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Chapter 10

Friction

“A gem cannot be polished without friction, nor an individual perfected with-
out trials.”

∼ Lucius Annaeus Seneca (4 BC - 65 AD)

10.1 Overview

When two bodies are in contact, the forces of interaction between the two bodies can become
complicated in terms of both their magnitudes and directions. Up to this point in this course,
we have focused on ”smooth” contact. A consequence of this assumption is that the two
bodies can exert contact forces that are perpendicular, or normal, to the surface of contact.
This reaction force has been referred to as the normal force of contact. For example, if a set
of forces act on a block at rest on a fixed, smooth surface, then this surface reacts with a
normal force N, as shown below. The block will begin to slide along the surface unless the
net tangential component of the applied forces is zero.

A more realistic model of contact is one in which the bodies exert contact forces that
have components that are both normal and tangent to the surface of contact. (Try pushing
the palm of your hand along the surface of your desk. You can feel the desk reacting both
perpendicular to and tangent to the desk surface.). Consider again the example of a set of
forces acting on a block at rest on a fixed surface except now we will allow for a tangential
component of reaction. We will refer to this tangential component of the total reaction force
~FR as being the ”friction force” f . If this friction force is sufficiently large, the block can
remain in equilibrium (“sticking”). Otherwise, the block will begin to slide.
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The actual mechanism of the friction force is quite complicated and is not fully understood.
The current thinking is that friction results from microscopic irregularities on the contacting
surfaces of the two bodies. In this course, we will not study friction at that level. Rather, we
will employ some fundamental principles that give us a more macroscopic view of friction.
In doing so, we will use the following two principles related to the magnitude and direction
of friction forces:

• The magnitude of the friction force required for equilibrium is limited by a maximum
value depending on the surface of contact. This magnitude is generally expressed in
terms of the ratio f/N ≤ (f/N)max. For f/N > (f/N)max, the two surface slip. The
ratio (f/N)max is known as the “coefficient of static friction” µs. Therefore, we have
f ≤ µsN , with the equality corresponding to “impending slippling”.

• Friction will always oppose the direction of slipping at the contacting surface. To
determine this direction, consider how the system would move in the absence of friction
with this known as the direction of ”impending motion”.

If you can always remember the above two principles, you will do well in learning this
material. We will remind you of these throughout our subsequent discussion.
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Consider the following simple system made up of a block of weight W resting on a rough,
horizontal surface. A horizontal force P is applied to the right on the block. The free body
diagram of the block is shown in the figure below right. In this free body diagram f and N
are the friction and normal components, respectively, of the reaction force of the ground on
the block.

From this FBD, we have the following equilibrium equations:

∑
Fx = P − f = 0 → f = P

∑
Fy = N −W = 0 → N = W

From the first equation, we see that, as long as the block remains in equilibrium, the
friction force is always equal to the applied force P. However, from the above discussion,
we know that the friction force has a maximum value of fmax = µsN , and when f = fmax
the block will be in a state of “impending slipping” (still in equilibrium but on the verge of
slipping).

For our current problem at hand, we see when P > fmax = µsN , the block will slip. Once
slipping occurs, what is the value of the friction force? This is where friction gets a little
more complicated. Friction forces due to sliding depend on a lot of factors including the
roughness of the surfaces, the amount of lubrication, speed of sliding, etc. One simple model
that is commonly used is one in which the sliding friction force is less than that correspond-
ing to impending slipping and is CONSTANT with speed. This relationship is written as
fsliding = µkN , where µk is the “coefficient of kinetic (or sliding) friction.”

The results of our discussion above are summarized in the following plot of friction force f
vs. applied force P . This figure demonstrates that f follows a one-to-one relationship with
P (straight line with slope of “1”) for P ≤ µsN . For P > µsN , sliding commences and the
friction force is a constant value of f = µkN for all subsequent motion to the right.
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In summary, the force of friction is governed by the following important relations:

• For sticking: f ≤ fmax = µsN . The friction force is EQUAL to µsN ONLY for the
case of impending sliding.

• For impending sliding: f = µsN .

• For sliding: f = µkN .

REMEMBER THESE RESULTS!!
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10.2 Dry friction and equilibrium

Let’s repeat two important results from the preceding overview on friction that will be used
in your equilibrium analysis:

• For a system in equilibrium, any friction force is governed by the following: f ≤ fmax =
µsN . The friction force is EQUAL to µsN ONLY for the case of impending sliding.

• Friction will always oppose the direction of slipping at the contacting surface. To de-
termine this direction, consider how the system would move in the absence of friction
with this known as the direction of ”impending motion”.

Consider the following steps (the OK method) for solving equilibrium problems with fric-
tion:

1. FBDs. Draw individual free body diagrams of each component in the system. Put
some thought into this. We know that a force of friction on a body opposes the direc-
tion of impending motion. Carefully read the question and determine what is being
asked. Consider how the system would move in the absence of friction; this will estab-
lish the directions of impending motion. Draw a friction force on the body to oppose
the direction of impending motion at that surface.

2. Equilibrium equations. From your FBDs, write down the appropriate equations of
equilibrium. Be careful that the signs on forces in these equations are consistent with
the directions shown in your FBDs. Leave forces of friction as general forces of reaction
at this stage; that is, do not substitute in any relationships of impending sliding here.

3. Kinematics, constraints, and geometry.

4. Solve. At this point, study your FBDs and equilibrium equations. Determine on
which surfaces impending sliding will occur (as we will see later on with wedges and
tipping/slipping problems, sliding will rarely occur simultaneously at all surfaces on
complex problems). On these surfaces, set the friction force equal to their maximum
value: f = fmax = µsN . On all other surfaces, leave the friction forces as general forces
of reaction.

Consider the following examples of equilibrium problems with friction.
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Example 10.2.1

Consider the mechanism shown at a position for which θ = 60◦. A CW torque T acts on
member AB. The static coefficient of friction between the slider C and the horizontal surface
is µs = 0.5. Is the system in equilibrium? Ignore the weight of link BC and of the slider.
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Example 10.2.2

An 85lb force P is applied to a 200lb block, with the block being stationary before the force
is applied. Determine the magnitude and direction of the friction force f exerted by the
horizontal surface on the block. The coefficients of static and kinetic friction are µs = 0.5
and µk = 0.4, respectively.
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Example 10.2.3

The 300lb crate with mass center at G is supported on the horizontal surfaces by a skid at A
and a roller at B. A force of P = 60lb is required to initiate motion of the crate. Determine
the coefficient of static friction at A.
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Example 10.2.4

Block A has a weight of 100lb. Determine the range of weights W of block B for which the
system is in equilibrium.
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Example 10.2.5

The block and bar AB each have a mass of m. Determine the magnitude of the force P
required to initiate motion of the block. Use m = 3kg, θ = 30◦, µs = 0.6 and µk = 0.5.
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10.3 Wedges

Wedges are important to many applications. In particular, they are a good way to position
objects with very high accuracy. One of the best is to position lasers for applications such
as LASIK surgery. Imagine someone firing a laser at your cornea without positioning it
perfectly. Not a pleasant thought.

Before tackling the wedge positioning problem above, let’s consider first the simpler ex-
ample shown below. Here we have a block of weight W being held in position on a rough
incline with a wedge. In general, a horizontal force P is acting on the wedge to the right in
order to hold the wedge in position. Our goal with this example is to determine the range
of positioning force values P that is required to hold the wedge and block in equilibrium.

Consider the following assumptions:

• Assume that the weight of the wedge is small compared to the weight of the block.

• Assume that the physical dimensions of the wedge are not important. We will be
concerned here with understanding the sizes of the friction forces acting on the wedge.
The location of the friction forces on the contacting surfaces will not be of interest to us.

• Assume that for all analysis the system of the block and wedge are in static equilib-
rium. We will consider situations of “impending motion” which will imply that the
system is on the verge of moving, however, the system will still be in equilibrium.
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Now, let’s consider the influence of the size of the wedge force P on the state of equilibrium
for the system.

• Case A. If the magnitude of P is sufficiently large, the wedge will tend to slide UP the
incline. In this case we consider P = Pmax as being the largest value of P for which
the system can be in equilibrium and a situation in which the “impending motion” of
the wedge is up the incline.

• Case B. If the size of P is sufficiently small, the wedge will tend to slide DOWN the
incline (i.e., the wedge will be squeezed out from under the block due to the weight
of the block). In this case we consider P = Pmin as being the smallest value of P
for which the system can be in equilibrium and a situation in which the “impending
motion” of the wedge is down the incline.

Therefore, for Pmin ≤ P ≤ Pmax, the system will be in equilibrium, where Pmax and Pmin
are found from Cases A and B, respectively.

We will consider Cases A and B individually in the following analysis.
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Case A: P = Pmax
Recall that for P = Pmax, the impending motion of the wedge is up the incline. Since friction
opposes the direction of impending motion, the friction forces f1 and f2 on the wedge are
directed as shown in the FBDs below. From Newton’s third law, the friction force of the
wedge on the block is f1 and pointing to the right.

From the above FBDs, we can write the following equilibrium equations for the wedge and
block:

Block :
∑

Fy = −W +N1 = 0

Wedge :
∑

Fy = −N1 − f2sinθ +N2cosθ = 0∑
Fx = P − f1 − f2cosθ −N2sinθ = 0
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Since we are considering “impending motion”, the friction forces f1 and f2 are both at their
maximum values (slipping must occur at both surfaces for the wedge to move): f1 = µ1N1

and f2 = µ2N2. Substituting these friction forces into the equilibrium equations and solving
for P = Pmax gives:

N1 = W

N2 =
N1

−µ2sinθ + cosθ
=

W

−µ2sinθ + cosθ

Pmax = µ1N1 + (µ2cosθ + sinθ)N2

=

[
µ1 +

(
µ2cosθ + sinθ

−µ2sinθ + cosθ

)]
W

Therefore, for P > Pmax, the wedge will slide UP the incline, and the block will be lifted.
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Case B: P = Pmin
Recall that for P = Pmin, the impending motion of the wedge is down the incline. Since
friction opposes the direction of impending motion, the friction forces f1 and f2 on the wedge
are directed as shown in the FBDs below. From Newton’s third law, the friction force of the
wedge on the block is f1 pointing to the left.

From the above FBDs, we can write the following equilibrium equations for the wedge and
block:

Block :
∑

Fy = −W +N1 = 0

Wedge :
∑

Fy = −N1 + f2sinθ +N2cosθ = 0∑
Fx = P + f1 + f2cosθ −N2sinθ = 0
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Since we are considering “impending motion”, the friction forces f1 and f2 are both at their
maximum values (since slipping must occur at both surfaces in order for the wedge to move):
f1 = µ1N1 and f2 = µ2N2. Substituting these friction forces into the equilibrium equations
and solving for P = Pmin gives:

N1 = W

N2 =
N1

µ2sinθ + cosθ
=

W

µ2sinθ + cosθ

Pmin = −µ1N1 + (−µ2cosθ + sinθ)N2

=

[
−µ1 +

(
−µ2cosθ + sinθ

µ2sinθ + cosθ

)]
W

Therefore, for P < Pmin, the wedge will slide down the incline, and the block will be lowered
as it squeezes out the wedge.

In summary, the wedge/block system will be in equilibrium over a range of forces P applied
to the wedge. In particular, the system is in equilibrium if:

Pmin ≤ P ≤ Pmax ⇒[
−µ1 +

(
−µ2cosθ + sinθ

µ2sinθ + cosθ

)]
W ≤ P ≤

[
µ1 +

(
µ2cosθ + sinθ

−µ2sinθ + cosθ

)]
W

Let’s consider now some numerical values for µ1, µ2 and θ:

• First let’s use: µ1 = µ2 = 0.1 and θ = 20◦. With this, we have:

Pmax =

[
0.1 +

(
0.1cos20◦ + sin20◦

−0.1sin20◦ + cos20◦

)]
W = 0.581W

Pmin =

[
−0.1 +

(
−0.1cos20◦ + sin20◦

0.1sin20◦ + cos20◦

)]
W = 0.155W

Therefore, for 0.155W ≤ P ≤ 0.581W the system is in equilibrium.

• Next let’s use: µ1 = µ2 = 0.2 and θ = 10◦. With this, we have:

Pmax =

[
0.2 +

(
0.2cos10◦ + sin10◦

−0.2sin10◦ + cos10◦

)]
W = 0.590W

Pmin =

[
−0.2 +

(
−0.2cos10◦ + sin10◦

0.2sin10◦ + cos10◦

)]
W = −0.223W
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Therefore, for −0.223W ≤ P ≤ 0.590W the system is in equilibrium. Note that for
this case Pmin < 0 – what is the significance of the negative sign on Pmin? This says
that in order to initiate movement of the wedge down the incline we need to reverse
the direction of the applied force P ; that is, we need to PULL on the wedge to the
left in order to lower the block. Stated in a different way, the system is in equilibrium
when P = 0. The friction forces are sufficiently large on their own to hold the block
in position. For this set of parameters, the wedge is said to be “self-locking”.
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Now, let’s return to the original problem of the leveling problem with two wedges. Suppose
that our goal is to raise block A by applying a force P on the top wedge. To do so, the
top wedge must have impending motion to the right and must slide to the right relative
to the lower wedge. [Note that if the two wedges stick together, the block does not rise.]
The impending motion of the lower wedge is to the right. For this situation, we have the
following FBDs (reminding ourselves that the friction forces on the wedges must oppose their
directions of impending motion).

From these FBDs, we can write the following equilibrium equations for the block and the
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wedges:

Block :
∑

Fy = −W +N1 = 0

Top wedge :
∑

Fy = −N1 − f2sinθ +N2cosθ = 0∑
Fx = P − f1 − f2cosθ −N2sinθ = 0

Lower wedge :
∑

Fy = N3 + f2sinθ −N2cosθ = 0∑
Fx = −f3 + f2cosθ +N2sinθ = 0

As a result of a sufficiently large applied force P , we have two possible situations for im-
pending motion:

• The upper wedge will move to the right and the lower wedge will remain stationary.
That is, the upper wedge will slip relative to both the block and the lower wedge, with
the lower wedge sticking to ground. As a result, the block will be lifted.

• Both the upper and lower wedges will move to the right. That is, the upper wedge will
slip relative to the block and stick to the lower wedge, with the lower wedge sliding on
the ground. In this case, the block will not be lifted.

Unfortunately, we have no way of knowing in advance as to which situation will occur. What
we will do is “assume” a scenario and solve for the maximum loading P allowed for equilib-
rium. Since an assumption is needed to solve, we need to check our answers when we are
done in order to determine the validity of the assumption.

Suppose here that we assume the first case: impending slipping between the two wedges
but no slipping between the lower wedge and the ground. For this assumption we have:
f1 = µ1N1 and f2 = µ2N2, along with f3 6= µ3N3. Substituting these friction forces into the
equilibrium equations for the block and upper wedge, and solving for P = Pmax gives:

N1 = W

N2 =
N1

−µ2sinθ + cosθ
=

W

−µ2sinθ + cosθ

Pmax = µ1N1 + (µ2cosθ + sinθ)N2

=

[
µ1 +

(
µ2cosθ + sinθ

−µ2sinθ + cosθ

)]
W
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This equation gives of the maximum load P that can be applied and still have the system in
equilibrium under the assumption that the lower wedge does STICKS on the ground. How
do we check this assumption?

Note that we have not yet used the equilibrium equations above for the lower wedge. Using
our assumption of sliding between the two wedges, f2 = µ2N2, these two equations become:

N3 = (−µ2sinθ + cosθ)N2

f3 = (µ2cosθ + sinθ)N2

If the lower wedge sticks on the ground, then f3 < µ3N3, or:

µ3 >
f3

N3

=
µ2cosθ + sinθ

−µ2sinθ + cosθ

If the above inequality holds true, then our original assumption was correct, and the value
found for Pmax is truly the maximum applied force P allowed for the system to remain in
equilibrium. If this inequality does not hold true, then our assumption of slipping between
the two wedges was incorrect. In case, we (unfortunately) must rework the problem assum-
ing that the lower wedge slips (f3 = µ3N3) and that the two wedges stick (f2 6= µ2N2).

To see how this works, we will use the following: µ1 = µ2 = 0.1, µ3 = 0.5 and θ = 20◦.
From the above, we have (using the assumption of sticking between the lower wedge and
ground):

Pmax =

[
0.1 +

(
0.1cos20◦ + sin20◦

−0.1sin20◦ + cos20◦

)]
W = 0.581W

Now, checking that assumption:

f3

N3

=
µ2cosθ + sinθ

−µ2sinθ + cosθ

=
0.1cos20◦ + sin20◦

−0.1sin20◦ + cos20◦
= 0.481

Since µ3 = 0.5 > f3/N3, our assumption of sticking between the lower wedge and ground is
valid. Therefore, an applied force P > Pmax = 0.581W will lift the block.
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Discussion: wedges with friction

1. As we have seen in our earlier work with friction, friction forces are, in general, forces
of reaction. As general forces of reaction, the direction of the friction forces can be
found by assuming the direction when drawing your FBDs (while abiding by Newton’s
third law of action and reaction). In that case, the direction is found from your solu-
tion. However, when considering IMPENDING motion (f = µsN) you MUST know
the direction of the friction force at the time of drawing your FBDs. You cannot rely
on the mathematics to determine the correct direction.

2. In our work here on wedges, we are typically determining the maximum and minimum
applied forces for equilibrium. Since these situations result in impending motion, you
must know the direction of friction forces when you draw your FBDs for your system.

3. Before starting a solution for problems involving wedges, carefully study the problem
statement. What question is being asked? From the problem statement, you should
be able to determine the directions of impending motion. Only then, can you draw
your FBDs and solve.

4. For problems involving more than one wedge, you will likely encounter a situation
of not knowing in advance on which surfaces you expect impending slip. For these
problems, make an assumption as to the surfaces on which impending slip will occur.
On all other surfaces, leave friction forces as regular forces of reaction. After solving,
then check your assumption. If your assumption was incorrect, you need to rework the
problem based on what you learned from your original assumption.
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Example 10.3.1
Determine the smallest horizontal force P required to pull out wedge A. The crate has a
weight of 300lb and the coefficient of static friction at all contacting surfaces is µs = 0.3.
Neglect the weight of the wedge.
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Example 10.3.2
The coefficient of static friction on both sides of the wedge is µs = 0.2. Is the wedge self-
locking? Neglect the weight of the wedge and bar.
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Example 10.3.3
Determine the smallest horizontal force P required to lift the 100kg cylinder. The coefficient
of static friction at all surfaces is µs = 0.3. Neglect the weight of the wedge.
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10.4 Slipping and Tipping

Up to this point in our discussion of problems with friction, impending motion in a given
system resulted from applied forces that create slipping at certain contacting surfaces. Recall
that impending motion occurs at a surface where the friction force f and the normal force
N are related by: f = fmax = µsN .

In this section of the textbook, we will study a different kind of problem where impending
motion in frictional systems can result from either slipping (as described above) or from a
pair of interfacing surfaces losing contact with each other. This second situation will be
referred to as “tipping”.

As an introduction to this topic, consider the case shown below of a block of weight W and
center of mass at G that is resting on a rough horizontal surface (with coefficient of static
friction µs). A horizontal force P is applied to the block at vertical distance of h above the
rough surface.

In the absence of the applied force P the normal reaction force on the block from the
ground is immediately below the center of mass G, as shown below left. However, with the
application of the force P , the point of application for the normal and friction forces has
moved a distance of d to the right at point C, as shown in the figure below right.
How far to the right have these forces moved? That is, what is the value for d? To see this,
we will write down a moment equilibrium equation about point C:∑

MC = Wd− Ph = 0 ⇒ d =
P

W
h

From this we see that these contact forces move to the right as either P or h is increased.
When P = 0, d = 0 and the normal force N is directly below G, as described earlier.

What happens when this distance d falls outside of the contact region of the block with
the ground (that is, when d > b/2)? The answer is that the block can no longer remain in
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equilibrium in rotation; it has ”tipped” about corner B of the block.

Let us now look at the force equilibrium equations for the block:∑
Fx = P − f = 0 ⇒ P = f∑
Fy = N −W = 0 ⇒ N = W

From this we see that the block can no longer remain in equilibrium if P = f > µsN(= µsW )
since, for this case, the block will slip on the horizontal surface.

We are now faced with the question as to whether the block will tend to tip or to slip first
as the applied load P is increased. How do we answer that question?

There are many ways to deal with impending motion problems; those that require you to
determine whether an object slips or tips. Here we will illustrate two of them.

Method 1

1. Assume tipping and solve for the force required to cause impending motion due to
tipping.

2. Assume slipping and solve for the force required to cause impending motion due to
slipping.

3. Compare the forces you obtained in each step. From these two answers choose the
one that satisfies conditions of equilibrium. If the force that you are seeking initiates
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motion, then choose the smaller of the two. If the force that you are seeking prevents
motion, then choose the larger of the two (since you want to prevent both tipping and
slipping).

Method 2

1. Assume tipping and solve for the force required to cause impending motion due to
tipping.

2. Check to see how the friction force required for tipping compares to the maximum that
can be generated at the surface.

3. If the friction force required for tipping is less than the maximum possible, the object
tips and the problem is over. If it is greater than the maximum possible, it must have
slipped.

4. If the object slips, you must solve that problem to obtain the force required to cause
slipping motion.

The advantage of Method 1 is that it is the most straight forward, but it always requires
you to solve both versions of the problem. Method 2 often saves time, but requires a little
more logic. There are other methods that can be used, but these are the most straight
forward.

In summary, do not memorize the above results for the example of the block with the hor-
izontal applied force. Problems that you will face will not be that simple, and these results
will not apply there. Instead, follow either of the above two methods. An accurate FBD
along with the full set of equilibrium equations are the critical first steps in your solution.

Special case

In some problems, the contacting surface will not be continuous, but rather at two discrete
points. Consider the block shown below with small feet at corners A and B. The free body
diagram of the block now has normal and friction forces at both A and B, as shown in the
figure below right.

For this case,

• If the block is in a state of impending slipping, then we have fA = µsNA AND
fB = µsNB, where NA > 0 and NB > 0.
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• If the block is in a state of impending tipping, then we have NA = fA = 0 along with
fB 6= µsNB and NB > 0.

The rest of the process for determining tipping vs. slipping is exactly the same as in the
previous example of having a flat contact along the bottom of the block.



Chapter 10: Friction 10-29

Example 10.4.1
The block has a weight of W = 200N . The coefficient of static friction between the block
and the rough horizontal surface is known to be µs = 0.5.

1. If θ = 0, what is the minimum force P required to initiate movement of the block?
Will the resulting motion be tipping or slipping?

2. If θ = 40◦, what is the minimum force P required to initiate movement of the block?
Will the resulting motion be tipping or slipping?
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Example 10.4.2
A 60kg cabinet whose center of mass is at point G is supported by small feet at A and B.
The coefficients of static friction at A and B are µA = µB = 0.75. Determine the largest
force P , parallel to the incline that can act on the cabinet and not have the cabinet move.
Is the impending motion of the cabinet slipping or tipping?
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Example 10.4.3
A 25kg door is mounted on a horizontal rail at sliders A and B. The coefficients of static
friction at A and B are µA = µB = 0.15. The door handle C is pulled to the right to open
the door. Determine the minimum force P acting at the handle in order to move the door.
Use d = 2m. Is the impending motion of the door slipping or tipping?
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Example 10.4.4
Here you should see two stacked boxes. The top box has a mass of 40 kg and the bottom
box has a mass of 35 kg. The coefficient of friction between the top and bottom boxes is 0.8
and the coefficient of friction between the bottom box and the ground is 0.68. Determine
the force at which motion occurs. Do the boxes move together or independently? Do they
tip or slip?

P

h

b 

H 

Box 1

Box 2
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10.5 Belt Friction

Any time a belt, cable, or rope is wrapped around a rough cylinder (or non-ideal pulley)
friction develops at the interface. Up to this point in the course, we have ignored the in-
fluence of friction for cable being pulled over pulleys. With the assumption that the pulley
is smooth, we have concluded that the pulley does not alter the tension in the cable. Here
we will now address the question as to how this friction produces a tension difference as the
cable is wrapped around a non-ideal (rough) stationary drum. In order to determine the
relationship for this tension difference, it is necessary to build up a mathematical model that
utilizes differential elements as described in the following.

Consider the situation shown in the figure below left where we have a section of a belt
pulled over a rough, stationary circular drum. The tensions at the ends of the belt are T1 at
θ = 0 and T2 at θ = β, where β is the total angle of wrap for the belt. For the sake of the
mathematical development that follows, it is assumed that T1 > T2.

Since we have assumed T1 > T2, the impending motion of the belt on the drum is toward
the higher tension end where the tension is T1. The friction force on the belt by the drum
will oppose the direction of impending slip; therefore, the distributed friction force on the
belt will be as shown in the figure below right.

A free body diagram for a differential section of the belt in a state of impending slipping
on the drum is shown in the following figure. This figure shows four forces acting on the
section of the belt: the tensions T (θ) and T (θ + dθ), the normal force dN and the friction
force df = µdN . It is important to note that the direction of the friction force is drawn to
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oppose the direction of impending sliding of the section of the belt.

Summing forces acting on the belt section gives:∑
Fx = T (θ + dθ)cos(dθ/2)− T (θ)cos(dθ/2) + µdN = 0

∑
Fy = −T (θ + dθ)sin(dθ/2)− T (θ)sin(dθ/2) + dN = 0

Since dθ is of differential (small) size, sin(dθ/2)→ dθ/2 and cos(dθ/2)→ 1. Therefore, the
above equilibrium equations become:

T (θ + dθ) = T (θ)− µdN → dN = −dT
µ

−dT
µ

= [T (θ + dθ) + T (θ)]
dθ

2
= [T (θ)− µdN + T (θ)]

dθ

2
= Tdθ − 1

2
dTdθ
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Since dT and dθ are differential quantities, dTdθ ≈ 0. Therefore,

−dT
µ

= Tdθ ⇒

−dT
T

= µdθ

−
∫ T2

T1

dT

T
= µ

∫ β

0

dθ

ln

(
T1

T2

)
= µβ ⇒ T1

T2

= eµβ
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Discussion: cable/belt friction

1. Recall that the above equation relating T1/T2 to µ and the angle of belt wrap β

T1

T2

= eµβ

was developed assuming impending slip between the belt and drum. It is NOT valid
for a general situation of equilibrium.

2. You must know on which side of the drum does the belt have the highest tension before
applying the above equation. That tension was named T1, and it MUST appear in the
numerator of the fraction on the left hand side of the above equation. Typically, you
can determine the high tension side of the belt by reading the question and determining
the direction of impending motion for the belt. T1 is the tension on the impending
motion end of the belt. You need to put some thought on the direction of impending
motion at the start of the problem.

3. The above equation shows that the ratio of tensions T1/T2 increases exponentially with
the angle of belt wrap β, where β is to be given in radians.
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Example 10.5.1
The coefficient of static friction between the rope and the drum is known to be µs = 0.5.
Block B weighs WB = 100Newtons. Determine the range of weights for block A so that the
system remains in equilibrium.
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Example 10.5.2
During a particular rescue mission, a rescue worker weighing W = 180lbs is to be raised and
lowered over the edge of a cliff. The rope attached to the worker is wrapped over 90◦ of the
cliff’s edge and a one full wrap around a vertical post at the top of the cliff.

1. Determine the minimum force P required to hold the rescue worker in equilibrium.

2. Determine the minimum force P required to initiate upward motion of the rescue
worker.
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Example 10.5.3
A motor exerts a clockwise torque MA on pulley A. A counterclockwise torque MB is applied
to pulley B that keeps the system in equilibrium. The coefficient of static friction between
the belt and the pulleys is known to be µs = 0.35. Determine the maximum torque MA that
can be applied by the motor such that the tension in the belt does not exceed a maximum
allowable value of 2500N . Determine the corresponding value for the torque MB.


