Chapter 10 Energy

and the basic energy model.
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Chapter 10 Preview
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Basic Energy Model

Energy is one of the most important
concepts in physics. Chapters 10 and 11
will develop the basic energy model, a
powerful set of ideas for solving prob-
lems in mechanics.

Energy is transferred «=+++-..,

between the system Ty
and its environment, *
System
Environment
I
Within the system, energy V

can be transformed from one
form to another without loss.

This chapter focuses on energy trans-
formations within the system as one
kind of energy is converted to another.
Chapter 11 will explore energy transfers
to and from the system. For mechani-

cal systems, that transfer is called work.
Part IV will expand our understanding of
energy even further by incorporating the
concepts of heat and thermodynamics.
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Chapter 10 Preview

Forms of Energy

B Kinetic energy is energy associated
with an object’s motion.

B Potential energy is stored energy.
Potential energy is associated with an
object’s position.

® Thermal energy is the energy of the
random motions of atoms within an
object. Thermal energy is associated
with temperature.

You will learn about gravitational potential
enerqgy, the elastic potential energy of a
stretched or compressed spring, and how
these potential energies can be transformed
into kinetic energy.
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Chapter 10 Preview

Energy Diagrams

You’ll learn how to interpret an energy
diagram, a graphical representation for
understanding how the speed of a par-
ticle changes as it moves through space.

E
Total energy Vi
Potential
energy
0 T | | T T | | Tk (m)

0 1 2 3 4 5 6 7 8

As you'll see, maxima and minima are
points of unstable and stable equilibrium,

respectively.
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Chapter 10 Preview

Conservation of
Mechanical Energy

Mechanical energy, the sum of kinetic
and potential energies, is conserved in a
system that is both isolated and friction-
less. As you learned with momentum,
conservation means that

final value = initial value

This will be the basis for a new problem-
solving strategy.
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Chapter 10 Preview

Elastic Collisions

A collision that conserves both mo-
mentum and mechanical energy is a
perfectly elastic collision.

Collisions between two billiard balls or two
steel balls come very close to being perfectly
elastic.
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Kinetic Energy K

= Kinetic energy Is the
energy of motion.

= All moving objects
have kinetic energy.

= The more massive an
object or the faster it
moves, the larger its
Kinetic energy.
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Potential Energy U

= Potential energy is
stored energy
associated with an
object’s position.

= The roller coaster’s
gravitational potential
energy depends on its
height above the
ground.
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Thermal Energy E,,

= Thermal energy is the
sum of the microscopic
Kinetic and potential
energies of all the atoms
and bonds that make up
the object.

= An object has more
thermal energy when
hot than when cold.
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The Basic Energy Model

= Within a system, energy can
be transformed from one
type to another.

% Environment

= The total energy of the
system is not changed by S i
these transformations. m—

= This Is the law of

K

.. System
K|

Eth

U

conservation of energy.

Energy is transformed within the
system without loss. The energy of
an isolated system 1s conserved.

Energy out

>

Energy is transferred to (and from) the

system by forces acting on the system.

| Energy can alSO be transfe rred The forces do work on the system.

from one system to another.

= The mechanical transfer of energy to a system via

forces iIs called work.
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Kinetic Energy and Gravitational Potential

Energy

= The figure shows a before-and-after Y
representation of an object in
free fall. Before: y; -

= One of the kinematics equations
from Chapter 2, with ay = g, is: Vi

vfy2 — Viy2 + 2ay Ay — viy2 o 2g(yf o yl)
= Rearranging: After:  y; -
ny2 + 28y, = Viy2 + 28y

= Multiplying both sides by %m: ; ;
%mvfz T mgyy = %mviz T mgy;
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Kinetic Energy and Gravitational Potential

Energy

Define kinetic energy as an energy of motion:

2

K= S m (kinetic energy)

Define gravitational potential energy as an
energy of position:

U, = mgy (gravitational potential energy)

The sum K + U, is not changed when an object is in
free fall. Its initial and final values are equal:

Kf"‘ Ugf: K1+ Ugi
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Kinetic Energy and Gravitational Potential

Energy

y

Yi -
v;

Yt
Vi

0 -
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Energy of Energy of
position motion
Ugi Ki
2 5
% %
| F T O
b b
8 Q
=
) h—
\/ v
Uy K;

Potential energy decreases and
kinetic energy increases as the
object falls, but the sum K + U,
doesn’t change. We say that
potential energy 1s transformed
into kinetic energy.
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Example 10.1 Launching a Pebble

FC\HIEEN Launching a pebble

Bob uses a slingshot to shoot a 20 g pebble straight up with a speed
of 25 m/s. How high does the pebble go?

MODEL This 1s free-fall motion, so the sum of the kinetic and
gravitational potential energy does not change as the pebble rises.

© 2013 Pearson Education, Inc.
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Example 10.1 Launching a Pebble

FYNHEEGER Launching a pebble

VIsuALIZE The figure below shows a before-and-after pictorial rep-
resentation. The pictorial representation for energy problems is
essentially the same as the pictorial representation you learned
in Chapter 9 for momentum problems. We’ll use numerical sub-
scripts 0 and 1 for the initial and final points.

y

4 O After:
Y1
v, = 0m/s
Find: y,
Before:
Yo =0m
vy = 25 m/s

0 - m = 0.020 kg

© 2013 Pearson Education, Inc.
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Example 10.1 Launching a Pebble

FCNIEEGEN Launching a pebble

soLVE Equation 10.13,
Kl = Ug'l == KO Tt UgO

tells us that the sum K + U, is not changed by the motion. Using
the definitions of K and U,, we have

1

Emvl2 +mgy, = Em"oz + mgy,

Here y, = 0 m and v, = 0 m/s, so the equation simplifies to

L
mgy, = Em‘*’o

This is easily solved for the height y:

Vo (25 m/s)?
v = = 5 — 32 m
2¢  2(9.80 m/s?)

ASSESS Notice that the mass canceled and wasn’t needed, a fact
about free fall that you should remember from Chapter 2.

© 2013 Pearson Education, Inc.
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Energy Bar Charts

= A pebble is tossed up into the air.

= The simple bar charts below show how the sum of K + U,
remains constant as the pebble rises and then falls.

As it rises, the pebble O As it falls, the pebble loses
loses kinetic energy and K=0 potential energy and gains
gains potential energy. e kinetic energy.
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Energy Bar Charts

= The figure below shows how to make an energy bar chart
suitable for problem solving.

= The chart is a graphical representation of the energy
equation K¢+ Uy = K; + Uy;.

(@) Draw bars to show each energy  (b)  The initial kinetic energy is transformed

before and after the interaction. entirely into potential energy.
+ T
-_‘ 4
¥
0- + = + 0- + = +
Ki + Uy = K + Uy K +U; = K + Uy
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The Zero of Potential Energy

= Amber and Bill use e o2
coordinate systems with
different origins to o

) ) -1
determine the potential Ahd
energy of a rock. rock
= No matter where the rock | 0m
IS, Amber’s value of Ug | , |
) 11y Amber’s coordinate Bill’s coordinate
will be equal to Bill's system system

value plus 9.8 J.

= |f the rock moves, both will calculate exactly the same
value for AU,

= In problems, only AU, has physical significance, not the
value of U, itself.
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Example 10.2 The Speed of a Falling Rock

The speed of a falling rock

The 1.0 kg rock shown below is released from rest. Use both
Amber’s and Bill’s perspectives to calculate its speed just before
it hits the ground.

MODEL This is free-fall motion, so the sum of the kinetic and
gravitational potential energy does not change as the rock falls.

.

2
-lm @ 0 m4

<

1 kg
rock
| 0O m —Iml|
Amber’s coordinate Bill’s coordinate
system system
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Example 10.2 The Speed of a Falling Rock

The speed of a falling rock

visuaLizE The figure below shows a before-and-after pictorial
representation using both Amber’s and Bill’s coordinate systems.

Amber’s i Bill’s

measurements measurements
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Example 10.2 The Speed of a Falling Rock

The speed of a falling rock

soLve The energy equation is K;+ Uy = K; + Uy,. Bill and
Amber both agree that K; = 0 because the rock was released from
rest, so we have

1
Kf == Emez == _(Ugf_ Ugi) = _AU

According to Amber, Uy = mgy; = 9.8 ] and Uy = mgy; = 0 .
Thus

AUAmber = ef — Ugi = _9.8 J

The rock loses potential energy as it falls. According to Bill,
Uy = mgy; = 0J and Uy = mgy; = —9.8 J. Thus

AUBilI = Ugf - Ugi — _9.8 J

Bill has different values for U, and U, but the same value for
AU. Thus they both agree that the rock hits the ground with speed

=2 A —2(—9.81
Vg = U=\/ ( )=4.4m/8
m 1.0 kg
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Example 10.2 The Speed of a Falling Rock

ASSESS The figure below shows energy bar charts for Amber and Bill.
despite their disagreement over the value of U;, Amber and Bill arrive at the
same value for v; and their K bars are the same height. You can place the
origin of your coordinate system, and thus the *““zero of potential energy,”

wherever you choose and be assured of getting the correct answer to a
problem.

Amber Bill
+ +
0 + = 0 i = +
Amber chose her zero of Bill chose his zero of
potential energy to be on potential energy to be |
the ground. 1 m above the ground.
K+ U, = K + Uy Ki + Uy = K + Uy

© 2013 Pearson Education, Inc. Slide 10-44



Gravitational Potential Energy on a Frictionless

Surface — Slide 1 of 4

= Figure (a) shows an object
of mass m sliding along a
frictionless surface.

= Figure (b) shows a magnified
segment of the surface that,
over some small distance, Is
a straight line.

= Define an s-axis parallel to
the direction of motion

= Newton’s second law along

the axis Is:
dv,

dt
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Gravitational Potential Energy on a Frictionless

Surface — Slide 2 of 4

= Using the chain rule, we can @
write Newton’s second law as:

dv, dv, ds dv,
= myv

m i s
dt ds dt ds

(Foed)s = m

= |t is clear from the diagram
that the net force along s is:

(Fpop) = —Fgsinf = —mgsinf

= So Newton’s second law is:
dv,

ds

—mgsinf = my,

© 2013 Pearson Education, Inc.
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Gravitational Potential Energy on a Frictionless

Surface — Slide 3 of 4

= Rearranging, we obtain: @

mv.dv, = —mgsinf ds

= Note from the diagram
that sin@ds = dy, so:

mv, dv, = —mg dy

= |ntegrating this from

“before” to “after”:

1 2 1 2
Emvf + mgyy = Emvi + mgy;

© 2013 Pearson Education, Inc.
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Gravitational Potential Energy on a Frictionless

Surface — Slide 4 of 4

= With K =% mv2 and U, = mgy, “

we find that:

Kkl =K+ Uy

= The total mechanical energy
for a particle moving along
any frictionless smooth
surface is conserved,
regardless of the shape of
the surface.

(b)

© 2013 Pearson Education, Inc. Slide 10-48



Example 10.3 The Speed of a Sled

The speed of a sled

Christine runs forward with her sled at 2.0 m/s. She hops onto the
sled at the top of a 5.0-m-high, very slippery slope. What is her
speed at the bottom?

MODEL Model Christine and the sled as a particle. Assume the
slope is frictionless. In that case, the sum of her kinetic and gravi-
tational potential energy does not change as she slides down.
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Example 10.3 The Speed of a Sled

The speed of a sled

visuaLize Figure (a) shows a before-and-after pictorial represen-  Figure (b) is an energy bar chart in which we see an initial kinetic
tation. We are not told the angle of the slope, or even if itis a  and potential energy being transformed into entirely Kinetic energy
straight slope, but the change in potential energy depends only on  as she goes down the slope.

the height Christine descends and not on the shape of the hill.

@ y (b)
Before: y, =50 m
U = AR.0m/5
After: y,= Om g T T
S.0 m Vi
0 3 q%ﬁa
| K+ Uy = K+ Uy

Find.: vV,
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Example 10.3 The Speed of a Sled

The speed of a sled

soLve The quantity K + U, is the same at the bottom of the hill as  This is easily solved for Christine’s speed at the bottom:
it was at the top. Thus

v, = \/vo2 + 2g(vo— 1) = \/vn2 + 2gh = 10 m/s

1 i
—mv? + mgy, = > Mo + mgy,

2 AsSESS We did not need the mass of either Christine or the sled.

@ y (b)
Before: y, =50 m
U = AR.0m/5
After: y,= Om g T T
S.0 m Vi
0 3 q%ﬁa
| K+ Uy = K+ Uy

Find.: vV,
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Problem-Solving Strategy: Conservation

of Mechanical Energy

Conservation of mechanical energy

Choose a system that 1s 1solated and has no friction or other losses of
mechanical energy.

Draw a before-and-after pictorial representation. Define symbols, list
known values, and identify what you’re trying to find.

The mathematical representation is based on the law of conservation of
mechanical energy:

K+ U= K, + U,

Check that your result has the correct units, is reasonable, and answers

the question.
Exercise 8 ﬂ
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Restoring Forces and Hooke's Law

= The figure shows how a
hanging mass stretches
a spring of equilibrium
length L, to a new
length L.

= The mass hangs in static
equilibrium, so the upward
spring force balances the
downward gravity force.

FsszG:mg

© 2013 Pearson Education, Inc.

The.‘relaxed
spring has
length L,,.

The spring’s
restoring force
exactly balances
the pull of gravity.

As=L - L,

.t
e®
R
°

stretches the spring
to length L.
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Restoring Forces and Hooke’s Law

The figure shows measured

The restoring force is proportional

data for the restoring force ~ “® o the displacement of the spring
of a real Spring. 75 - fron} equilibrium.

. i 2.0 -
As Is the displacement .y
from equilibrium. 10-
The data fall along the 0.5 Slope = & = 3.5 Nim

" " . 0.0 | | | |
straight line: 00 02 04 06 08
Fsp:kAS As =L — L,(m)

The proportionality constant k is called the spring
constant.

The units of k are N/m.
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attached to a fixed wall. 1
= (Fy,); is the force produced (F. <0 \N\AAAA]  Stretched
. = As > 0
by the free end of the spring. |
_ (F,),>0 I"“P,—»' Compressed
= As=s-s,Is the m‘Md—!As<0
displacement from :
equilibrium.
(F,), = —kAs  (Hooke’s law) 0 v e 0

always opposite the
sign of As.

= The negative sign is the
mathematical indication of As
a restoring force.

(Fp), = —kAs
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Example 10.5 Pull Until It Slips

SONCERGES Pull until it slips

The figure shows a spring attached to a 2.0 kg block. The other
end of the spring is pulled by a motorized toy train that moves
forward at 5.0 cm/s. The spring constant is 50 N/m, and the coef-
ficient of static friction between the block and the surface is 0.60.
The spring is at its equilibrium length at 1 = 0 s when the train
starts to move. When does the block slip?

20kg W\
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Example 10.5 Pull Until It Slips

FONENRGEN Pull until it slips

MODEL Model the block as a particle and the spring as an ideal
spring obeying Hooke’s law.

2.0 kg
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Example 10.5 Pull Until It Slips

DETETETE Pull until it slips

visuaLize The figure is a free-body diagram for the block.

S
~|

C;Tu
sl
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Example 10.5 Pull Until It Slips

SENEEEIEN Pull until it slips

soLve Recall that the tension in a massless string pulls equally at  spring, the spring pulls backward on the train and forward on the
both ends of the string. The same is true for the spring force: It  block with equal strength. As the spring stretches, the static friction
pulls (or pushes) equally at both ends. This is the key to solving  force on the block increases in magnitude to keep the block at rest.
the problem. As the right end of the spring moves, stretching the

20ke Ve
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Example 10.5 Pull Until It Slips

BT Full until it slips

The block is in static equilibrium, so The block slips when the static friction force reaches its maximum
: - value f, . = Mt = M mg.
E(Fnel)_r = (F,o.p)x +(f), = Fsp —f£,=0 Femx s Homg

where Fy, is the magnitude of the spring force. The magnitude is
F,, = k Ax, where Ax = v, is the distance the train has moved.
Thus

fi=Fy=kAx

20ke Ve
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Example 10.5 Pull Until It Slips

SENEERGER Pull until it slips

This occurs when the train has moved The time at which the block slips is
Ao foma _ msmg _ (0.60)(2.0 kg)(9.80 mis?) T
X vk 50 N/m v, 5.0cm/s

=0.235m = 23.5cm

20ke Ve
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Stick-Slip Motion

= Earthquakes are an example of stick-slip motion.

= Tectonic plates are attempting to slide past each other,
but friction causes the edges of the plates to stick
together.

= | arge masses of rock are somewhat elastic and can be
“stretched”. - f

= Eventually the elastic force
of the deformed rocks
exceeds the friction force
between the plates.

= An earthguake occurs as

. The slip can range from a few centimeters in a relatively
the plates Sllp and IurCh smz;lll earl't(hquaketo several meters in a very large
earthquake.

forward.
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Elastic Potential Energy

= Springs and rubber bands
store potential energy that
can be transformed into
Kinetic energy.

= The spring force is not
constant as an object
IS pushed or pulled.

= The motion of the mass Is not constant-acceleration
motion, and therefore we cannot use our old
Kinematics equations.

= One way to analyze motion when spring force is
Involved is to look at energy before and after some
motion.
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Elastic Potential Energy

= The figure shows a before-
and-after situation in which
a spring launches a ball.

= |ntegrating the net force
from the spring, as given by
Hooke’s Law, shows that:

1 1 1 1
Emva + Ek(mrf)2 = Emviz + Ek(Asi)2

= Here K =% mv? is the kinetic
energy.

= We define a new quantity:

1
U, = Ek(As)2 (elastic potential energy)

© 2013 Pearson Education, Inc.

The compressed spring
stores energy.

k \_-"mvl

After:

i

The spring’s potential energy is trans-
formed into the ball’s kinetic energy.
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Elastic Potential Energy

= An object moving without friction on an ideal spring

obeys:
Ki+ Uy = K; + Uy

where

1
U, = Ek(As)2 (elastic potential energy)

= Because As Is squared, U, Is
positive for a spring that is petore W
either stretched or compressed. As

= In the figure, U, has a positive
value both before and after the  *** NNNNVNND

motion.
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Example 10.6 A Spring-Launched Plastic Ball

A spring-launched plastic ball

© 2013 Pearson Education, Inc.

A spring-loaded toy gun launches a 10 g plastic ball. The spring,
with spring constant 10 N/m, is compressed by 10 cm as the ball
is pushed into the barrel. When the trigger is pulled, the spring is
released and shoots the ball back out. What 1s the ball’s speed as it
leaves the barrel? Assume friction is negligible.
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Example 10.6 A Spring-Launched Plastic Ball

A spring-launched plastic ball

MODEL Assume an ideal spring that obeys Hooke’s law. Also as-
sume that the gun is held firmly enough to prevent recoil. There’s
no friction; hence the mechanical energy K + U, is conserved.
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Example 10.6 A Spring-Launched Plastic Ball

FENZERIEN A spring-launched plastic ball

visuaLize Figure (a) shows a before-and-after pictorial representa-
tion. We have chosen to put the origin of the coordinate system at
the equilibrium position of the free end of the spring. The bar chart

of figure (b) shows the potential energy stored in the compressed
spring being entirely transformed into the kinetic energy of the ball.

(b)

(a) x, = —10cm

|
Before: 7_“\1\'3\'5\3(\3

v, =0m/s
m=10g

“+

I
xe

k=10 N/m
After: YD\ (\ NN OV,

= x=x,=0cm

Find: v, i si ‘
Slide 10-82
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Example 10.6 A Spring-Launched Plastic Ball

and v; = 0 m/s simplifies this to
1 1

=i ';2 = —kx 2

) B 1

A spring-launched plastic ball
soLve The energy conservation equation is K, + U, = K+
U,. We can use the elastic potential energy of the spring,
Equation 10.36, to write this as >
1 il 1 5 . .
—mvy? + —k(x, — x.)* = Emvl2 s Ek(xl =% ) It is now straightforward to solve for the ball’s speed:
3 \/fcxﬁ (10 N/m)(—0.10 m)> —
2" N'm 0.010 kg - e me

2 2
Notice that we used x, rather than the generic s, and that we explic-

itly wrote out the meaning of Ax; and Ax,. Using x, =x. = 0m

- x=—10cm (b)
|
Before: W\\\-Z\f\il\,’:) v, = 0m/s X
=F m=10g
= | %
xe
0_ — = L4+
k =10 N/m
After: YR (\\ \\E O V',
= |
=/ x=x=0cm
e K +U; = K + U
Slide 10-83
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Example 10.6 A Spring-Launched Plastic Ball

A spring-launched plastic ball

ASSESS This 1s a problem that we could not have solved with
Newton’s laws. The acceleration is not constant, and we have not

learned how to handle the kinematics of nonconstant acceleration.
But with conservation of energy—it’s easy! The result, 3.2 m/s,

seems reasonable for a toy gun.

@  x=-10cm (b)
|
Before: TM\;\-J\:(\,’:) v, =0m/s N
=" m=10¢g
= | .
xe
k=10 N/m
After: YD\ (\ AN | O=p V)
= |

= x=x,=0cm

Find: v,

© 2013 Pearson Education, Inc.
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Energy Diagrams

= Potential energy is a function of position.
= Functions of position are easy to represent as graphs.

= A graph showing a system’s potential energy and total
energy as a function of position is called an energy

diagram.

= Shown Is the energy diagram
of a particle in free fall.

= Gravitational potential energy
IS a straight line with slope
mg and zero y-intercept.

= Total energy is a horizontal
line, since mechanical
energy IS conserved.

© 2013 Pearson Education, Inc.

Energy

TE

Total energy line U, = mgy

k

E=K+ U, \ PE

B
K1

|

|

Potential energy
curve

[

I

: UgZ
[ UgI :

I

I
Y Y2
K and U, change as the
particle moves from y, to y,,
but their sum is always E.
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A Four-Frame Movie of a Particle in Free Fall

b
vﬂ
Yo =04
Energy
PE
< 1E
y
Y, =0
Ka Uga

The particle is projected
upward. Energy is entirely
kinetic.
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y
Vi
Vb ]
Energy
! PE
i 2 TE
|
|
' y
b
Kb Ugb

The particle has gained
potential energy and lost
kinetic energy.

Energy

TE

Y.
Turning point

K U

(o gc

The energy is entirely
potential at the turning
point.

y
Ya
Va
Energy
' PE
i - TE
|
|
! y
Ya
Kd Ugd

The particle gains kinetic
energy and loses potential
energy as it falls.

Slide 10-86



Energy Diagrams

- S_hown IS the energy The height of the TE line
dlag ram of a mass on a Energy is determined by how far

. . ou stretch or compress
horizontal spring. - s e g

» The potential energy (PE) \ F / =
IS the parabola: ~The PE curveis / TE

" aparabola
— 2
U, = Y%k(X — x,)

determined by

the spring

= The PE curve is determined ORI
by the spring constant; you ) ] - X
can’t change it.

= You can set the total energy (TE) to any height you
wish simply by stretching the spring to the proper
length at the beginning of the motion.
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A Four-Frame Movie of a Mass Oscillating on a
Spring

-
e
-
=
=
o

=
~

=

e
=

-
=
=
o

=

-

-
l-..—,__‘—
=)
m
_—
T
S~
&
q
s}
|_—

- =

=
=
nzk ]
-
Il
[
=
r‘k 4
ruk -
=
-
-
=
Ly
=
o
-
=
=
=
<
-
b
=

Il

B

KC USC

Ka Usa Kb Usb
The mass is released The particle has gained This is the point of The particle loses kinetic
from rest. The energy is kinetic energy as the spring maximum speed. The energy as it compresses
entirely potential. loses potential energy. energy is entirely kinetic. the spring.
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Energy Diagrams

= Shown Iis a more general
energy diagram.

= The particle Is released
from rest at position Xx;.

= Since K at x, Is zero,
the total energy TE=U
at that point.

= The particle speeds up
from x; to X,.

Energy

.- Particle starts from rest. PE
“' |
| TE = E,
|
: |
maximum / |
| Turning
| .
| Eomt
|
| T T T | X
. S X X X X

Spe(=,ds>810ws> Speeds : Slows
up down up down

= Then it slows down from X, to X,.

= The particle reaches maximum speed as it passes Xx,.
= When the patrticle reaches x., it turns around and

reverses the motion.

© 2013 Pearson Education, Inc.
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Equilibrium Positions: Stable

= Consider a particle Energy
with the total energy PE
E, shown In the figure.
: TE = E,
= The particle can be NZEN 7
at rest at x,, but it \/ TE = E,
cannot move away - _ .
from x,: This is X X
e >
static equilibrium. Stable Unstable
] ] equilibrium equilibrium
= |f you disturb the particle, positions position

giving it a total energy slightly
larger than E,, it will oscillate very close to x,.

= An equilibrium for which small disturbances cause small
oscillations is called a point of stable equilibrium.
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Equilibrium Positions: Unstable

= Consider a particle Energy
with the total energy PE
E, shown In the figure. \ /

= The patrticle can be at =5
rest at x,, and it does N N / ——
not move away from \/ ’
X5: This Is static equilibrium. % &% % g

= If you disturb the particle, St’cllble)<Unstable
giving it a total energy slightly  equitibrium equilibrium
larger than E;, it will speed POSHISES position

up as it moves away from Xx,.

= An equilibrium for which small disturbances cause the
particle to move away Is called a point of unstable
equilibrium.
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Tactics: Interpreting an Energy Diagram

Interpreting an energy diagram "

© The distance from the axis to the PE curve is the particle’s potential energy.
The distance from the PE curve to the TE line is its kinetic energy. These are
transformed as the position changes, causing the particle to speed up or slow
down, but the sum K + U doesn’t change.

& A point where the TE line crosses the PE curve is a turning point. The particle
reverses direction.

©® The particle cannot be at a point where the PE curve is above the TE line.

® The PE curve is determined by the properties of the system—mass, spring
constant, and the like. You cannot change the PE curve. However, you can
raise or lower the TE line simply by changing the initial conditions to give the
particle more or less total energy.

® A minimum in the PE curve is a point of stable equilibrium. A maximum in
the PE curve is a point of unstable equilibrium.

Exercises 18-20 m
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Example 10.9 Balancing a Mass on a Spring

FCVEEEGER Balancing a mass on a spring

A spring of length L, and spring constant £ is standing on one end.
A block of mass m is placed on the spring, compressing it. What is
the length of the compressed spring?

© 2013 Pearson Education, Inc.
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Example 10.9 Balancing a Mass on a Spring

FCVHERGER Balancing a mass on a spring

MODEL Assume an ideal spring obeying Hooke’s law. The
block + spring system has both gravitational potential energy U,
and elastic potential energy U,. The block sitting on top of the
spring is at a point of stable equilibrium (small disturbances cause
the block to oscillate slightly around the equilibrium position), so
we can solve this problem by looking at the energy diagram.
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Example 10.9 Balancing a Mass on a Spring

FC\VIEELEN Balancing a mass on a spring

VISUALIZE Below is a pictorial representation. We’ve used a co-
ordinate system with the origin at ground level, so the equilibrium
position of the uncompressed spring is y. = L.

y
Ly
Compressed
yeq ]
0 -
Before After
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Example 10.9 Balancing a Mass on a Spring

SV EERGEN Balancing a mass on a spring

soLve The figure shows the two potential energies separately and
also shows the total potential energy:

1
Uo = Uy + U, = mgy + _k(y = Lo’

Energy
New equilibrium position Ui
of the compressed spring
1 Original
i equilibrium 48
. T y
yeq LO
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Example 10.9 Balancing a Mass on a Spring

FENEERGER Balancing a mass on a spring

The equilibrium position (the minimum of U, ) has shifted from at the point where the derivative (or slope) is zero. The derivative

L, to a smaller value of y, closer to the ground. We can find the of U, is
equilibrium by locating the position of the minimum in the PE

curve. You know from calculus that the minimum of a function is dg“)‘ =mg+k(y— L)
}!
Energy
New equilibrium position Utor
of the compressed spring
1 Original
1 equilibrium 48
U,
| Y y
yeq LO

© 2013 Pearson Education, Inc.
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Example 10.9 Balancing a Mass on a Spring

AR Balancing a mass on a spring

The derivative is zero at the point y.,, so we can easily find The block compresses the spring by the length mg/k from its origi-
nal length L, giving it a new equilibrium length L, — mg/k.
mg + k(yeq —Lyp=0
mg

yeq = LU k

Energy

New equilibrium position tot

of the compressed spring

Original
equilibrium

.50
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Molecular Bonds

= Shown Is the energy diagram  Energy (x 10 )

for the diatomic molecule HCI
(hydrogen chloride). il I e The fore i epuliv
= x is the distance between N I
the hydrogen and the E,
chlorine atoms. 1.0- SIS SRR
= The molecule has a PE
stable equilibrium at i | &
an atomic separation \/
Of Xgq = 0.13 nm. %0 01%oz 03 o4
= When the total energy is E;, The bond length is 0.13 nm.

the molecule is oscillating, but stable.

= |If the molecule’s energy Is raised to E,, we have broken
the molecular bond.
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Elastic Collisions

= During an inelastic collision of two objects, some of the
mechanical energy is dissipated inside the objects as
thermal energy.

= A collision in which mechanical energy is conserved is
called a perfectly elastic collision.

= Collisions between
two very hard objects,
such as two billiard
balls or two steel balls,
come close to being
perfectly elastic.
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A Perfectly Elastic Collision

| . - (Vix)l
Cons_lder a head on, perfectly Beture: @ o :
elastic collision of a ball of
mass m, and initial velocity Energy is stored in

. , compressed bonds,

(ViX)l’ with a ball of mass ms During: 00 then released as the
|n|t|a”y at rest. bonds re-expand.

= The balls’ velocities after the  Afer D= @)= k. =K,

Ve Ok

collision are (vg ), and (Vs)-.

= Momentum Is conserved In all isolated collisions.

= |n a perfectly elastic collision in which potential energy is
not changing, the kinetic energy must also be conserved.

momentum conservation: my (Ve T my (Ve = my (v,

energy conservation: Eml (Vi) 12 + Emz (fo)z2 = Em 1 (Vi) 12
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A Perfectly Elastic Collision

' ' (%),
- Slmultaneous_ly solving Betore: @ @ .

the conservation of

momentum equation and s Mty
] . ] Diting: @ COlﬂp}eSSe onds,

the conservation of kinetic e releesedl e the
. onds re-expand.

energy equations allows

us to find the two unknown After: O = K =K

Ve Ok

final velocities.
= The result iIs:

V)t = ——2 (),

my + my (perfectly elastic collision
2m, with ball 2 initially at rest)
(Vi) = (Vi
niy + m,
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A Perfectly Elastic Collision: Special Case 1

m; — m,
(Ve = ——7—— (i : ..
my + my (perfectly elastic collision
2m, with ball 2 initially at rest)
(Vi) = ———— (Vi
niy -+ m,

Consider a head-on,

perfectly elastic collision of O—©

a ball of mass m, and initial D @)=
velocity (v;,),, with a ball of m, = m,

mass m, initially at rest. Ball 1 stops. Ball 2 goes forward with v, = v,

Case 1: m; = m.,.
Equations 10.42 give v, =0 and vg, = V;;.

The first ball stops and transfers all its momentum to
the second ball.
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A Perfectly Elastic Collision: Special Case 2

nm; —m

Vi = Vi : .
Ve m; + mz( g (perfectly elastic collision
2m, with ball 2 initially at rest)
(Ve = —— — (Vioh
niy -+ m,
' - 2

o Cons_lder a head on, perfectly @—»o

elastic collision of a ball of ,

mass m, and initial velocity (D> 60—

(Vi )1, with a ball of mass m, my 3> m,

|n|t|a”y at rest. Ball 1 hardly slows down. Ball 2 is knocked

forward at v, = 2v;,,.

= Case 2: m; >>m,.
= Equations 10.42 give vy = v;; and Vg, = 2V;,.
= The big first ball keeps going with about the same speed,

and the little second ball flies off with about twice the speed
of the first ball.
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A Perfectly Elastic Collision: Special Case 3

Ve = ()
V = —(V:
. my+my (perfectly elastic collision
2m, with ball 2 initially at rest)
(Ve = —— — (Vioh
niy + m,
= Consider a head-on, perfectly |
elastic collision of a ball of =
mass m, and initial velocity <0
(V)1 with a ball of mass m, m, < m,
|n|t|a”y at rest. Ball 1 bounces off ball 2 with almost no loss

of speed. Ball 2 hardly moves.

= Case 3: m; <<m,.

= Equations 10.42 give v, = —Vv,; and vg, = 0.
= The little first rebounds with about the same speed,
and the big second ball hardly moves at all.
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Perfectly Elastic Collisions: Using Reference

Frames

= Equations 10.42 assume ball 2 is at rest.

= What if you need to analyze a head-on collision when
both balls are moving before the collision?

= You could solve the simultaneous momentum and
energy equations, but there is an easier way.

Analyzing elastic collisions (ﬁ}
P

@ Use the Galilean transformation to transform the initial velocities of balls 1
and 2 from the “lab frame” to a reference frame in which ball 2 is at rest.
@ Use Equations 10.42 to determine the outcome of the collision in the frame

where ball 2 is initially at rest.
® Transform the final velocities back to the “lab frame.”
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Using Reference Frames: Quick Example

A 200 g ball moves to the right at 2.0 m/s. It has a
head-on, perfectly elastic collision with a 100 g ball that
IS moving toward it at 3.0 m/s. What are the final
velocities of both balls?

i : 2.0 m/s 3.0 m/s :;

m1=200g m2=100g
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Using Reference Frames: Quick Example

= Figure (a) shows the situation just before the collision

In the lab frame L.

= Figure (b) shows the situation just before the collision
In the frame M that is moving along with ball 2.

Vo= )i+ Wohim = 2.0m/s + 3.0m/s = 5.0 m/s

M= —3.0m/s + 3.0m/s = 0m/s

(Vidam = (Vidar T (VL

(a)
y y

)y = —3.0m/s

(D>

(v,)y = 2.0 m/s

_}.- Frame M moves

with ball 2.

= —3.0m/
(Vo S @

X
X

®©
The collision seen
in the lab frame L.

© 2013 Pearson Education, Inc.

(b)
y . Ball 2is at
& restin M.

O—>0

v I =50mls (v, ) = 0m/s

Q) %
The collision seen
in moving frame M.
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Using Reference Frames: Quick Example

= We can use Equations 10.42 to find the post-collision
velocities in the moving frame M:

m, —m
—(V )IM — 1 7I’Il/S

(Vedim =
) my + m;

2m,
(vfx)2M — —(vix)lM = 6.7 m/s
m; + m,

= Transforming back to the lab frame L:
Ve, = Vi T v, = 1.7 m/s + (=3.0 m/s) = —1.3 m/s
(Ve = (Vpdam T (W = 6.7 m/s + (—=3.0 m/s) = 3.7 m/s

4—@@—»

)y = —13mls  (h)y = 3.7 m/s
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Chapter 10 Summary Slides
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General Principles

Law of Conservation of Mechanical Energy

If a system is isolated and frictionless, then the mechanical en-
ergy E .., = K + U of the system is conserved. Thus

« K is the sum of the kinetic energies of all particles.

» [ is the sum of all potential energies.
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General Principles

Solving Energy Conservation Problems

Choose an isolated system without friction or other
losses of mechanical energy.

Draw a before-and-after pictorial representation.
Use the law of conservation of energy:

-5 Is the result reasonable?
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Important Concepts

© 2013 Pearson Education, Inc.

7

Kinetic energy is an energy of motion: K = %mv :
Potential energy is an energy of position.

* Gravitational: U, = mgy

« Elastic: U, = 1k(As)?

Thermal energy is due to atomic motions. Hotter
objects have more thermal energy.
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Important Concepts

Basic Energy Model

Energy is transferred to the Environment
system by forces acting on System .
the system. _ b
| k<e=—pvU
e, Energy in
-"--# ..-.. -.
Ey,

© 2013 Pearson Education, Inc.

Energy is transformed within
the system without loss.

L
o

Energy out

S
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Important Concepts

Energy diagrams

These diagrams show the
potential-energy curve PE and the
total mechanical energy line TE.

© 2013 Pearson Education, Inc.

Energy

The distance from the axis to the curve is PE.
The distance from the curve to the TE line is KE.
A point where the TE line crosses the PE curve is a turning point.

Minima in the PE curve are points of stable equilibrium.
Maxima are points of unstable equilibrium.

Regions where PE is greater than TE are forbidden.
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