
Chapter 1

The geometry of nature: fractals

©2013 by Alessandro Codello

Clouds are not spheres, mountains are not cones, coastlines are not circles,
and bark is not smooth, nor does lightning travel in a straight line.

B.B.Mandelbrot [1]

1.1 Measure and dimension

The act of measurement is the fundamental act of scientific act of

measureenquire. This includes observation, counting and actual measurement.

When, for example, we measure the length L of an object, we first need measurements

depend

on the

unit used

to choose a unit of length, say l, then we count how many times our unit
fits into it. Since L will almost never be an exact multiple of l, our estimate
will almost never be completely precise. To obtain better and better esti-
mates we need to use smaller and smaller rods (i.e. smaller units l). These
new units will progressively fit the length L more and more finely, ultimately
giving a very precise estimate. We see here one fundamental fact about
measurements: the estimate we make depends on the unit we are
employing, i.e. the length is a function of the unit L(l).

When we try to measure the area of an object we construct small squares of measuring

areas,

volumes

and time

lapses

side l and we count how many of these squares are needed to cover the entire
object. When instead we measure the volume of an object we construct small
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cubes of side l and we fill the volume keeping track of how many cubes we
have used. In both cases the precision of the estimate will depend on the
unit scale l we chose. The same happens if we want to measure a time lapse;
we choose a unit of time and we count how may times this fits the time lapse.

In all cases measurement is made by counting. This motivates the definition definition

of mea-

sure

of the d–dimensional measure at resolution l, of a physical or mathematical
object, as:

Md(l) = N(l)ld , (1.1)

where N(l) is the number of d–dimensional cubes of volume ld we used to fill
the object under study.

We used the term “dimension” but we have not defined it. As we will see topological

dimen-

sion

there are many different ways to define the concept of dimension. The di-
mension we introduced in (1.1), and that we indicate by d, is the topological
dimension. For us this is the dimension of the unit used.

Only for few regular geometrical objects like a line, a square or a cube, regular

objectsthe outcome of the measurement can be made independent of the resolution:
Md(l) ≡ Md for all l. This objects that we call regular objects are purely
mathematical.

But already the diagonal of a square escapes from this class of objects. In rational

objectsmost cases our measurement at scale l is only an approximate one: the unit
of measure never exactly fits the entire object. To do a better job, we need
to choose a sharper resolution and repeat the measurement. In this way we
usually converge to a value which we identify with the “true” measure of the
object. These are objects for which the limit

Md = lim
l→0

Md(l) , (1.2)

exists and is finite. We call this class of objects rational, since the outcome
of a physical measurement is always a rational number. Only in the realm of
mathematical idealizations we can take the limit (1.2) completely, and thus
obtaining a measure which is a real number.

For example, this is what we have to do if we want to calculate1 the cir- example:

length

of the

circum-

ference
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Great Britain Circle Island
l (km) L(l) km l (km) L(l) (km)
500 2600 500 3000
100 3800 130 3133
54 5770 65 3139
17 8640 16 3141

Table 1.1: Measurements of the coasts of Great Britain and Circle Island.

cumference of the circle: we consider an inscribed n-agon of edge length l
and we estimate as nl the measure of the circumference length. Then we re-
peat the procedure with a polygon with more sides and shorter edge lengths
to get the successive estimate. In this way we construct a sequence that, as
n → ∞ and l → 0, converges to the limit 2π,2 which we consider the “exact”
measure of the length of an ideal circle.

The question is now: does the limit (1.2) always exist? The answer is no! is the

measure

always

defined?

Incredibly only recently3 we have realized that for most physical objects the
limit (1.2) does not exist.

The classical thought experiment relevant to this problem concerns the mea- how

long

is the

coast of

great

britain?

surement of the coast of an island. We consider the coast of Great Britain
and of the imaginary Circle Island. We want to determine the length of
their coasts. We start by setting up a (giant) ruler with l = 500km and we
determine the first estimates; then we chose a smaller ruler and we obtain
a second estimate. Just few other measurements will be sufficient to under-
stand what’s going on; we report them in Table 1.1. The first thing we notice
by looking at the data is that the length measurements of the coast of Circle
Island seem to converge to a finite value (obviously 103π), while the length
measurements of the coast of Great Britain seem to increase unboundedly.
If we make a log–log plot of the data of Table 1.1 we find the result shown
in Figure 1.1. The fit shows that logL(l) ∼ −0.36 log l for Great Britain and

1When we measure geometrical objects we are actually prescribing a way to calculate
their measure.

2In this way we have actually defined the real number π and we have given a way to
approximately calculate it.

3Mostly after the fundamental works of B.B. Mandelbrot [1]
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Figure 1.1: Log–log plot of the length of the coast of Great Britain (blue)
and the length of Circle Island (red) as a function of the ruler length.

logL(l) ∼ −0.01 log l for Circle Island. We conclude that the length of Circle
Island is well defined while that of Great Britain is not, i.e. the limit (1.2)
does not exist in the second case.

Comment on Portugal–Spain border!

Figure 1.1 tells us that the length of the coast of Great Britain scales, as fractals

the ruler length is varied, as a power law:

L(l) = L(l0)

(

l

l0

)1−df

, (1.3)

where we introduced a reference scale l0 and we defined the fractal dimension
df . Objects whose length behaves as in (1.3) are called fractals since they
have a fractional dimension; in fact we have df = 1.36 for the coast of Great
Britain while df = 1.01 for Circle Island.

The generalization of equation (1.3) is: fractal

dimen-

sionMd(l) = Md(l0)

(
l

l0

)d−df

. (1.4)
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Figure 1.2: Hausdorff property.

We can solve (1.4) for df to find:

df = d+ lim
l→0

logMd(l)

log l0/l
. (1.5)

Thus in general the concept of measure is scale dependent, but
not just for the reason that most quantities are incommensu-
rable! Still an object can have a ill defined notion of measure
but a well defined notion of fractal dimension! In fact the limit
(1.2) exist only when the topological dimension and the fractal dimension
coincide d = df . For equation (1.4) to be true the following scaling law must
be valid:

N(l) = N(l0)

(
l0
l

)df

, (1.6)

from which we find the following alternative expression for the fractal dimen-
sion:

df = lim
l→0

log N(l)

log l0/l
. (1.7)

Relation (1.6) is the key to define the notion of dimension for objects where
their measure depends on the resolution we are using to measure them.4

Note that an object of fractal dimension df has a finite df–dimensional mea- hausdorff

property
4One can introduce an early version of the concept of anomalous dimension η of an

object. This is simply the difference between the fractal and the topological dimension.
In the case of the Koch curve the anomalous dimension is positive η = 0.26186..., while in
the case of the Cantor set is negative η = −0.36907...
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Figure 1.3: The Koch curve.

sure, i.e. the limit (1.2) exists. In particular, it is important to note that the
measure of an object Md is zero if d > df while is infinite if d < df . This last
property has been used by Hausdorff to precisely define the notion of fractal
dimension [2].

We consider now some classical examples of fractals and we calculate their example:

squarefractal dimensions. Consider first a square of area A(l0) = l20. If we change
unit length to l = l0/2 we find A(l) = 4l2 and so N(l) = 4. We find that the
dimension of the square is d = log 4

log 2 = 2.

The simplest example of fractal object is the famous Koch curve. It’s con- example:

koch

curve

struction is shown in Figure 1.3. If at the scale l0 the length of the curve
is L(l0) = 4l0 at the scale l = l0/3n we have N(l) = 4n and we find that
the fractal dimension is d = log 4

log 3 = 1.26186... The Koch curve appears to be
more than a line but less than a two dimensional object. Can we find out
what’s the fractal measure M1.26186... of the Koch curve?

Another example is the Cantor set or dust. We start with a line of length example:

cantor

dust

l0 and we cut away the central third of it. In this way we generate a fractal
of dimension d = log 2

log 3 = 0.63093... We have constructed a fractal of dimen-
sion less than the dimension of the line we started with. Can we construct
the Cantor set starting from a set of points and adding more and more points?

The Koch island is a geometrical figure that has a finite area but an infi- example:

koch

island

nite perimeter and can be used to model for Great Britain. The perimeter is
made by three Koch curves each of which has infinite length, the area instead
satisfies the recursive relation

An+1 = An + 3 · 4n−1

√
3

4

( a

3n

)

,
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Figure 1.4: The Koch island.

where a is the length of the edge of the step zero triangle. This can be solved
to give

A∞ = A1 +

√
3

12
a2

∞
∑

n=1

(
4

9

)n−1

=

√
3

4
a2 +

√
3

4

3

5
a2 =

2
√
3

5
a2 ,

where we summed the geometric series.5

Fractal are everywhere! For example see an interesting study of metabolic natural

fractalsrates in animals [4].

The fractal dimension df is defined only for self–similar objects. An ob- df is

defined

for self–

similarity

objects

ject appears d–dimensional if, for a certain range of scales, it is self–similar.

But now another question: can we assign a fractal dimension to every phys- scale de-

pendenceical or mathematical object? No! We must point out that equation (1.7)
is well defined only for self–similar or self–affine objects: in all the other
cases also the concept of dimension is not well defined, or in other words is
scale dependent. We may find physical objects that have different fractal
dimensions at different scales or resolutions. We will see that this is indeed

5It is worth noticing that geometric series arise when the problem at hand displays
self–similarity. To understand this we have to notice that the series S =

∑
∞

n=0 x
n is

self–similar: S = xS + 1 (with scale factor x and unit translation).
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the case: statistical and quantum fields have different dimensions at the UV
and IR scales respectively. This is a very important phenomena that
appears all over nature.

There exist other definitions of dimension, all related to each other, apart the many

defini-

tions of

dimen-

sion

“compass” or “self-similar” dimension defined in (1.7). In particular the “box-
counting” and “Hausdorff” dimensions can be defined for systems that are
not precisely self–similar [2] and they can be used to define scale–dependent
fractal dimensions.

1.2 Similarity and self–similarity
how to

define a

fractal

We have seen that a physical object has a well defined fractal dimension only
if it is self–similar and that it has a non zero finite d–dimensional volume
only if it’s fractal dimension is d. We see now how to use similarity transfor-
mations to define fractals [3].

Two objects are similar if they have the same shape regardless of their size. similarity

A similarity S is a transformation which can be written as a composition of
a translation, a rotation and a scale transformation. A geometrical object,
i.e. a subset A of Rd, is transformed by a similarity to the subset S(A) of
Rd. More generally, one can consider the similarity S to be the union of n
similarities:

S(A) = S1(A) ∪ S2(A) ∪ ... ∪ Sn(A) , (1.8)

so to extend the concept of similarity to a broader class of geometrical ob-
jects.

In the plane one can easily characterize a similarity as transformation which similarity

in d = 2send the point (x, y) to the point S(x, y) as follows:

S
(

x
y

)

= λ

(

cos θ − sin θ
sin θ cos θ

)(

x
y

)

+

(

a
b

)

,

where the parameters a, b refer to the translation, the angle θ to the rotation
and the scale factor λ to the scale transformation.

Fractals like the Koch curve and the Cantor set are instead self–similar. self–

similarity:

fractals

as fixed

points
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Figure 1.5: Flow of the fractal dimension, which is defined in self–similar
regimes.

A geometrical object, A∗ of Rd, is said to be self-similar if there exist a
similarity S such that:

S(A∗) = A∗. (1.9)

This equation, as we will see, represents the first example of a fixed point
equation where one characterizes a set, or more generally a configuration,
as the fixed point of a particular transformation. We say that A∗ is a fixed
point of S.

One can allow for a different scaling factor in the diverse dimensions, it that affine

trans-

forma-

tions

case one speaks of an affine linear transformation A = A1 ∪ A2 ∪ · · · ∪ An

and about self–affine geometrical objects obeying A(A) = A. Affine linear
transformations are a composition of a linear mapping with a translation.

We look now at specific examples, in particular at how one can define the set example:

simi-

larity

trans-

forma-

tion of

the koch

curve

of points of, say, the Koch curve as the fixed-point of a particular similarity
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Figure 1.6: Approaching the Koch curve fixed-point.
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transformation. Then the following similarities

S1

(

x
y

)

=
1

3

(

1 0
0 1

)(

x
y

)

S2

(

x
y

)

=
1

3

(
1
2

√
3
2

−
√
3
2

1
2

)(

x
y

)

+

(
1
3
0

)

S3

(

x
y

)

=
1

3

(
1
2 −

√
3
2√

3
2

1
2

)
(

x
y

)

+

( 1
3√
3
6

)

S4

(

x
y

)

=
1

3

(

1 0
0 1

)(

x
y

)

+

(
2
3
0

)

characterize the Koch curve as the solution of the fixed point equation S(K) =
S1(K)∪S2(K)∪S3(K)∪S4(K) = K. As we will show, the fixed point of the
similarity transformation is attractive in the whole domain of allowed two
dimensional sets. Thus any subset A of R2 is attracted to the Koch curve K!
This is clearly shown in Figure 1.6.

1.3 Scale invariance and power laws
discrete

scale in-

variance

We can consider the Koch curve as the graph of a function as shown in Figure
1.7. The Koch function is invariant under discrete scale transformations
x → λx for any λ = 1

3n with n = 0, 1, 2, .... Looking at the picture we see that,
for example, y

(
1
6

)

= 1
3y

(
1
2

)

or y
(
1
3
1
2

)

= 1
3y

(
1
2

)

so the scale transformation
for the Koch curve is:

y(x) = λ−1y(λx) . (1.10)

which defines an homogeneous function or self–similar function.

In the general case we consider a self–affine function which scales general

scale in-

variance

anisotropically. The x coordinate rescales as x → λx while the y coordinate
rescales as y → λαy, where α is the anisotropic exponent. We generalize
(1.10) to:

y(x) = λ−αy(λx) . (1.11)

In case the function is continuously scale invariant we can solve (1.11) by
choosing λ = 1

x to obtain:
y(x) = y(1) xα ,
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Figure 1.7: Discretely scale invariant Koch curve.

which is a power law. Conversely, a power law is a homogeneous function.
continuously scale invariant functions are power laws.

1.4 Random fractals
random

fractalsUp to now we have considered only deterministic fractals that are generated
by iterating a deterministic rule. Self–similar physical systems are mainly
described on a statistical basis, in this case physical objects are generally
described by random or statistical fractals. The statistical properties of the
system are scale invariant and we can associate a fractal dimension or an
anomalous dimension to the random processes.

The first example of random fractal is the random walk. It is shown random

walkin the Figure 1.8. The fractal dimension is df = 2.

A random walk can be seen a random function which has statistical self– random

functionsimilarity (affinity). Note that it is an example of continuous but nowhere
differentiable function. One has:

〈y(x)〉 = 2−1/2 〈2y(λx)〉 ,

thus the scaling exponent, here called Hurst exponent, is α = 1
2 . The fractal

dimension can be shown to be df = 2− α = 3
2 .
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Figure 1.8: Random walk in the plane (top) and random walk as a random
function (bottom).
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