DSP (Spring, 2020) Filter Design

Filter Design

< Introduction
Filter — An important class of LTI systems
We discuss frequency-selective filters mostly: LP, HP, ...

We concentrate on the design of causal filters.

Three stages in filter design:

B Specification: application dependent

B “Design”: approximate the given spec using a causal discrete-time system
B Realization: architectures and circuits (IC) implementation

IR filter design techniques

® FIR filter design techniques

Frequency domain specifications
Magnitude: ‘H(eiw)‘ ,  Phase: /H (ej“’)
Ex., Low-pass filter: Passband , Transition, Stopband
Frequencies: Passband cutoff wp
Stopband cutoff s
Transition bandwidth s -p
Error tolerance 81, &2
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Figure 7.2 (a) Specifications for effective frequency response of overall system

in Figure 7.1 for the case of a lowpass filter. (b) Corresponding specifications for
the discrete-time system in Figure 7.1.
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< Analog Filters
® Butterworth Lowpass Filters
B Monotonic magnitude response in the passband and stopband
B The magnitude response is maximally flat in the passband.
For an Nth-order lowpass filter

= The first (2N-1) derivatives of |H,(jQ) |2 arezeroat Q =0.

1

14 (22

|H.(JQ) = j
0

c

N: filter order

Q. : 3-dB cutoff frequency (magnitude = 0.707)

B Properties

@) | H (j) lao=1
(6) [ H () P, =1/2 0f | H, (JO) g, = 0.707

() | H,(j€) |? is monotonically decreasing (of €2)

(d) N >0 2 |H_(jQ)|—>ideal lowpass

| H.(j)!

|
|
| Figure B.2 Dependence of Butterworth
(Jl magnitude characteristics on the
0 e Q order N.

B Poles
1
Ho(S)Ho(-9) = —
1+ (.7)2N
1,

1 -
—(2k+N-1,

Roots:s, = (—1)2N (jQ,) = Qe , k=01...2N-1
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Filter Design

(a) 2N poles in pairs: S, ,—S, symmetric w.r.t. the imaginary axis; never on the imag-

inary axis. If N odd, poles on the real axis.

(b) Equally spaced on a circle of radius QC

(c) H.(s) causal, stable € all poles on the left half plane

Jm s-plane

Q,

x| X

/
%Y

/ / \ 60°

/ \

U

\\ / Re

x| X

Figure B.3 s-plane pole locations for a
third-order Butterworth filter.

B Usage (There are only two parameters N, (2 c)
Given specifications £,Q,,0,,Q > N,Q,
| H(Q) = =

At Q=0 |[H(jQ) 5, =6; =

® Chebyshev Filters
B Type I: Equiripple in the passband; monotonic in the stopband

Type 11: Equiripple in the stopband; monotonic in the passband

|og[(;)z ]

1
N=—"2
2,/ Q 2N Q
l+e (%%) 2log( AC)

B Same N as the Butterworth filter, it would have a sharper transition band. (A smaller N

would satisfy the spec.)

B Typel:

o 1
H, (jQ) =

NCTU EE
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where V| (X) is the Nth-order Chebyshev polynominal

V() = cos(N cos ™ (x)), 0 <V (x) <1 for0< x <1

Vs (X) = 2xVy (X) =V, (X)
Vi (X) |, =1forall N
<The first several Chebyshev polynominals>

Vn(X)

1

X

2x2-1
4x3-3x
8x4-8x%+1

nlw [N |k |o|z

B Properties (Type )
1, if Nodd
@ H.(1Q) fo=1 1

1+¢

if Neven

2 1

(b) The magnitude squared frequency response oscillates between 1 and 1 ; within the
l+e

passband:

. 1
| H (JQ) o0, = > at Q=0
1+¢

(C) | H,.(j&)|? is monotonic outside the passband.

[ H.(j)l

Figure B.4 Type | Chebyshev lowpass
filter approximation.
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B Poles (Type I)
On the ellipse specified by the following:

1
Length of minor axis = 2aQ , g = 1{0[N J
2

aVN +a N

1 1
Length of major axis = 2bQ ., j, — 1( J

and g =gt +J1+672

(a) Locate equal-spaced points on the major circle and minor circle with angle
V4

o, 7, @Dz
2 N

,k=01---,N-1

(b) The poles are (x,,y,): X, =aL, cosg,, Yy, =bQ,sin g,

*
S st X Figure B.5 Location of poles for a
‘A i third-order type | lowpass Chebyshev
N filter.
B Typell:
IH._(jQ) P= 1 has both poles and zeros.
a J 2 Q 1
1+ V2 T

B Usage (There are only two parameters N, Q)
Given specifications &,€Q2,6,,€Q;% N,Q,
Q. =0,

N log[(y1— 57 +[1- 52(1+ £2)) /&5,]

Iog[(Qs/Qp)+\l(Qs/Qp)2_1]
cosh™(5/¢) (5_ 1 ]

cosh™(Q, /Q,)

N1+ 62
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® Elliptic Filters
B Equiripple at both the passband and the stopband

W Optimum: smallest (2, —€2) at the same N

1
1+ U5 (Q/Q,)

|H.(JO) =

where U  (X) : Jacobian elliptic function (Very complicated! Skip!)

B Usage (There are only two parameters N, Q)

Given specifications &,Q,,5,, Q2 N,Q,

N = K@y Q)KL (%/6%) (5: 1 J
K(g/8)K({1-(Q, /9,)?) V1462

where K (x) is the complete elliptic integral of the first kind

/2 do
K0 = '[0 NJ1-x%sin%@

[ H_(je)]

Figure B.6 Equiripple approximation
in both passband and stopband.

Remark: The drawback of the elliptic filters: They have more nonlinear phase response in
the passband than a comparable Butterworth filter or a Chebyshev filter, particu-

larly, near the passband edge.

NCTU EE
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< Design Digital IR Filters from Analog Filters

® \Why based on analog filters?
B Analog filter design methods have been well developed.
B Analog filters often have simple closed-from design formulas.
€ Direct digital filter design methods often don’t have closed-form formulas.
® There are two types of transformations
B Transformation from analog to discrete-time

B Transformation from one type filter to another type (so called frequency transformation)

Discrete-time
lowpass

Analog
lowpass

v

Analog to discrete-
time transform

:(Analog) (Digital) :
:frequency frequency :
itransform transform

Analog to discrete-

Discrete-time

Analog time transform :

' »  highpass,
highpass, g
bandpass, ... andpass, ...

® Methods in analog to discrete-time transformation
B Impulse invariance
B Bilinear transformation
B Matched-z transformation
® Desired properties of the transformations
B Imaginary axis of the s-plane = The unit circle of the z-plane
B Stable analog system —> Stable discrete-time system

(Poles in the left s-plane = Poles inside the unit circle)

NCTU EE 7
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® Steps in the design
1) Digital specifications = Analog specifications
2 Design the desired analog filter

(€)) Analog filter = Discrete-time filter

® Impulse Invariance
-- Sampling the impulse of a continuous-time system
h[n] = Tyh(nTy)
=Tahe (1) |-,

T4 : Sampling period
v' Important: to avoid aliasing
v Does not show up in the final discrete formula if we start from the digital speci-
fications, ...
B Frequency response
Sampling in time =>» Sifted duplication in frequency

; > . L2
gioy _ w N K
H(e') kzw'l |c(JT*d J*_I_d )

If H.(jQ) is band-limited and f, = % is higher than the Nyquist sampling fre-
d

quency (no aliasing)

HE“)=H.(j2) |ok=z
Td

Remark: This is not possible because the IIR analog filter is typically not bandlimited.

l . \
|li7,)

7
i Wl i N il T ~—.  Figure7.3 Illus}ration of‘alias‘mg in
N 27 ! 2w @ the impulse invariance design technique.
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Approach 1: Sampling h[n]

Approach 2: Map H(s) to H(z) because we need H(z) to implement a digital filter

anyway.
N
A
H.(s) =
kz_:ls Sk
ZN: t
ek
h.(t) =4k2

0, t<0

h[n]=T4h, (nTy)

“T 3 Al

= ST, A)E ™) uln]

1

H(z) =ZN:

K:]_ Sde Z—l
Essentially, factorize and map:
Analog pole
Discrete-time pole
Remarks: (1) Stability is preserved:

LHS poles = poles inside the unit circle

(2) No simple correspondence for zeros

Design Example: Low-pass filter

Using Butterworth continuous-time filter
Given specifications in the digital domain
“-1 dB in passband” and “-15 dB in stopband”

0.89125 <| H(e'*) |1, 0<w|<0.27
|H(e!”)|<0.17783, 037wk

NCTU EE 9
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Step 1: Convert the above specifications to the analog domain
(Assume “negligible aliasing”)

‘i o)
H(e")=H.(i—) |lo|< 7
Td
089125 < H(jQ)|<1,  0<Qf 0-2%
d

| H(jQ) < 0.17783, 0-3% 4Ok %
d d

Step 2: Design a Butterworth filter that satisfies the above specifications. That is, select

proper N, Q..
.0.27
H
IH(] T,

| Hc(jof’”) < 0.17783

d

) [> 0.89125

- 1
H() = @

2N 2
14 0.27 3 ( 1 j
Thus, T,Q, 0.89125

2N 2
0.37 ( 1 j
1+ =
T,Q, 0.17783

2> N =5.8858, T,Q,  =0.70474

- (Taking integer) N =6, T,Q_ =0.7032
(Meet passband spec. exactly; overdesign at stopband)

i (2k+N-1)
<Case 1: Assume T, =1 = S, =Q.e 2N

0.7032je12”N<zk+N1>

d
_ 0.12093
(s +0.365s + 0.495)(s? + 0.995s + 0.495)(s” +1.359s + 0.495)

<Case 2: Assume T, =1 = S, = (

H,(s)

NCTU EE 10
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Filter Design

Step 3: Convert analog filter to discrete-time

Analog pole S
U

Discrete-time pole €

<Case 1: Assume T, =1 = z, = eXp{O.?OBZ ejm(2k+N1):|

<Case 2: Assume T, »1= 7, = EXp{Td [0.7032je1'2N(2k+N1):|
T

d

They are identical! (In general, this is true.)

H(2)

Amplitude

_0.287-0.447z" . —2.143+1.14527"
1-1.297z271+0.69527% 1-1.069z7'+0.370z72
.\ 1.856 —0.630z*

1-0.997z7' +0.2572 72

Group Delay

Remarks: (1) In some filter design problems, a primary objective maybe to control some

NCTU EE

aspect of the time response. = design the discrete-time filter by impulse in-
variance or by step invariance.
(Note: Designs by impulse invariance and by step invariance don’t lead to the

same discrete-time filter!)

11



DSP (Spring, 2020) Filter Design

(2) Impulse invariance method has a precise control on the shape of the time signal.
Except for aliasing, the shape of the frequency response is preserved.

(3) Impulse invariance technique is appropriate only for bandlimited filters.

® Bilinear Transform

B Avoid aliasing but distort the frequency response — uneven stretch of the frequency axis.

u 2 (1-z7 1+ST%
s=— | orz=—25
Tg\1+2

sT(/
1-"%

2 (1-z7
)

Note: €2 axis on the s-plane = unit circle on the z-plane

LHS of the s-plane = Interior of the unit circle on the z-plane

i s-plane Tm z-plane
Image of
s = j€ (unit circle)

” A
Image of

left half-plane

B How the jQ axis is mapped to the unit circle?

_2(1-e
Z=el® Td 1+e*ja;

2 (1-z71
S =
Ty\1+2z27

- ZJtan(wj

= Q= 2tan(w) or = 2tanl[QTd]
T, 2 2

NCTU EE 12
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0
w=2 1rctc1n( d
N L Y A o
0
T e
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[
|
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1
segle ]
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\
\
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B Steps in the design
(1) Digital specifications to analog specifications: prewarp
(2) Design the desired analog filter

(3) Analog filter to discrete-time filter: bilinear transform

NCTU EE
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Design Example: Lowpass filter

Using Butterworth continuous-time filter
Given specifications in the digital domain (same as the previous ex.)

0.89125 <| H(e!*) |< 1, 0<wl|<0.27
|H(e')]<0.17783, 037 wl<r

Step 1: Prewarp  _ Ztan(wj
Td
Passband freq. 2 0.2z
9 Q, :Tdtan(j

Stopband freq. (, =2tan[o'3ﬂj

Let Td =1 since Td will disappear after “analog to discrete”.

Step 2: Design a Butterworth filter -- select proper N, Q). .

H,(j2tan(0.17)) > 0.89125
IH,(j2tan(0.157)) < 0.17783

Because 1

H (o) =————¢
(%)

2N

S5 1+(2tan(0.1ﬂ) :[ 1 )Z

Q, 0.89125
1+(2tan(0.157z)J2N :( 1 jz
Q, 0.17783
= N =5.30466,

> N=6 T,Q =0.76622

(Meet stopband spec. exactly; exceed passband spec.)

0.20238

Filter Design

Hc(s) =

NCTU EE

(s* +0.3996s + 0.5871)(s? +1.0836s + 0.5871)(s? +1.4802s + 0.5871)
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Step 3: Convert analog filter to discrete-time

H.(s) > H(z) = Hc[z(l‘ ZD
1+2

B 0.0007378(1+z 1)®
 (1-1.2686271 +0.7051z 2)(1-1.01062 " +0.3583z ?)
5 1
(1-0.9044z7" +0.2155z2 %)

H(2)

—40—

dB

—60—

—80 —

1 1 1 1
-101
(UE) 027 0.4 0.6m 0.87 -

Radian frequency (w)
(a)

Amplitude

0.4

1 1 1
0 0.2 0.4 0.6m 0.87 4
Radian frequency (w)

(b)

0 0.27 047 0.67 0.87 T
Radian frequency (w)

(©)

Remarks: (1) Bilinear transforms warps frequency values but preserves the magnitude.
Therefore, the discrete-time Butterworth filter still has the maximal flat
property; Chebyshev and Ellipic filters have equal ripple property.

(2) Although we may obtain H _(s) in closed form, it is often difficult to find the

locations of poles and zeros of H (z) from H (s)directly.

NCTU EE 15
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Bilinear Transform Design Example using 4 analog filters:

NCTU EE

passband edge frequency @, = 0.5z
stopband edge frequency o, =0.67
maximum passband gain =0dB

minimum passband gain =-0.3dB
maximum stopband gain = -30dB

Butterworth:; 15" order
10 T T v T

0

-10 |

820}
=30
—40
-50 . : -
0 74 /2 3w/4 T
Frequency, @
(a)
T T T
I e ————— e P PP
Q
o
2
2098
<
0.96 +
0 w4 /2 3m/4 T
Frequency, o
(b)

Samples

0 A A A
0 w4 /2 3m/4 T
Frequency, o
(¢
Im z-plane
X unit circle
15" order zero >><<
X|
:
§ Re
X
X
X
X
X

(d)

Filter Design
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Chebyshev | and II: 7" order

-10
220
-30
—40

-50 L i H n
0 /4 w2 37l4 -
Frequency, @
(a)

Amplitude

0 w4 w2 3ml4
Frequency, ©

(b)

Samples

0 w4 /2 3w/4
Frequency, ©
(c)
Im z-plane
X unit circle
7 order zero
X
Re
X

(d)

NCTU EE

Filter Design

10 T T T
3 !
=10 +
g 20t
B0 e R gttt g ]
-40 +
=0 /4 a2 3t ™
Frequency, @
(a)
1

Amplitude
o
o

0.96 +
0 w4 w2 3ml4 T
Frequency, ®
(b)

2 )

3 15[ 1
G
E
=
%

0 w4 2 37w/4 T
Frequency, ©
(c)
Im z-plane

unit circle

(d)

17
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Elliptic: 5™ order

10 : :

0
=10 +

dB

=20 ¢
<30 Feesvssiassasis s s ee
-40 +

-50 + - -
/4 w2 REES T

Frequency, ©
(a)

Amplitude

0.98
0.96
0 w4 w2 3ml4 ™
Frequency, ©
(b)

0 /4 /2 37/4 T
Frequency,
(©)
Im z-plane
5% unit circle
Re

X

X

(d)

NCTU EE

Filter Design
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® Frequency Transformation
-- Transform one-type (often lowpass) filter to another type.
Typically, we first design a frequency-normalized prototype lowpass filter. Then, use an
algebraic transformation to derive the desired lowpass, high pass, ..., filters from the
prototype lowpass filter.
<Prototype filter> > <Desired filter>
Z > z
-1 _ G(Z_l)
Hp(2) 1 o) = HE)
Typically, this transform is made of all-pass like factors

ole)-+f1 %)

l-o,z

Remarks: The desired properties of G(.) are
(1) transforms the unit circle in Z to the unit circle in z,
(2) transforms the interior of the unit circle in Z to the interior of the unit circle in z,
(3) G(.) is rational.
Example: Lowpass to lowpass (with different passband and stopband frequency, but magni-

tude is not changed)

Z_l—a

Z7 =
1-oz™
Check the relationship between & (the Z filter) and @ (the z filter). ¢t is a pa-
rameter. Different & offers different “shapes” of the transformed filters in @ .

-j6 _ e_”” 04

e .
1-oe™®
= tan-L (- a?)sino
- 20+ (1+a?)cos6

NCTU EE 19
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If Hp is to be mapped toa)p , then

_sin|(6, -

@, )/ 2J

“= sin[(ep +

SIE |

o, )2]

=
‘_‘:‘b
[SIERS

Filter Design

B Various Digital to Digital Transformations

TABLE7.1 TRANSFORMATIONS FROM A LOWPASS DIGITAL FILTER PROTOTYPE
OF CUTOFF FREQUENCY #p TO HIGHPASS, BANDPASS, AND BANDSTOP FILTERS

Associated Design Formulas

Filter Type Transformations
o —
Lowpass zl=2
1 —az™!
. —1 T l4a
Highpass Z -
14 az!
=2 2ak _—1 + k=1
Bandpass Z7l=—— KL LZ5
k=1 -2 _ 2ak.—1 44
k+1* k+1*
=2 _ 2a -1 g 1-k
Bandstop z7!= LA REk
1=k_—2 _ 2a _—q 49

1+k™ 1+k

. [Bp—
sin (w)
=
. {8
sin (Pf"’wp)

wp = desired cutoff frequency
4 :
cos ( L'.';& )

= Gp—w
cos(-"—,—”)

wp = desired cutoff frequency

a =

Wp2t®,] )
2

Ccos (

o =
@p2—w
cos(_&_’_pl

;. Wp3 — Wpy Gp
k = cot (T tan T

wp) = desired lower cutoff frequency
wpy = desired upper cutoff frequency
2+
cos (2223221 )

a = =
Wp2—Wp|
>

e (p
A—(zm( 3 )tan(j)

wp) = desired lower cutoff frequency
wpy = desired upper cutoff frequency

COS(
@p2 — Wp|

NCTU EE
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< Design of FIR Filters by Windowing

® Why FIR filters?
-- Always stable
-- Exact linear phase
-- Less sensitive to inaccurate coefficients

<Disadvantage> Higher complexity (storage, multiplication) due to higher orders
® Design Methods

(1) Windowing
(2) Frequency sampling
(3) Computer-aided design
Remark: No meaningful analog FIR filters
® Windowing technique advantages
-- Simple
-- Pick up a “segment” (window) of the ideal (infinite) h[n]
-- Filter order = window length = (M+1)
General form: h[n] = hy[n]w[n]

Filter impulse response = Desired response x Window
Example: Rectangular window

Window shape: \yn] = {(1) 2tﬁe?v§isl\e/l

h,[n], 0<n<M
> _
hn] {O, otherwise

® Because the filter specifications are (often) given in the frequency domain H , (e j“’) .
We take the inverse DTFT to obtain h,[n].

h,[n] = 217[[_”” Hy(e'”) e da

o o) i

NCTU EE 21
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Now, because of the inclusion of w[n],
oy 17 j (- A periodic convolution)
Hel)= = [Hy(e") w(ei? g (AP
) 2 Jrer) e

That is, H(ej‘”) is “‘smeared” version of H (el®).

Why W (e ) cannot be 5(eiw)? (If so, H(ej“’) = H, (ejw)!)

Parameters (to choose): (1) Window size (order of filter)

(2) Window shape
1-‘.’((>.'f1'4 ”]J
K A
/I\ — Hy(e ) /I\
I I
I I
I I
| |
~ W T 2?’ (2
(a)
H{e™)
/
- == | rF — == — |
| | | |
| | | |
s R ‘ 2'?7 A

(b)

1, 0<n<M

e Rectangular Window: W[n]:{() therwi
, otherwise

-- Narrow mainlobe
-- High sidelobe (Gibbs phenomenon)

-- Frequency response

. M .
W(e"")z >1-en
;_:_0 e—ja)(M +1)

NCTU EE
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sin (w(M +1)/2)
sin (w/2)

M=7)

Peak sidelobe

2 2 g 2 )

s d) ) Figure 7.20 Magnitude of the Fourier
> Ao, r - Mainlobe transform of a rectangular window
width (M=7).
. 4 . .
- Mainlobe ~ %7, M T, w(el*) - 5(!?)
M +1

-- Peak sidelobe ~ -13 dB (lower than the mainlobe)

Area under each lobe remains constant with increasing M

-> Increasing M does not lower the (relative) amplitude of the sidelobe.

(Gibbs phenomemnon)
Remarks: For frequency selective filters (ideal lowpass, highpass, ...),
narrow mainlobe > sharp transition

lower sidelobe = oscillation reduction

e Commonly Used Windows
-- Sidelobe amplitude (area) vs. mainlobe width

-- Closed form, easy to compute
Bartlett (triangular) Window:

2n M
—, 0<n<—
M ) " 2
n
nj=<2-—, —<n<M
win] v 2 <"
0, otherwise

Hanning Window:

0.5—0.5003(?\:) 0<n<M

0, otherwise

win] =

NCTU EE

Filter Design
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Hamming Window:

w[n] =

01

Blackman Window:

win] =
0,

Filter Design

0.54—0.46005(?\:),, 0<n<M

otherwise

0.42 —O.SCos(zn) + O.OSCOS(ZHJ, 0<n<M
M M

otherwise

wln] Rectangular
1.0 o
[ Hamming
: ———— Hann
08— | —-— Blackman
| -—-— Bartlett
|
0.6 !
|
|
|
0.4 1
|
r | &
| 3
0.2 p | .
s |
il : N,
0 M M
2
0
~ 20|~
= a0}
Rectangular
8 80 -
-100 : ! . L
0 027 047 0.67 087 T
Radian frequency (o)
(a)
0
= =20
< a0
= Barlett
2 60 -
S ol
100 ! !
0 027 047 0.6 087 3
Radian frequency (w)
(b)

NCTU EE

Hanning

047 ) (i.hﬂ‘7 i Uh'rw m
Radian frequency (w)

(c)

Hamming

1 |
047 087 T
Radian frequency ()

(d)

027 0.67

Blackman

N\AAAA

047
Radian frequency (@)

(e)

0.6 0.87 .7
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TABLE7.2 COMPARISON OF COMMONLY USED WINDOWS

Peak Transition

Peak Approximation  Equivalent Width

Side-Lobe  Approximate Error, Kaiser of Equivalent

Type of Amplitude Width of 20logyy 6 Window, Kaiser
Window (Relative) Main Lobe (dB) p Window
Rectangular —13 4 /(M + 1) =21 0 1.81x/M
Bartlett —25 8t /M -25 1.33 237a/M
Hann =31 St/ M —44 3.86 501z /M
Hamming —41 S8t/ M —-53 4.86 6.277/M
Blackman -57 12m/M —74 7.04 9.197/M

® Generalized Linear Phase Filters
-- We wish H (e!”) be (general) linear phase.

<Window> Choose windows such that
wn]=w{M —n], 0<n<M

That is, symmetric about M/2 (samples)

W(ei“’):W (ei“’). e_jw%, where w, (eiw) is real.

e

<Desired filter> Suppose the desired filter is also generalized linear phase
. . —jwM
)= H ) e
<Filter> H (e 1) is a periodic convolution of H , (1) and W (e!”)

H(ej“’)

M e-0)m

H e )w, (e ?)e "2e 2 do

(
)W, (o -6 2

Ale™)

1
el
1,

27

Ae(ej”) is real.

Thus, H(eiw) is also generalized linear phase.
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Example: Linear phase lowpass filter

NCTU EE

. M
: _ —jo=;
Ideal lowpass: |, (ejw): e 2, |o<o,

Ip
0, w, <|lo|<7x

: M
Impulse response: sin [wc (n - Zﬂ

hIp [n] =

. M
Designed filter: Sln{wc(n - 2)}
h[n]=

Filter Design

@, : 1/2 amplitude of H (ej“’) = cutoff frequency of the dieal lowpass filter

Peak to the left of @ occurs at ~ 1/2 mainlobe width
-Peak to the right of @, occurs at ~ 1/2 mainlobe width
Transition bandwidth A@ ~ mainlobe width- (smaller)

Peak approximation error: proportional to sidelobe area

A.(e!?)

H,(e!)

1-6
0.5 A
|
|
|
) | \
| N P
iy we \/ — T w
<—Awm o
W, (e/-9)
|
7 X | /\ P
N/ © N T

Figure 7.23 lllustration of type of approximation obtained at a discontinuity of
the ideal frequency response.
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® Kaiser Window

-- Nearly optimal trade-off between mainlobe width and sidelobe area

|{/{1_[(n—0%}2j/2]
1,(B) |

0, otherwise

win] =

0<n<M

where |, (-) : zeroth-order modified Bessel function of the first kind
a:M/2
3 shape parameter; 3 = 0, rectangular window

y’) T, mainlobe width T , sidelobe area »L

- A = _20 * Ioglo 5
0.1102(A—8.7), A>50
B =140.5842(A—-21)"* +0.07886(A—21), 21< A<50
0.0 A<21

- Ao =w, - , (stopband — passband)

_ A-8 (within +-2 over a wide range of A@ and A)
2.285-Aw

NCTU EE

Filter Design
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Amplitude

Filter Design

1.2
.
0.9 /7-' AN
7 NN
Vs N
* / \ —_—3=0
Ve (N B=
0.6 <y N —-—p=3
/ / N\ " ————p=6
. / N
Ve \ .
- ’ \ AN
03/ 7 . N
d \\\
- ~
- | | | >
0 5 10 15 20
Samples
(a)
0
N
£
=25 .
v ; /‘ : ) ' - ~ .
- LN / B A 1A f\/ B=0
e TRE T Y Y VY ==
i 1 \’|\\ |\\ ———=p=0
L TR YN (I A
: ERTE AV AV W
= I VA
oy i R 1]
ERIRIAEI
100 | 1l | (M | |
0 027 04w 0.6 0.87 T
Radian frequency (o)
(b)
M=10
—_———M=20

|
027 047 0.6 0.87 T
Radian frequency (o)

(c)

————M=40

Approximation error vs. Transition width [* = fixed windows, 0 = Kaiser (B = integer)]

T ‘.~ T T T T T T T T T
=20 i
ST
Kiliter Q~, * Bartlett
=30k Kaisch‘Q. -
.
.
E Kaisch.Q’
s T |
5 Kaiser4 'O’. * Hanning
=50 R 1
5} S .
E Kaiser5 Q%{.l-lammmg
= 60 o &
£ Kaiser6'Q
g B,
& —10F Kaiscr7~q T
27 a3 * Blackman
-80 Kaiser8+Q 4
0
.0
-90 - Kaiserd*Q, -
1 1 1 L 1 Il 1 R 1 Il
0 0.17 0.27 0.37 0.4 0.57

NCTU EE

Transition width (Aw)
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Kaiser window example — lowpass
Specifications: o; = &, = 0.001

O, + @

Ideal lowpass cutoff: ,, — s P _g5,
¢ 2

Select parameters: Aw =, -0, =027 o B =5.633
A=-20log,, 6 =60 M =37

a= 'V% =185

This is a type I, linear phase (odd M, even symmetry) filter.

Approximation error: | H (eiw)l ~|H (eja;)l

EA<eja,):{1—Ae(eiw), 0<w<w,

O—Ae(ej“’), O, <O

0.6
04
o
=
? 02—
) ] ]
0 _oonﬂ'll llTT“Qo_
_02 | | |
0 10 20 30 40
Sample number (n)
(a)
20
0
20—
2 —40

—60 —

-80 —

100 ! ! ‘
0 027 047 0.6m 087 T

Radian frequency (m)
(b)

0.0010

Amplitude

V U U\j V'V

—0.0005 —

~0.0010 ! L !
0 027 047 0.67 087 I

Radian frequency (w)

(©
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Kaiser window example — highpass

Ideal highpass: o
g p th(el )

Si
hhp [n] =

0, 0<|o| < o,

—jo—

e 2?2, o <lo<rm

r-3) oo
nzin-—/| sine,/n-—
2 2

£ 1

Specifications: §, = 5, = 0.021

Highpass cutoff: w, =

Select parameters: {

A

This is a Type | filter.

a)s + a)p _ 0357Z'+ 0571'

2 2

Aw {ﬁ= 2.6
ﬁ

M =24

Check! Approximation error = 0.0213 > 0.021!!

Filter Design

Increase M to 25 = Not good! This is a Type Il filter: azeroat-1.-> H q (e iz ) =0

But we want it to be 1 because this is a highpass filter.

Increase M to 26. Okay!

NCTU EE

Amplitude

dB

Amplitude

dB

>
D
D
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Kaiser window example — differentiator

Ideal differentiator: ~i

dt

.M
—jo—

H e (ejw)=(jw)'e 2 _g<w<rx

M . M

COS/Z'(H—ZJ SIn ﬂ(n—zj

hgiee [N] = (n_Mj - M2
) )

Note that both terms in N ¢ [N] are odd symmetric.
Hence, h[n] =—-h[M —n].

This must be a Type 111 or Type IV system.
<Comparison>
Case 1: M=10, f=2.4 > Type lll
Zeros at 0 and —1. Approximation is not good at @ = 7.
Case 2: M=5, # =2.4 > Type IV

Zeros at 0. Approximation error is smaller.

Amplitude

Amplitude

>
-
\
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< Optimum Approximation of FIR Filters

® \Why computer-aided design?
-- Optimum: minimize an error criterion
-- More freedom in selecting constraints.
(In windowing method: must 0; = &, =)
® Several algorithms — Parks-McClellan algorithm (1972)
Type | linear phase FIR filter
Its symmetry property: h,[n] = h,[-n] (omit delay)
Check its frequency response:

Ae(ej“’)= ZLlhe[n]-e*j‘””

n=-L

= h,[0]+ ZL: 2h,[n]-cos(en)

_a,+ Y, -(cos(o)’

n=1

L k
= 3 -(cos(w))
n=0

= P(X)‘X:COS(U

Note that P(x) = Zakx" is an Lth-order polynominal. In the above process, we use a
polynominal expression of cos(.), cos(wn) =T, (cosw), where T, () is the nth-order
Chebyshev polynominal. Thus, we shift our goal from finding (L+1) values of {h,[n]}
to finding (L+1) values of {a, }.

(' want to use the polynominal approximation algorithms.)

<Qur Problem now>

Adjustable parameters: {@, }, (L+1) values
Specifications: ,, % _ k. and L (L is often preselected)
pr=p?
2

Error criterion: E(w) =W (®) - [H d (e Jo )— A, (e o )J

Goal: minimize the maximum error

NCTU EE 32
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min kmax‘ E(w) ) F: passhand and stopband

{he[n]}" “w<F
(Note: Often, no constraint on the transition band)
(Why choose this minimization target? Even error values!

Recall: In the rectangular windowing method, we actually minimize

e 21 HHd(eja,)_ H (ejw}zdw. Although the total squared error can be small but errors
”—7{

at some frequencies may be large.)

<Alternation Theorem>

Fo: closed subset consists of (the union) of Example, lowpass:
disjoint closed subsets of the real axis [0, ,],[@;, 7]
X > X =C0S®w>
[Lcosw,] [cosw, 1]
P(x): rth-order polynominal
r L
P(x) = > a,x" P(cosw) = Y. a, (cosw)"
k=0 k=0
D, (x): desired function of x continuous on Dy (X) = {1, X, <x<1
FP 0, —-1<x<Xx
X =COS@
: weighting: positive, continuous on <x<
W, (X): gnting: p W, (X) = /K, x,<x<1
Fo 1, -1<x<x,
Er(X): weighted error
Ep (X) =W, (O[Dp (X) = P(X)]  Ep(X) =W, (X)[Dp () = P(¥)]
HEH; maximum error
|E]l=max Ep (x) [E]=5,
&rp

P(X) is the unique rth-order polynominal that minimizes HEH
if and only if E (X) exhibits at least (r+2) alternations
Alternation: There exist (r+2) values X; in FP such that

Eo (%) = ~Eo (%.1) = £[E

=12+, (r+1), where X, <X, <--+<X,,,-

i+1

Remark: Two conditions here for alternation: value and sign.
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Filter Design
(a)
Wp(x) Ep(x)
KT ;
I o e —a v
-1 cosw, cosw, 1 x=cosw 711\/ J Ml X =Cos @
T . (b) 2 u(;:w e
Type | linear phase FIR filter
(1) Maximum number of alternations of errors = (L+3)
(2) Alternations always occur at @, and @
(3) Equiripple except possiblyat @ =0 and @ = 77
L=7
L+3
L+2
(b)
L+2
L+2
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(Reasons)
(a) Locations of extrema: Lth-order polynominal has at most L-1 extrema. Now, in

addition, the local extrema may locate at band edges w = 0, 7, @, @, . Hence, at

p 1
most, there are (L+3) extrema or alternations.

(Note: Because x = cosw, 4P(C0S®) _» at @ =0 and w=1.)
dw

(b)If 0 Is not an alternation, for example, then because of the +- sign sequence, we
loose two alternations - (L+1) alternations €= violates the (L+2) alternation the-

orem.

L /N L N
n m\_w wy W [O7S w @

(c) The only possibility that the extrema can be a non-alternation is that it locates at
@ = 0 or @ = 7z . In either case, we have (L+2) alternations — minimum re-

quirement.

0 W W , mww wy W wy, \"i w
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Type Il linear phase FIR filter

Its symmetry property: h,[n]=h,[M —n], M odd
Frequency response:

. oM ((Ma1)2
H(e)=e 2{ Zb[n]~cos(a)(n—1/2))}
_jo™ (M2 _
—e 2 cos(zj{ > b[n].cos(a)n)}
oM
2 He)=e > cos(az)jP(cosa)y
Where p(cose) = iak (cos w)*

k=0

Problem: How to handle Cos(w)?
2

Transfer specifications!

Let , 0<ow<o,
Hq(e'”)= D, (cosw) = cos(az))
0, o, <w<r
Original New
- D(cosw
ldeal: D(cosw) < cos(ij(cosa)) Ideal: D(c0s®) < P(cosm)
2 @
COS
)
Thus,
w
cos( 2)
W(w)=W,(cosw) =5 K O<o<a,
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® Parks-McClellan Algorithm
<Type | Lowpass>

According to the preceding theorems, errors
E(w) =W (@):[H,(e")- A ()] has alternations at e i =1... L +2,if A [e!”)
is the optimum solution,
Thatis, let § = |[E||, the maximum error,

W () [Hq 62 )- A2 )|= (-D)™5, i=12.,L+2.

) L
Because p (el*) = Y a, (cosm)* = a,1+a, Cos@ +a, (COSm)° +--
k=0

at Wy a,l+a, Cosw, +a,(Cosm, )’ +--- <> agl+agx +a,(x)’ +--

at W, a,1+a, Cosm, +a,(Cosw,)” +--+ <> agl+aX, +a,(X,)” +--

Hence,
_ 1 _
1 % X X
W(a)l) r H jo,
1 d d\e
1%, K a || Hyle
W(COZ) = d;
L+2 L 4 Hd (eja)L+2 )
1 x 2 oy (D
L+2 L+2 L+2
L W(wuz)

Remark: For Type | lowpass filter, @, and @ must be two of the alternation fre-
quencies {a)i }.
Now, we have L+2 simultaneous equations and L+2 unknowns, {ai} and O .

The solutions are
L+2

2 beHy (ejmk ) L2
Li“zbk (_1)k+1 ‘ :j( (Xk =X )
k=1 W(@k)

Once we know {a,}, we can calculate A, (e Jo ) forall @.
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Filter Design

However, there is short cut. We can calculate A, (e j“’) for all @ directly based on

W(w, ), Hy (ej“’k ) and @, without solving for {a, }.

where ¢, =H, (ejwk)

NCTU EE

Aq(e"“’): P(cosw)

L+1 1

d, = []

5 Mo

_ k=1

_ Li:l{dk (X=X, )}

k=1

~ (_1) k+15 ,
W ()

ictizk (X = X;)

Initial guess of
(L + 2) extremal frequencies

Changed

4

Calculate the optimum
& on extremal set

!

Interpolate through (L + 1)
points to obtain A,(e/”)

!

Calculate error E(w)
and find local maxima
where |E(w)l =6

More than
(L+2)

extrema?

No

Retain (L + 2)
largest
extrema

4

Check whether the

extremal points changed

* Unchanged

Best approximation

|
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0.14

0.12

e
=)

=
=]
(=]

'
1
[
0.06 [

Passband or stopband ripple

=
=
E
ll"
-
7

0.02 —

———— M =10
———M=11

S

L e E St

-
-
-~

0.00 -
0.0 02w

0.4
Passband cutoff (w)

0.6 7

-- How to decide M (for lowpass)? (Experimental formula)

N log,(6,5,)—13
2.324-Aw
Ao = o, - w,

Example: Lowpass Filter

A
1

1‘6121—0.01 %

52=0.001 [—

%

087

\ 4

\ - 10 log,,(5,6,)—13

2.324 - Aw

NCTU EE

0.6

= M=26

Filter Design
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06

04

Amplitud,
t T
.
4
.
=
le
|
S
59

dB

80

100
0 027 047 067 087 w

Radian frequency (a)
(b)

0.015

0.010
0.005
0 I
L~
0.005 =
0010
1 1
) 02w [
Radia

Amplitude

0.015
q 067 087 T

quency (w)

Filter Design

But the maximum errors in the passband and stopband are 0.0116 and 0.00116, respectively.

=>M=27

NCTU EE

Amplitude

dB

Amplitude

05

04—

03—

Sample number (1)

(a)

30

20

-100 | |
0

0.27 0.4 0.6m 0.87 T
Radian frequency (w)
(b}
0.010
0.005
0 W aa\
v~ Y
~0.005 —
~0.010 ‘ ‘ ‘ ‘
0 0.27 047 0.67 0.8 w
Radian frequency (w)
(©)
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Filter Design

Remark: The Kaiser window method requires a value M = 38 to meet or exceed the same

specifications.

Example: Bandpass filter
Note: (1) From the alternation theorem

= the minimum number of alternations for the optimum approximation is L + 2.
(2) Multiband filters can have more than L+3 alternations.
(3) Local extrema can occur in the transition regions.

® |IR vs. FIR Filters

!'W'L’J'N'!"Y'Q .
il DRt S i)

’ s | H Vg~

P A

alent

Property FIR IR
Stability Always stable Incorporate stability constraint
in design
Analog design No meaningful analog equiv- | Simple transformation from an-

alog filters

Phase linearity

Can be exact linear

Nonlinear typically

Computation More multiplications and ad- | Fewer
ditions
Storage More coefficients Fewer
Sensitivity to coefficient | Low sensitivity Higher
inaccuracy
Adaptivity Easy Difficult
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