carnegie Mellon's NAVLAB system.
In contrast to the other problems addressed by similar methods in recently
published literature, this problem has a large number of pixel based inputs and
also has a large number of outputs to indicate the appropriate steering direction.

The feasibility of using evolutionary algorithms for network topology discovery
and weight optimization is discussed throughout the chapter. Methods for
avoiding the high computational costs associated with these procedures are
presented. Nonetheless, evolutionary algorithms remain more computationally
expensive than training by standard error backpropagation. Because of this
limitation, the ability to train on-line, which may be important in many realtime
robotic environments, is not addressed in this chapter. The benefit of evolutionary
algorithms lies in their ability to perform global search; they provide a
mechanism which is more resistant to local optima than standard
backpropagation. In determining whether an evolutionary approach is appropriate
for a particular application, the conflicting needs for accuracy and speed must be
taken into careful consideration.

The next section very briefly reviews the fundamental concepts of ANNs. This
material will be familiar to the reader who has had an introduction to ANNs.
Section 1.3 provides an overview of the currently used artificial neural network
based steering controller for the NAVLAB, named ALVINN (Autonomous Land
Vehicle in a Neural Network) [16]. Section 1.4 gives the details of the
evolutionary algorithm used in this study to evolve a neuro-controller;
Population-Based Incremental Learning [4]. Section 1.5 gives the details of the
task. Section 1.6 gives the implementation and results. Finally, Sections 1.7 and
1.8 close the chapter with conclusions and suggestions for future research.

1.2 Introduction to Artificial Neural Networks
An Artificial Neural Network (ANN) is composed of many small computing
units. Each of these units is loosely based upon the design of a single biological
neuron. The models most commonly used are far simpler than their biological
counterparts. The key features of each of these simulated neurons are the inputs,
the activation function, and the outputs. A model of a simple neuron is shown in
Figure 1.1. The inputs to each neuron are multiplied by connection weights
giving a net total input. This net input is passed through a non-linear activation
function, typically the sigmoid or hyperbolic tangent function, which maps the
infinitely ranging (in theory) net input to a value between set limits. For the
sigmoidal activation function, input values will be mapped to a point in (0,1) and
for the hyperbolic tangent activation function, the input will be mapped to a
value in (-1,1). Once the resultant value is computed, it can either be interpreted
as the output of the network, or used as input to another neuron. In the study
presented in this chapter, hyperbolic tangent activations were used.
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Figure 1.1: The artificial neuron works as follows: the summation of the
incoming (weights * activation) values is put through the activation function in

the neuron. In the above shown case, this is a sigmoid. The output of the neuron,
which can be fed to other neurons, is the value returned from the activation

function. The x's can either be other neurons or inputs from the outside world.

Artificial neural networks are generally composed of many of the units shown in
Figure 1.1, as shown in Figure 1.2. For a neuron to return a particular response
for a given set of inputs, the weights of the connections can be modified.
"Training" a neural network refers to modifying the weights of the connections to
produce the individual output vector associated with each input vector.

A simple ANN is composed of three layers, the input layer, the hidden layer and
the output layer. Between the layers of units are connections containing weights.
These weights serve to propagate signals through the network. (See Figure 1.2.)
Typically, the network is trained using a technique which can be thought of as
gradient descent in the connection weight space. Once the network has been
trained, given any set of inputs and outputs which are sufficiently similar to
those on which it was trained, it will be able to reproduce the associated outputs
by propagating the input signal forward through each connection until the output
layer is reached.

Figure 1.2: A fully connected three layer ANN is shown. Each of the connections
can change its weight independently during training.
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In order to find the weights which produce correct outputs for given inputs, the
most commonly used method for weight modification is error backpropagation.
Backpropagation is simply explained in Abu-Mostafa's paper "Information
Theory, Complexity and Neural Networks"[l]:

...the algorithm [backpropagation] operates on a network with a
fixed architecture by changing the weights, in small amounts, each
time an example yi = f(xi) [where y is the desired output pattern,
and x is the input pattern] is received. The changes are made to

make the response of the network to xi closer to the desired
output, yi. This is done by gradient descent, and each iteration is
simply an error signal propagating backwards in the network in a
way similar to the input that propagates forward to the output.

This fortunate property simplifies the computation significantly.
However, the algorithm suffers from the typical problems of

gradient descent, it is often slow, and gets stuck in local minima.

If ANNs are not overtrained, after training, they should be able to generalize to
sufficiently similar input patterns which have not yet been encountered. Although
the output may not be exactly what is desired, it should not be a catastrophic
failure either, as would be the case with many non-learning techniques. Therefore,
in training the ANN, it is important to get a diverse sample group which gives a
good representation of the input data which might be seen by the network during
simulation. A much more comprehensive tutorial of artificial neural networks can
be found in [12].

1.3. Introduction to ALVINN
ALVINN is an artificial neural network based perception system which learns to
control Carnegie Mellon's NAVLAB vehicles by watching a person drive, see
Figure 1.3. ALVINN's architecture consists of a single hidden layer
backpropagation network. The input layer of the network is a 30x32 unit two
dimensional "retina" which receives input from the vehicle's video camera, see
Figure 1.4. Each input unit is fully connected to a layer of four hidden units
which are in turn fully connected to a layer of 30 output units. In the simplest
interpretation, each of the network's output units can be considered to represent
the network's vote for a particular steering direction. After presenting an image to
the input retina, and passing activation forward through the network, the output
unit with the highest activation represents the steering arc the network believes to
be best for staying on the road.

To teach the network to steer, ALVINN is shown video images from the onboard
camera as a person drives and is trained to output the steering direction in which
the person is currently steering. The backpropagation algorithm alters the
strengths of connections between the units so that the network produces the
appropriate steering response when presented with a video image of the road ahead
of the vehicle.

Because ALVINN is able to learn which image features are important for
particular driving situations, it has been successfully trained to drive in a wider
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variety of situations than other autonomous navigation systems which require
fixed, predefined features (e.g., the road's center line) for accurate driving. The
situations ALVINN networks have been trained to handle include single lane dirt
roads, single lane paved bike paths, two lane suburban neighborhood streets, and
lined divided highways. In this last domain, ALVINN has successfully driven
autonomously at speeds of up to 55 m.p.h., and for distances of over 90 miles on
a highway north of Pittsburgh, Pennsylvania.

Figure 1.3: The Carnegie Mellon NAVLAB Autonomous Navigation testbed.

Figure 1.4: The ALVINN neural network architecture.

The performance of the ALVINN system has been extensively analyzed by
Pomerleau [16][17][18]. Throughout testing, various architectures have been
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examined, including architectures with more hidden units and different output
representations. Although the output representation was found to have a large
impact on the effectiveness of the network, other features of the network
architecture were found to yield approximately equivalent results [15][16]. In the
study presented here, the output representation examined is the one currently used
in the ALVINN system, a distributed representation of 30 units.

1.3.1 Training ALVINN
To train ALVINN, the network is presented with road images as input and the
corresponding correct steering direction as the desired output. The correct steering
direction is the steering direction the human driver of the NAVLAB has chosen.
The weights in the network are altered using the backpropagation algorithm so
that the network's output more closely corresponds to the target output. Training
is currently done on-line with an onboard Sun SPARC-10 workstation.

Several modifications to the standard backpropagation algorithm are used to train
ALVINN. First, the weight change "momentum" factor is steadily increased
during training. Second, the learning rate constant for each weight is scaled by the
fan-in of the unit to which the weight projects. Third, a large amount of neighbor
weight smoothing is used between the input and hidden layers. Neighbor weight
smoothing is a technique to constrain weights which are spatially close to each
other, in terms of their connections to the units in the input retina, to similar
values. This is a method of preserving spatial information in the context of the
backpropagation algorithm.

In its current implementation, ALVINN is trained to produce a Gaussian
distribution of activation centered around the appropriate steering direction.
However, this steering direction may fall between the directions represented by
two output units. A Gaussian approximation is used to interpolate the correct
output activation levels of each output unit. Using the Gaussian approximations,
the desired output activation levels for the units successively farther to the left
and the right of the correct steering direction will fall off rapidly on either side of
the two most active units. A representative training example is shown below, in
Figure 1.5. The 15x16 input retina displays a typical road input scene for the
network. The target output is also shown. This corresponds to the steering
direction the driver of the NAVLAB chose during the test drive made to gather the
training images. Also shown is the output of an untrained network. Later in the
chapter, trained outputs will be shown for comparison.

One of the problems associated with this training is that the human driver will
normally steer the vehicle correctly down the center of the road (or lane).
Therefore, the network will never be presented with situations in which it must
recover from errors, such as being slightly off the correct portion of the road. In
order to compensate for this lack of real training data, the images are shifted by
various amounts relative to the road's center. The shifting mechanism maintains
the correct perspective, to ensure that the shifted images are realistic. The correct
steering direction is determined by the amount of shift introduced into the images.
The network is trained on the original and shifted images.
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Figure 1.5: Input image, target and actual outputs before training.

1.4 The Evolutionary Approach
The majority of approaches in which evolutionary principles are used in
conjunction with neural network training can be broadly subdivided into two
groups. The first concentrates on formulating the problem of finding the
connection weights of a predefined artificial neural network architecture as a
search problem. Traditionally backpropagation, or one of its many variants, has
been used to train the weights of the connections. However, backpropagation is a
method of gradient descent through the weights space, and can therefore get stuck
in local minima. Evolutionary algorithms (EAs) are methods of global search,
and are less susceptible to local minima. Finding the appropriate set of weights
in a neural network can be formulated as parameter optimization problem to
which EAs can be applied in a straightforward manner. A much more
comprehensive overview of evolutionary algorithms, and their applications to
parameter optimization tasks, can be found in [3] [9].

The second method for applying EAs endeavors to find the appropriate structure
of the network for the particular task; the number of layers, the connectivity, etc.,
are defined through the search process. The weights can either be determined using
backpropagation to train the networks specified by the search, or can
simultaneously be found while searching for the network topology. The method
explored in this chapter is a variant of the latter approach, and will be described in
much greater detail in the following sections. The advantage to this method is
that if there is very little knowledge of the structure of the problem, and therefore
no knowledge, other than the number of inputs and outputs needs that need to be
incorporated into the network, the structure of the network does not need to be
predefined in detail.

Given the possibility of backpropagation falling into a local minima, and the
potential lack of knowledge regarding the appropriate neural network architecture
to use, using EAs appears to be a good alternative. However, the largest drawback
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of EAs, and the one which has made them prohibitive for many "real world"
learning applications, is their enormous computational burden. As EAs do not
explicitly use gradient information (as backpropagation does), large amounts of
time may be spent searching before an acceptable solution is found.

Previous work has been done to measure the feasibility of evolutionary
approaches on standard neural network benchmark problems, such as the encoder
problem, and exclusive-or (XOR) problems, etc. More complicated problems
have also been attempted, such as the control of an animat which learns to play
soccer, given a small set of features about the environment such as the ball
position, the status of the ball, etc. with good results [14]. Other work, which
has concentrated on solving a "search and collection task" of simulated ants has
used the evolution of recurrent neural networks, with evolutionary programming,
again with successful results [2].

Many of the studies which have used evolution as the principle learning paradigm
of training artificial neural networks have often modelled evolution through
genetic algorithms [6][10][14]. However, genetic algorithms are very
computationally expensive for large problems. In order to reduce the search times,
a novel evolutionary search algorithm is used in this study. The algorithm,
Population Based Incremental Learning (PBIL), is based upon the mechanisms of
a generational genetic algorithm and the weight update rule of supervised
competitive learning [12]. Although a complete description of its derivation and
its performance compared with other evolutionary algorithms is beyond the scope
of this chapter, a description of its fundamental mechanisms can be found below.
More detailed descriptions of the algorithm and results obtained in comparisons
with genetic algorithms and hillclimbing can be found in [4].

1.4.1 Population-Based Incremental Learning
PBIL is an evolutionary search algorithm based upon the mechanisms of a
generational genetic algorithm and supervised competitive learning. The PBIL
algorithm, like standard genetic algorithms, does not use derivative information;
rather, it relies on discrete evaluations of potential solutions. In this study, each
potential solution is a fully specified network; both the topology and the
connection weights can be encoded in the potential solution and evolved in the
search process. The PBIL algorithm described in this chapter operates on potential
solutions defined in a binary alphabet. The exact encodings of the networks will
be described in the next section.

The fundamental goal of the PBIL algorithm is to create a real-valued probability
vector which specifies the probability of having a '1' in each bit position of the
potential solution. The probabilities are created to ensure that potential solutions,
from which the individual bits are drawn with the probabilities specified in the
probability vector, have good evaluations with a high probability. The
probability vector can be considered a "prototype" for high evaluation vectors for
the function space being explored.

A very basic observance of genetic algorithm behavior provides the fundamental
guidelines for the performance of PBIL. One of the key features in the early
portions of genetic optimization is the parallelism inherent in the search; many
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diverse points are represented in the population of a single generation. In
representing the population of a GA in terms of a probability vector, the most
diversity will be found in setting the probabilities of each bit position to 0.5.
This specifies that generating a 0 or 1 in each bit position is equally likely. In a
manner similar to the training of a competitive learning network, the values in
the probability vector are gradually shifted towards the bit values of high
evaluation vectors. A simple procedure to accomplish this is described below.
The probability update rule, which is based upon the update rule of standard
competitive learning, is shown below.

probabilityi = (probabilityi x (1.0 - LR)) + (LR x solutionVectori)

probabilityi is the probability of generating a 1 in bit position i.
solutionVectori is the value of the ith position in the high evaluation vector.
LR is the learning rate (defined by the user).

The probability vector and the solutionVector are both the length of the encoded
solution.

The step which remains to be defined is determining which solution vectors to
move towards. The vectors are chosen as follows: a number of potential solution
vectors are generated by sampling from the probabilities specified in the current
probability vector. Each of these potential solution vectors is evaluated with
respect to the goal function. For this task, the goal function is how well the
encoded ANN performs on the training set. This is determined by decoding the
solution vector into the topology and weights of the ANN, performing a forward
pass through the training samples, and measuring the sum squared error of the
outputs. The probability vector is pushed towards the generated solution vector
with the best evaluation: the network with the lowest sum squared error. After
the probability vector is updated, a new set of potential solution vectors is
produced; these are based upon the updated probability vector, and the cycle is
continued.

During the probability vector update, the probability vector is also moved
towards the complement of the vector with the lowest evaluation. However, this
move is not made in all of the bit positions. The probability vector is moved
towards the complement of the vector with the lowest evaluation only in the bit
positions in which the highest evaluation vector and the lowest evaluation vector
differ.

In addition to the update rule shown above, a "mutation" operator is used. This is
analogous to the mutation operator used in standard genetic algorithms. Mutation
is used to prevent the probability vector from converging to extreme values
without performing extensive search. In standard genetic algorithms the mutation
operator is implemented as a small probability of randomly changing a value in a
member of the population. In the PBIL algorithm, the mutation operator affects
the probability vector directly; each vector position is shifted in a random
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direction with a small probability in each iteration. The magnitude of the shift is
small in comparison to the learning rate.

The probability vector is adjusted to represent the current highest evaluation
vector. As values in the bit positions become more consistent between highest
evaluation vectors produced in subsequent generations, the probabilities of
generating the value in the bit position increases. The probability vector has two
functions, the first is to be a prototype for high evaluations vectors, and the
second is to guide the search from which it is further refined.

In the implementation used in this study, the population size is kept constant at
30; the population size refers to the number of potential solution vectors which
are generated before the probability vector is updated. This is a very small
population size in comparison to those often used in other forms of evolutionary
search. Because of the small size and the probabilistic generation of solution
vectors, it is possible that a good vector may not be created in each generation.
Therefore, in order to avoid moving towards unproductive areas of the search
space, the best vector from the previous population is also kept in the current
population. This solution vector is only used in case a better evaluation vector is
not produced in the current generation. In genetic algorithm literature, this
technique of preserving the best solution vector from one generation to the next
is termed "elitist selection," and is often used in parameter optimization problems
to avoid losing good solutions, by random chance, once they are found.

P <-- initialize probability vector. (Each position = 0.5)
loop # GENERATIONS

***** Generate Samples *****

i ← loop #SAMPLES

samplei ← generate sample vector according to

probabilities in P

evaluationi ← Decode_Network_and_Perform_Forward_Pass

(samplei)

best ← find vector corresponding to best evaluation

worst ← find vector corresponding to worst evaluation
***** Update Probability Vector towards best network *****

I ← loop #LENGTH
PI ← PI * (1.0 - LR) + bestI * (LR)

***** Update Probability Vector away from worst network *****

I ← loop #LENGTH
if (bestI ≠ worstI) PI ← PI * (1.0 - NEGATIVE-LR) + bestI
* (NEGATIVE-LR)

***** Mutate Probability Vector *****

I ← loop #LENGTH
if (random (0,1) < MUT_PROBABILITY)

PI ← PI (1.0 - MUT_SHIFT) + random (0.0 or 1.0) *

(MUT_SHIFT)

USER DEFINED  CONSTANTS:
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GENERATIONS: how many iterations the algorithm is allowed to
continue.

SAMPLES: the number of vectors generated before update of the
probability vector

LENGTH: the number of bits in a generated vector
MUT_PROBABILITY: the probability for a mutation occurring in each

position
MUT_SHIFT: the amount a mutation alters the value in the bit

position
LR: the learning rate, how fast to exploit the search performed

so far.
NEGATIVE-LR: the negative learning rate, how much to learn from

negative examples.

Figure 1.6: The general PBIL algorithm for a binary alphabet. The "elitist"
selection mechanism is not shown.

A complete discussion of the merits and drawbacks of this algorithm, as
compared to a standard genetic algorithm, is beyond the scope of this chapter.
This algorithm, which is far less complex than even a simple genetic algorithm,
very quickly optimizes many of the functions which are used to gauge genetic
algorithm performance. It does not, however, use the crossover (recombination)
operators, or define operations directly on the members of the population, both of
which are common to genetic algorithms. The basic algorithm is shown in
Figure 1.6. In the set of standard GA benchmark problems on which PBIL has
been compared, the resulting solutions found by PBIL are better than those found
with the genetic algorithm, and are discovered with far less computational cost
[4].

1.5 Task Specifics
The central task explored in this chapter is to develop ANNs for control of an
autonomous land vehicle. The specific goal is to develop ANNs which are able to
generalize beyond their training set. The motivation for this task is the current
project at Carnegie Mellon University to create a pool of pre-trained ALVINN
networks, each of which is trained on different road types, under different
conditions, etc., from which the appropriate network can be chosen to achieve the
most accurate steering direction. Special purpose hardware is currently being
designed to allow pre-trained neural networks to control the steering direction.
The hardware design does not support modification of the weights; therefore on-
line training of the networks is not possible. The goal of this project is to create
pre-trained networks which perform well in the encountered situations. This task
differs in several ways from the standard ALVINN task. The first difference is that
a large degree of good generalization, while important, is not crucial in standard
ALVINN tests, as ALVINN is frequently trained to adapt to changing conditions.
Secondly, this task does not have to be done on-line. In the standard ALVINN
task, training speed is crucial, as it must be able to adapt "on-the-fly" to changing
lighting conditions, changing road-types, and changing weather conditions, etc. In
this task, the on-line training is not required, as the network pool is trained before
any of the networks are used.
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For the experiments presented here, four sets of data were collected. Two sets of
data were obtained by driving back and forth on a partially shaded single lane
paved bicycle path. The other two sets of data were obtained by driving back and
forth on a a two lane suburban neighborhood street. The training for all of the
experiments in this chapter was done on a total of 1000 images. In the training
set, 500 images from the first road type were used, traveling only in one
direction, and 500 images were used of the second road type, again only traveling
in a single direction. Each of these four sets of images are composed of images of
typical road scenes, and images which contain shifts and rotations of the road in
the original images. More details of how these shifts and rotations are performed,
and their use in training standard ALVINN networks, can be found in [16].

As mentioned before, the PBIL algorithm used in this study operates on binary
strings. One of the drawbacks of using a binary alphabet is that the values of the
weights of the encoded network must be discretized to a specified precision. As
the solution string lengths used in this study are also of fixed size, the number of
bits allocated to represent each weight are pre-specified before the algorithm is
started. The translation of these bits to weights assumes that the bits encode a
base-2 number which specifies the value of the weight within a pre-specified
range of possible values. It has been found through empirical testing that
overestimating the number of required bits did not hinder performance, although it
did increase the search time.

The encodings of the networks into binary strings was as follows: each
connection in the network is determined to be either present or absent by a single
bit. The weight of the connection, if it is present, is determined by a pre-specified
number of bits, and is encoded as a base-2 number. See Figure 1.7 for an
example. Although in these experiments the number of bits to represent a
connection weight were prespecified, this is not a requirement for evolutionary
procedures. An alternative method which avoids this limitation, in which the
granularity of detail is also evolved in the search process, is described in [14].

Figure 1.7: Network Encoding into binary form. In this example, the weight of
each connection is represented with 5 bits. The presence of each connection is

determined by the value of an additional bit.
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In the experiments attempted in this chapter, the maximal network, a network
which specifies the maximum number of feed forward connections allowed (this
is user defined), is used as the basis of the solution encodings used in PBIL. This
network employed for this study is similar to the one shown in Figure 1.4, with
30 output units, 5 hidden units, and a 15x16 input retina. This architecture is the
maximal network, the number of connections ultimately used by the final
architecture is determined through the search process.

1.6 Implementation and Results
In an evolutionary approach, the need to evaluate each ANN is the source of the
largest time penalties. Each ANN must be evaluated to determine which network
in the current population has the smallest sum squared error and the largest sum
squared error on the training set, as these two examples are used for adjusting the
probability vector in the PBIL algorithm. As mentioned before, the evaluation of
each network is proportional to the sum squared error between the target and
predicted outputs for each image in the training set. In the experiments presented
in this chapter, the training set size was 1000 images. With this size training set,
evaluating each network is very computationally expensive. A training method
designed to reduce the computational burden is presented below.

Rather than evaluating each network on the entire training set, for each network
evaluation a small, randomly selected, portion of the training set is used to
measure the network's performance. Although this does not provide an exact
indication of the performance of the network on the entire training set, it provides
an estimate. The larger the sample size, the more accurate the estimate. The
drawback of using only a subset of the training set for each evaluation is the
potential noise in each evaluation. However, the consequences of this drawback
are reduced as the "survival" of networks throughout a number of consecutive
generations will most likely be an indication of their ability to work well on
large portions of the training set. In practice, this provides an effective method of
reducing the computational burden, with little loss in generalization ability.
However, this method should not be used if generalization is not crucial. If the
network's capability of memorizing the training set is important, this method
does not perform as well [5].

Tests were performed with 1000 training, 100 validation and 800 image test sets.
Training was only guided by the errors the network accrued on the training set.
The validation set was used to gauge which network should be chosen at the end
of the search to test the generalization ability of the network. The generalization
ability is gauged on the 800 image test set. The test set was only used once per
run, to gauge the performance of the single network which had the lowest average
error on the validation set. All of the results are reported in terms of the error on
the test set.

For these experiments, 7 bits were used to represent each weight, with the ranges
of weights between -1.0 and 1.0. The search was allowed to progress 3000
generations with 30 networks evaluated per generation. To avoid problems with
noise in the network's evaluation, one fifth to one third of the entire training set
(200-333 images) were used to evaluate each network.
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Other tests have been performed with networks which have only a single output
unit [5]. The steering direction is determined by the activation of the output unit.
In those tests, the same training, validation, and testing sets were used. Results
revealed that the use of samples sizes as small as 50 images for each network's
evaluation led to approximately equivalent performance, in terms of
generalization ability, with using the entire 1000 image training set for each
evaluation [5]. However, larger sample sizes are needed for networks which use
the 30 output distributed steering direction representation described in this
chapter.

The encoding of the network used a bit string which is longer than is used in
most evolutionary search procedures. For each connection, its absence or presence
required 1 bit, the encoding of the weight required 7 bits. The 7 bits were
interpreted as a base-2 number; the value was mapped to a number between [-1,
+1]. In the maximal network, there were a total of 1114 possible connections:
(240+1) * 4 (input to hidden), and (4 +1) * 30 (hidden to output). The (+1)
factors are used for connections to a bias input unit, this is a unit whose value is
permanently clamped to a value of (+1.0), to which all units are connected [12].
With 1114 connections, the total size of the bit string was 8912 bits.

In order to give a base-line performance from which to compare the performance
of the evolutionary algorithms, results using the backpropagation algorithm are
also given. The backpropagation algorithm incorporated all of the modifications
which are used in standard ALVINN training [15]. All of the results presented in
this chapter are the average of at least 10 training sessions. Backpropagation was
able to achieve an average sum squared error of 9.40, measured on the 800 image
test set. The PBIL algorithm was able to achieve an average error of 8.19, an
error reduction of approximately 13%. The final networks successfully pruned
away, on average, approximately half of the possible connections. The drawback
of the PBIL approach, however, is the training time; the backpropagation
algorithm took only several minutes, on average, to train the networks to its
lowest error. The evolutionary approach took over an hour. As mentioned before,
the need for generalizability must be carefully weighed with the desire for
efficiency when choosing the appropriate training method. In Figure 1.8, sample
input and output are given after training by PBIL. Samples attained by
backpropagation are also shown.

A second test was conducted to determine whether PBIL could perform better if
the architecture was pre-specified, and only the weights of the connections were
evolved. For this experiment, the maximal network previously described was
used. PBIL was only allowed to modify the weights, not the architecture of the
ANN. The hope was that if PBIL was constrained to a pre-specified architecture,
it may do better because the search space is more constrained. Further, the
connections can be effectively eliminated by setting the connection weight to 0.0.
Using only the evolution of weights, PBIL was able to find networks which, on
average, had an average sum squared error of 7.96; this reflects approximately a
15% improvement over standard backpropagation. This network was encoded in
7798 bits. This is smaller than the encoding used in the previous experiment as
each connections was assumed to be present.
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                          PBIL Backpropagation

Figure 1.8: (Left) The PBIL derived network's output. The actual output for this
image has the correct general location as the target output. However, the output
is not as smooth as the target. (Right) Typical outputs of a network architecture
trained with backpropagation. Figures are taken from the test set. Sum squared
errors are as follows (PBIL) a: 4.2, b: 8.2, c: 9.9. and (Backpropagation) a: 2.0,
b: 15.0, c: 23.7. Images chosen from the test set to show a wide range of errors.

To this point, the effectiveness of evolutionary search techniques has been
compared to that of backpropagation using the sum squared error metric. As both
algorithms were trained only with this error metric, it is correct to measure their
general relative effectiveness by comparing the performances based upon this
error. However, in terms of absolute performance, domain specific error metrics
are often more indicative of real performance improvements. In this domain, such
an error metric is Gaussian peak position error (GPPE). This is a measure of the
distance (in output units) between the correct peak in the Gaussian, and the
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predicted peak in the Gaussian. This is a linear translation of the steering error.
The performances of the training methods gauged by this error metric are also
provided in Table 1.1.

TRAINING METHOD
30 Output PBIL topology

& weights
PBIL

weights
Back-

Propagation

SSE 8.19 7.96 9.40
% ERROR DECREASE 30
output BP (SSE)

12.9 15.3 n/a

GAUSSIAN PEAK
POSITION ERROR (GPPE)

2.96 2.90 3.35

% ERROR DECREASE 30
output BP (GPPE)

11.6 13.4 n/a

Table 1.1: Results with training using the SSE error metric.

The errors are shown in Table 1.1 in terms of both average sum squared error and
Gaussian peak position error. Since the evolutionary technique only used network
evaluations based upon sum squared error (SSE), larger improvements are seen
when performance is gauged using this error metric than when gauged with the
GPPE error metric. Nonetheless, the GPPE error metric is more indicative of the
actual performance of the system. In the next section, network evaluations which
are based upon the GPPE metric are explored. It should be emphasized that
although simple backpropagation could not have easily used the GPPE error
metric, evolutionary algorithms can very easily incorporate such information to
guide the search.

1.6.1 Using a Task Specific Error Metric
To this point, all of the experiments have used the sum squared error metric to
guide the evolutionary search. Nonetheless, for many problems, the output which
is produced by the ANN must be translated into a different form to be used by the
specific task. For example, in order to use the 30 output representation, a
gaussian is fit to the outputs, and the peak of the Gaussian is used to determine
the predicted steering direction. It is the distance between the predicted and actual
peaks of the gaussian which is crucial to good performance, since this determines
the error in the network's steering direction. However, the peak difference error
measure does not provide an easy mapping of credit or blame to each specific
output unit, as is needed for backpropagation. Therefore, sum squared error is
often used as the guiding error metric.

In other domains, alternate error metrics have been proposed for backpropagation
to better capture the underlying requirements of specific tasks. One such error
metric, the Classification Figure of Merit (CFM) error metric has been used for
problems such as the 1-of-N classifier. The standard SSE error metric attempts to
minimize the difference between each output node and its target activation. The
CFM error metric attempts to maximize the difference between the activation of
the output node representing the correct classification and the output of all the
other nodes which represent incorrect classifications [11]. The CFM error metric
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concentrates changes on ensuring that the correct classification is made rather than
ensuring that the target output is matched exactly.

The CFM error metric focuses effort towards performing the underlying task of
classification rather than reproducing the exact target vector. Similarly, using the
GPPE error metric focuses the training towards yielding accurate peak position
interpretation of the output vector. Unlike the CFM error metric, however, error
cannot easily be assigned to individual output units with the GPPE error metric.
Nonetheless, because most evolutionary techniques do not use explicit credit
assignment, the GPPE error metric can still be used to guide the evolutionary
search. In this section, networks are evolved which explicitly reduce the GPPE
rather than the sum squared error; each network is evaluated by its ability to
reduce the GPPE error on each image in the training set, without regard to the
sum squared error.

Using the GPPE error metric changes the goal of the search algorithm. Using the
SSE error metric, the goal is to reproduce the entire target output vector exactly.
Using the GPPE error metric, the goal is to place a larger output activation on
the portions of the output vector which correspond to the correct steering
direction than those which do not. In determining where the peak of the Gaussian
lies in the output vector, many of the small amounts of noise can be ignored.
This gives the search procedure the flexibility to not be as precise in large
portions of the output vector and still achieve a high score; this is clearly
displayed in Figure 1.9.

The average error using the GPPE error metric was 2.76 (GPPE); this is
approximately an 18% improvement over backpropagation. The error measured in
terms of SSE, however, was much higher than in the previous experiments:
19.3. The large difference in SSE error, in comparison to the other experiments
presented before, indicates that doing well in terms of SSE is not a prerequisite
for good performance on the error metric of interest, GPPE.

1.7 Conclusions
Various parameter settings were used for all of the training methods. In addition,
the backpropagation algorithm used in this study maintained spatial information
about the input retina, through neighbor weight smoothing, which the
evolutionary algorithm was not given. Nonetheless, the evolutionary approach
performed better, on average, than backpropagation. Although the evolutionary
approach provides performance improvements, it also incurs severe computation
penalties. For example, the backpropagation method was able to achieve its
minimum in several minutes. The evolutionary approach took over an hour. In
deciding whether to use an evolutionary approach or backpropagation, it is
necessary to carefully weigh the need for accuracy with the desire for speed.

This chapter has presented several techniques for increasing the efficiency of
evolutionary procedures for training artificial neural networks. The first is the
evolutionary procedure used — the population based learning algorithm.
Although it is far less complex than a simple genetic algorithm, it is effective in
the optimization problems to which genetic algorithms are often applied [4]. The
second is the evaluation of each network on a subset of the original training set.
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The majority of the time in the evolutionary search procedure is spent evaluating
the effectiveness of each network. The time to create a new potential solution
vector, including the generation of a new solution vector, and the translation of it
to the structure and weights of the ANN, is very small in comparison. Therefore,
a reduction in the time spent in the network evaluation portion of the algorithm
has a tremendous impact on the overall speed of learning.

PBIL using Gaussian Backpropagation using
Peak Position Error Sum Squared Errors

Figure 1.9: Sample input and output using the GPPE error metric. Images taken
from test set. Images were chosen to show different amounts of GPPE errors:

image A: 0.53, B: 1.16, C: 1.71. Backpropagation, trained with the standard SSE
error metric, achieves the following GPPE errors: 0.49, B: 1.70, C: 5.12.

Evolutionary search procedures have the ability to use direct information of error
metrics other than those which can easily be used by backpropagation. This can
lead to improved performance on the specific task. In this chapter, either the
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GPPE or SSE error metric was used to guide the evolutionary search. Although it
was not tried in this chapter, perhaps using a combination of both the error
metrics may give more information from which to guide the search, and therefore
to find better solutions. This direction is open for future research.

In many of the previous studies in which artificial neural networks were evolved,
either the entire network structure was evolved from only the inputs and outputs
specified, or only the weights were evolved once the network was entirely
prespecified. The method presented in this chapter, which is similar to the one
chosen by [14], is a hybrid between these two extremes. In this method, a
maximal network is specified. The evolutionary algorithm searches for the
network topology by either maintaining or throwing away possible connections.
The network topologies which are evolved in this study are efficient; they use
approximately only half of the total number of possible connections. This hybrid
approach allows any a priori information regarding the network topology to be
easily incorporated into the search. Although a more automatic specification of
the network would be desirable, it is suspected that as the need for more
automatic specification of networks is increased, using genetic or PBIL search
methods will increase the already large search times.

1.8 Future Directions
The version of population based incremental learning which was used in this
study was very simple. More advanced versions of the algorithm may yield better
results. For example, although the cardinality of the networks encoding was 2,
the PBIL algorithm can also work on alphabets of larger cardinality. Either using
a larger cardinality alphabet or using real valued features may improve the
performance of the algorithm. Fogel et al., have studied evolving neural networks
with real values rather than binary encoded values, and have achieved good results
[8].

In the experiments presented here, a fraction of the entire training set was used.
However, no method for determining the correct fraction of the training set to use
was presented. If too large a portion is used, search can be slowed down
tremendously. If too small a portion is used, the noise in the evaluation of each
network may lead the search algorithm away from finding networks which
perform well on the entire training set. As using samples from the training set
has the potential to greatly reduce the amount of time used for developing
networks with good generalization capabilities, more exploration should be done
to determine how much of the training set should be used for individual
evaluations.

A promising area for future research is the integration of backpropagation with
evolutionary search procedures. Evolutionary search has the ability to perform
global search while backpropagation provides the ability to perform local
optimizations. Therefore, backpropagation could be used as a "post processing"
step after the EA is completed. Another benefit for the integration of these two
procedures is potential reduction in the time needed for search by the EA. For
example, backpropagation can be periodically used to locally optimize the best
networks found through search. This makes the goal of the evolutionary search to
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find a good basin of attraction, and let backpropagation optimize the neural
network once a good basin is found. Such an approach is taken by [13].

The long-term future goal, of which this project is a part, is to collect a pool of
the evolved networks which can be installed into the NAVLAB. However, before
this can be done, several issues need to be resolved, one of which is that of
training networks with more than a single road type. The desire to use a small
number of "road specific" networks must be weighed against the potential
performance degradation of networks trained on more than a single road type. The
transition to using evolved networks, whether they are eventually evolved with
single or multiple road types, will not be difficult. The evolved networks use the
same inputs as the ALVINN networks, and their outputs are translated into
steering commands in exactly the same manner as the ALVINN networks already
in use. The results shown here appear promising in their error reduction;
nonetheless, only actual use will determine their true efficacy.
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