Chapter 10 Resource Masters

StudentWorks™ This CD-ROM includes the entire Student Edition along with the Study Guide, Practice, and Enrichment masters.

TeacherWorks[™] All of the materials found in this booklet are included for viewing and printing in the *Advanced Mathematical Concepts TeacherWorks* CD-ROM.

The **McGraw·Hill** Companies

Copyright © The McGraw-Hill Companies, Inc. All rights reserved. Printed in the United States of America. Permission is granted to reproduce the material contained herein on the condition that such material be reproduced only for classroom use; be provided to students, teachers, and families without charge; and be used solely in conjunction with *Glencoe Advanced Mathematical Concepts*. Any other reproduction, for use or sale, is prohibited without prior written permission of the publisher.

Send all inquiries to: Glencoe/McGraw-Hill 8787 Orion Place Columbus, OH 43240-4027

ISBN: 0-07-869137-0

Advanced Mathematical Concepts Chapter 10 Resource Masters

1 2 3 4 5 6 7 8 9 10 XXX 11 10 09 08 07 06 05 04

Contents

Vocabulary Builder vii-viii						
Lesson 10-1						
Study Guide						
Practice						
Enrichment						

Lesson 10-2

Study Guide	 420
Practice	 421
Enrichment	 422

Lesson 10-3

Study Guide		•																	423
Practice		•																	424
Enrichment .	• •	•	•		•	•	•	•	•		•	•	•	•	•			•	425

Lesson 10-4

Study Guide	426
Practice	427
Enrichment	428

Lesson 10-5

Study Guide	 			•		•	•				•			429
Practice	 			•		•				•	•		•	430
Enrichment.	 			•		•				•	•		•	431

Lesson 10-6

Study Guide	52
Practice	3
Enrichment	;4

Lesson 10-7

Study Guide	 	•		•						•	•	•	•	•	•		•			•	435
Practice	 	•		•						•	•	•	•	•	•		•			•	436
Enrichment .	 	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	437

Lesson 10-8

Study Guide		 •		•		•	•		•	•	•	•		•	•			438
Practice		 •								•	•	•					•	439
Enrichment .		 •		•		•	•		•	•	•	•	•	•	•	•		440

Chapter 10 Assessment

Chapter 10 Test, Form 1A	. 441-442
Chapter 10 Test, Form 1B	. 443-444
Chapter 10 Test, Form 1C	. 445-446
Chapter 10 Test, Form 2A	. 447-448
Chapter 10 Test, Form 2B	. 449-450
Chapter 10 Test, Form 2C	. 451-452
Chapter 10 Extended Response	
Assessment	453
Chapter 10 Mid-Chapter Test	454
Chapter 10 Quizzes A & B	455
Chapter 10 Quizzes C & D	456
Chapter 10 SAT and ACT Practice	. 457-458
Chapter 10 Cumulative Review	459

SAT and ACT Practice Answer Sheet,
10 Questions
SAT and ACT Practice Answer Sheet,
20 Questions
ANSWERS A3-A17

A Teacher's Guide to Using the Chapter 10 Resource Masters

The *Fast File* Chapter Resource system allows you to conveniently file the resources you use most often. The *Chapter 10 Resource Masters* include the core materials needed for Chapter 10. These materials include worksheets, extensions, and assessment options. The answers for these pages appear at the back of this booklet.

All of the materials found in this booklet are included for viewing and printing in the *Advanced Mathematical Concepts TeacherWorks* CD-ROM.

Vocabulary Builder Pages vii-viii include a student study tool that presents the key vocabulary terms from the chapter. Students are to record definitions and/or examples for each term. You may suggest that students highlight or star the terms with which they are not familiar.

When to Use Give these pages to students before beginning Lesson 10-1. Remind them to add definitions and examples as they complete each lesson.

Practice There is one master for each lesson. These problems more closely follow the structure of the Practice section of the Student Edition exercises. These exercises are of average difficulty.

When to Use These provide additional practice options or may be used as homework for second day teaching of the lesson.

Study Guide There is one Study Guide master for each lesson.

When to Use Use these masters as reteaching activities for students who need additional reinforcement. These pages can also be used in conjunction with the Student Edition as an instructional tool for those students who have been absent. **Enrichment** There is one master for each lesson. These activities may extend the concepts in the lesson, offer a historical or multicultural look at the concepts, or widen students' perspectives on the mathematics they are learning. These are not written exclusively for honors students, but are accessible for use with all levels of students.

When to Use These may be used as extra credit, short-term projects, or as activities for days when class periods are shortened.

Assessment Options

The assessment section of the *Chapter 10 Resources Masters* offers a wide range of assessment tools for intermediate and final assessment. The following lists describe each assessment master and its intended use.

Chapter Assessments

Chapter Tests

- *Forms 1A, 1B, and 1C* Form 1 tests contain multiple-choice questions. Form 1A is intended for use with honors-level students, Form 1B is intended for use with average-level students, and Form 1C is intended for use with basic-level students. These tests are similar in format to offer comparable testing situations.
- *Forms 2A, 2B, and 2C* Form 2 tests are composed of free-response questions. Form 2A is intended for use with honors-level students, Form 2B is intended for use with average-level students, and Form 2C is intended for use with basic-level students. These tests are similar in format to offer comparable testing situations.

All of the above tests include a challenging Bonus question.

• The Extended Response Assessment includes performance assessment tasks that are suitable for all students. A scoring rubric is included for evaluation guidelines. Sample answers are provided for assessment.

Intermediate Assessment

- A **Mid-Chapter Test** provides an option to assess the first half of the chapter. It is composed of free-response questions.
- Four free-response **quizzes** are included to offer assessment at appropriate intervals in the chapter.

Continuing Assessment

- The **SAT and ACT Practice** offers continuing review of concepts in various formats, which may appear on standardized tests that they may encounter. This practice includes multiple-choice, quantitativecomparison, and grid-in questions. Bubblein and grid-in answer sections are provided on the master.
- The **Cumulative Review** provides students an opportunity to reinforce and retain skills as they proceed through their study of advanced mathematics. It can also be used as a test. The master includes free-response questions.

Answers

- Page A1 is an answer sheet for the SAT and ACT Practice questions that appear in the Student Edition on page 693. Page A2 is an answer sheet for the SAT and ACT Practice master. These improve students' familiarity with the answer formats they may encounter in test taking.
- The answers for the lesson-by-lesson masters are provided as reduced pages with answers appearing in red.
- Full-size answer keys are provided for the assessment options in this booklet.

Chapter 10 Leveled Worksheets

Glencoe's **leveled worksheets** are helpful for meeting the needs of every student in a variety of ways. These worksheets, many of which are found in the **FAST FILE Chapter Resource Masters**, are shown in the chart below.

- **Study Guide** masters provide worked-out examples as well as practice problems.
- Each chapter's **Vocabulary Builder** master provides students the opportunity to write out key concepts and definitions in their own words.
- **Practice** masters provide average-level problems for students who are moving at a regular pace.
- **Enrichment** masters offer students the opportunity to extend their learning.

Five Different Options to Meet the Needs of Every Student in a Variety of Ways

	primarily skills		
	primarily concepts		
	primarily applications		
-	BASIC	AVERAGE	ADVANCED
0	Study Guide		
0	Vocabulary Builder		
3	Parent and Student Study Guide	(online)	
	4	Practice	
	_		
	5	Enrichment	

Reading to Learn Mathematics

Vocabulary Builder

This is an alphabetical list of the key vocabulary terms you will learn in Chapter 10. As you study the chapter, complete each term's definition or description. Remember to add the page number where you found the term.

Vocabulary Term	Found on Page	Definition/Description/Example
analytic geometry		
asymptotes		
axis of symmetry		
center		
conic section		
conjugate axis		
degenerate conic		
diractrix		
uncentx		
eccentricity		
-11:		
empse		

(continued on the next page)

Chapter

10

Reading to Learn Mathematics

Vocabulary Builder (continued)

Vocabulary Term	Found on Page	Definition/Description/Example
equilateral hyperbola		
focus		
hyperbola		
locus		
major axis		
minor axis		
rectangular hyperbola		
semi-major axis		
semi-minor axis		
transverse axis		
vertex		

Study Guide

Introduction to Analytic Geometry

Example 1 Find the distance between points at (-2, 2) and (5, -4). Then find the midpoint of the segment that has endpoints at the given coordinates.

$$\begin{array}{ll} d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} & Distance \ Formula \\ d = \sqrt{[5 - (-2)]^2 + [(-4) - 2]^2} & Let \ (x_1, y_1) = (-2, 2) \ and \\ (x_2, y_2) = (5, -4). \end{array}$$
$$d = \sqrt{7^2 + (-6)^2} \ \text{or} \ \sqrt{85} \\ \text{midpoint} = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) & Midpoint \ Formula \end{array}$$

Example 2 Determine whether guadrilateral ABCD with vertices A(1, 1), B(0, -1), C(-2, 0), and D(-1, 2) is a parallelogram.

The midpoint is at $(\frac{-2+5}{2}, \frac{2+(-4)}{2})$ or $(\frac{3}{2}, -1)$.

First, graph the figure.

To determine if $\overline{DA} \parallel \overline{CB}$, find the slopes of \overline{DA} and \overline{CB} .

slope of DAslope of CB
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
Slope formula $m = \frac{y_2 - y_1}{x_2 - x_1}$ Slope formula $= \frac{1 - 2}{1 - (-1)}$ $D(-1, 2)$ and $A(1, 1)$ $= \frac{-1 - 0}{0 - (-2)}$ $C(-2, 0)$ and $B(0, -1)$ $= -\frac{1}{2}$ $= -\frac{1}{2}$

Their slopes are equal. Therefore, $\overline{DA} \parallel \overline{CB}$.

To determine if $\overline{DA} \cong \overline{CB}$, use the distance formula to find \overline{DA} and \overline{CB} .

$$DA = \sqrt{[1 - (-1)]^2 + (1 - 2)^2} \qquad CB = \sqrt{[0 - (-2)]^2 + (-1 - 0)^2} \\ = \sqrt{5} \qquad = \sqrt{5}$$

The measures of \overline{DA} and \overline{CB} are equal. Therefore, $\overline{DA} \cong \overline{CB}$.

Since $\overline{DA} \parallel \overline{CB}$ and $\overline{DA} \cong \overline{CB}$, quadrilateral *ABCD* is a parallelogram.

Practice

NAME

Introduction to Analytic Geometry

Find the distance between each pair of points with the given coordinates. Then find the midpoint of the segment that has endpoints at the given coordinates.

1, (-2, 1), (3, 4)	2 , (1, 1), (9, 7)
1 , $(2, 1)$, $(0, 1)$	

- **3.** (3, -4), (5, 2)4. (-1, 2), (5, 4)
- **5.** (-7, -4), (2, 8)**6.** (-4, 10), (4, -5)

Determine whether the quadrilateral having vertices with the given coordinates is a parallelogram.

7. $(4, 4), (2, -2), (-5, -1), (-3, 5)$	8. $(3, 5), (-1, 1), (-6, 2), (-3, 7)$

9. (4, -1), (2, -5), (-3, -3), (-1, 1)**10.** (2, 6), (1, 2), (-4, 4), (-3, 9)

11. *Hiking* Jenna and Maria are hiking to a campsite located at (2, 1) on a map grid, where each side of a square represents 2.5 miles. If they start their hike at (-3, 1), how far must they hike to reach the campsite?

DATE PERIOD

Enrichment

NAME

Mathematics and History: Hypatia

Hypatia (A.D. 370–415) is the earliest woman mathematician whose life is well documented. Born in Alexandria, Egypt, she was widely known for her keen intellect and extraordinary mathematical ability. Students from Europe, Asia, and Africa flocked to the university at Alexandria to attend her lectures on mathematics, astronomy, philosophy, and mechanics.

Hypatia wrote several major treatises in mathematics. Perhaps the most significant of these was her commentary on the Arithmetica of Diophantus, a mathematician who lived and worked in Alexandria in the third century. In her commentary, Hypatia offered several observations about the Arithmetica's Diophantine problems problems for which one was required to find only the rational solutions. It is believed that many of these observations were subsequently incorporated into the original manuscript of the Arithmetica.

In modern mathematics, the solutions of a **Diophantine equation** are restricted to integers. In the exercises, you will explore some questions involving simple Diophantine equations.

For each equation, find three solutions that consist of an ordered pair of integers.

1. $2x - y = 7$	2. $x + 3y = 5$
------------------------	------------------------

- 4. -11x 4y = 6**3.** 6x - 5v = -8
- **5.** Refer to your answers to Exercises 1–4. Suppose that the integer pair (x_1, y_1) is a solution of Ax - By = C. Describe how to find other integer pairs that are solutions of the equation.
- 6. Explain why the equation 3x + 6y = 7 has no solutions that are integer pairs.
- 7. *True* or *false*: Any line on the coordinate plane must pass through at least one point whose coordinates are integers. Explain.

Study Guide

Circles

The standard form of the equation of a **circle** with **radius** *r* and **center** at (h, k) is $(x - h)^2 + (v - k)^2 = r^2$.

Example 1 Write the standard form of the equation of the circle that is tangent to the x-axis and has its center at (-4, 3). Then graph the equation.

Since the circle is tangent to the *x*-axis, the distance from the center to the x-axis is the radius. The center is 3 units above the *x*-axis. Therefore, the radius is 3.

 $(x-h)^2 + (y-k)^2 = r^2$ Standard form $[x - (-4)]^2 + (y - 3)^2 = 3^2$ (h, k) = (-4, 3) and r = 3 $(x + 4)^2 + (v - 3)^2 = 9$

Write the standard form of the equation of the Example 2 circle that passes through the points at (1, -1), (5, 3), and (-3, 3). Then identify the center and radius of the circle.

Substitute each ordered pair (x, y) in the general form $x^2 + y^2 + Dx + Ey + F = 0$ to create a system of equations.

 $(1)^{2} + (-1)^{2} + D(1) + E(-1) + F = 0$ (x, y) = (1, -1) $(5)^2 + (3)^2 + D(5) + E(3) + F = 0$ (x, y) = (5, 3) $(-3)^{2} + (3)^{2} + D(-3) + E(3) + F = 0$ (x, y) = (-3, 3)

Simplify the system of equations.

D - E + F + 2 = 05D + 3E + F + 34 = 0-3D + 3E + F + 18 = 0

The solution to the system is D = -2, E = -6, and F = -6.

The general form of the equation of the circle is $x^2 + y^2 - 2x - 6y - 6 = 0.$

 $x^2 + y^2 - 2x - 6y - 6 = 0$ $(x^2 - 2x + ?) + (y^2 - 6y + ?) = 6$ Group to form perfect square trinomials. $(x^2 - 2x + 1) + (y^2 - 6y + 9) = 6 + 1 + 9$ Complete the square. $(x-1)^2 + (y-3)^2 = 16$ Factor the trinomials.

After completing the square, the standard form of the circle is $(x - 1)^2 + (y - 3)^2 = 16$. Its center is at (1, 3), and its radius is 4.

Practice

Write the standard form of the equation of each circle described.

Then graph the equation.

1. center at (3, 3) tangent to the *x*-axis

Write the standard form of each equation. Then graph the equation.

3. $x^2 + y^2 - 8x - 6y + 21 = 0$

		y,				
_					_	
x		0			_	
	1	١				

Write the standard form of the equation of the circle that passes through the points with the given coordinates. Then identify the center and radius.

5. (-3, -2), (-2, -3), (-4, -3)

6. (0, -1), (2, -3), (4, -1)

7. *Geometry* A square inscribed in a circle and centered at the origin has points at (2, 2), (-2, 2), (2, -2) and (-2, -2). What is the equation of the circle that circumscribes the square?

Enrichment

Spheres

The set of all points in three-dimensional space that are a fixed distance r (the **radius**), from a fixed point C (the **center**), is called a **sphere**. The equation below is an algebraic representation of the sphere shown at the right.

$$(x-h)^2 + (y-k)^2 + (z-l)^2 = r^2$$

A line segment containing the center of a sphere and having its endpoints on the sphere is called a **diameter** of the sphere. The endpoints of a diameter are called **poles** of the sphere. A **great circle** of a sphere is the intersection of the sphere and a plane containing the center of the sphere.

- **1.** If $x^2 + y^2 4y + z^2 + 2z 4 = 0$ is an equation of a sphere and (1, 4, -3) is one pole of the sphere, find the coordinates of the opposite pole.
- **2. a.** On the coordinate system at the right, sketch the sphere described by the equation $x^2 + y^2 + z^2 = 9$.
 - **b.** Is P(2, -2, -2) inside, outside, or on the sphere?
 - **c.** Describe a way to tell if a point with coordinates P(a, b, c) is inside, outside, or on the sphere with equation $x^{2} + y^{2} + z^{2} = r^{2}$.
- **3.** If $x^2 + y^2 + z^2 4x + 6y 2z 2 = 0$ is an equation of a sphere, find the circumference of a great circle, and the surface area and volume of the sphere.
- 4. The equation $x^2 + y^2 = 4$ represents a set of points in three-dimensional space. Describe that set of points in your own words. Illustrate with a sketch on the coordinate system at the right.

DATE PERIOD

Ellipses

The standard form of the equation of an **ellipse** is $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ when the **major axis** is horizontal. In this case, a^2 is in the denominator of the *x* term. The standard form is $\frac{(y-k)^2}{a^2} + \frac{(x-h)^2}{b^2} = 1$ when the major axis is vertical. In this case, a^2 is in the denominator of the y term. In both cases, $c^2 = a^2 - b^2$.

Study Guide

Example Find the coordinates of the center, the foci, and the vertices of the ellipse with the equation $4x^2 + 9y^2 + 24x - 36y + 36 = 0$. Then graph the equation.

First write the equation in standard form.

$$4x^{2} + 9y^{2} + 24x - 36y + 36 = 0$$

$$4(x^{2} + 6x + ?) + 9(y^{2} - 4y + ?) = -36 + ? + ?$$

$$GCF \text{ of } x \text{ terms is } 4;$$

$$GCF \text{ of } y \text{ terms is } 9.$$

$$4(x^{2} + 6x + 9) + 9(y^{2} - 4y + 4) = -36 + 4(9) + 9(4) \text{ Complete the square.}$$

$$4(x + 3)^{2} + 9(y - 2)^{2} = 36$$

$$\frac{(x + 3)^{2}}{9} + \frac{(y - 2)^{2}}{4} = 1$$

$$Divide \text{ each side by } 36.$$

Now determine the values of a, b, c, h, and k. In all ellipses, $a^2 > b^2$. Therefore, $a^2 = 9$ and $b^2 = 4$. Since a^2 is the denominator of the *x* term, the major axis is parallel to the *x*-axis.

a = 3 b = 2 $c = \sqrt{a^2 - b^2}$ or $\sqrt{5}$ h = -3 k = 2

center: $(-3, 2)$ foci: $(-3 \pm \sqrt{5}, 2)$	$egin{aligned} (h,k)\ (h\pm c,k) \end{aligned}$
major axis vertices: $(0, 2)$ and $(-6, 2)$	$(h \pm a, k)$
minor axis vertices: $(-3, 4)$ and $(-3, 0)$	$(h, k \pm b)$

Graph these ordered pairs. Then complete the ellipse.

Practice

Ellipses

Write the equation of each ellipse in standard form. Then find the coordinates of its foci.

For the equation of each ellipse, find the coordinates of the center, foci, and vertices. Then graph the equation.

3. $4x^2 + 9y^2 - 8x - 36y + 4 = 0$

2	5x	$^{2} +$	9	y^2	_	50) <i>x</i> ·	- 9	90	y +	- 25	i =
1	1 y	ά Ι			I	1			U			
+		T +										
1												
_												
+	_		_		_							
+			-		_							
+					_							
+			+		+	\vdash	_					
-	0	*					x					

Write the equation of the ellipse that meets each set of conditions.

- **5.** The center is at (1, 3), the major axis is parallel to the *y*-axis, and one vertex is at (1, 8), and b = 3.
- **6.** The foci are at (-2, 1) and (-2, -7), and a = 5.
- 7. Construction A semi elliptical arch is used to design a headboard for a bed frame. The headboard will have a height of 2 feet at the center and a width of 5 feet at the base. Where should the craftsman place the foci in order to sketch the arch?

Enrichment

Superellipses

The circle and the ellipse are members of an interesting family of curves that were first studied by the French physicist and mathematician Gabriel Lamé(1795-1870). The general equation for the family is

$$\left|\frac{x}{a}\right|^n+\left|\frac{y}{b}\right|^n=1, ext{ with } a\neq 0, b\neq 0, ext{ and } n>0.$$

For even values of *n* greater than 2, the curves are called superellipses.

1. Consider two curves that are *not* superellipses. Graph each equation on the grid at the right. State the type of curve produced each time.

a.
$$\left|\frac{x}{2}\right|^2 + \left|\frac{y}{2}\right|^2 = 1$$

b. $\left|\frac{x}{3}\right|^2 + \left|\frac{y}{2}\right|^2 = 1$

2. In each of the following cases you are given values of *a*, *b*, and *n* to use in the general equation. Write the resulting equation. Then graph. Sketch each graph on the grid at the right.

a.
$$a = 2, b = 3, n = 4$$

b.
$$a = 2, b = 3, n = 6$$

c.
$$a = 2, b = 3, n = 8$$

3. What shape will the graph of $\left|\frac{x}{2}\right|^n + \left|\frac{y}{3}\right|^n = 1$ approximate for greater and greater even, whole-number values of *n*?

Study Guide

Hyperbolas

The standard form of the equation of a **hyperbola** is $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$ when the **transverse axis** is horizontal, and $\frac{(y-h)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$ when the transverse axis is vertical. In both cases, $b^2 = c^2 - a^2$.

Find the coordinates of the center, foci, and vertices, Example and the equations of the asymptotes of the graph of $25x^2 - 9y^2 + 100x - 54y - 206 = 0$. Then graph the equation.

Write the equation in standard form.

$$\begin{array}{ll} 25x^2 - 9y^2 + 100x - 54y - 206 = 0\\ 25(x^2 + 4x + ?) - 9(y^2 + 6y + ?) = 206 + ? + ? & GCF \ of \ x \ terms \ is \ 25;\\ GCF \ of \ y \ terms \ is \ 9.\\ 25(x^2 + 4x + 4) - 9(y^2 + 6y + 9) = 206 + 25(4) + (-9)(9) & Complete\\ the \ square.\\ 25(x + 2)^2 - 9(y + 3)^2 = 225 & Factor.\\ & \frac{(x + 2)^2}{9} - \frac{(y + 3)^2}{25} = 1 & Divide \ each \ side \ by \ 225. \end{array}$$

From the equation, h = -2, k = -3, $a = 3, b = 5, and c = \sqrt{34}$. The center is at (-2, -3).

Since the *x* terms are in the first expression, the hyperbola has a horizontal transverse axis.

The vertices are at $(h \pm a, k)$ or (1, -3) and (-5, -3).

The foci are at $(h \pm c, k)$ or $(-2 \pm \sqrt{34}, -3).$

The equations of the asymptotes are $y - k = \pm \frac{b}{a}(x - h)$ or $y + 3 = \pm \frac{5}{3}(x + 2)$.

Graph the center, the vertices, and the rectangle guide, which is 2a units by 2b units. Next graph the asymptotes. Then sketch the hyperbola.

Practice

Hyperbolas

For each equation, find the coordinates of the center, foci, and vertices, and the equations of the asymptotes of its graph. Then graph the equation.

Write the equation of each hyperbola.

- **5.** Write an equation of the hyperbola for which the length of the transverse axis is 8 units, and the foci are at (6, 0) and (-4, 0).
- 6. Environmental Noise Two neighbors who live one mile apart hear an explosion while they are talking on the telephone. One neighbor hears the explosion two seconds before the other. If sound travels at 1100 feet per second, determine the equation of the hyperbola on which the explosion was located.

Moving Foci

Recall that the equation of a hyperbola with center at the origin and horizontal transverse axis has the

Enrichment

equation $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. The foci are at (-c, 0) and

(c, 0), where $c^2 = a^2 + b^2$, the vertices are at (-a, 0)and (a, 0), and the asymptotes have equations

 $y = \pm \frac{b}{a}x$. Such a hyperbola is shown at the right.

What happens to the shape of the graph as *c* grows very large or very small?

Refer to the hyperbola described above.

1. Write a convincing argument to show that as *c* approaches 0, the foci, the vertices, and the center of the hyperbola become the same point.

- **2.** Use a graphing calculator or computer to graph $x^2 y^2 = 1$, $x^2 - y^2 = 0.1$, and $x^2 - y^2 = 0.01$. (Such hyperbolas correspond to smaller and smaller values of c.) Describe the changes in the graphs. What shape do the graphs approach as *c* approaches 0?
- **3.** Suppose *a* is held fixed and *c* approaches infinity. How does the graph of the hyperbola change?
- **4.** Suppose *b* is held fixed and *c* approaches infinity. How does the graph of the hyperbola change?

Study Guide

Parabolas

The standard form of the equation of the **parabola** is $(y - k)^2 = 4p(x - h)$ when the parabola opens to the right. When *p* is negative, the parabola opens to the left. The standard form is $(x - h)^2 = 4p(y - k)$ when the parabola opens upward. When *p* is negative, the parabola opens downward.

Example 1 Given the equation $x^2 = 12y + 60$, find the coordinates of the focus and the vertex and the equations of the directrix and the axis of symmetry. Then graph the equation of the parabola.

First write the equation in the form $(x - h)^2 = 4p(y - k)$.

$$x^2 = 12y + 60$$

 $x^2 = 12(y + 5)$ Factor.
 $(x - 0)^2 = 4(3)(y + 5)$ $4p = 12$, so $p = 3$.

In this form, we can see that h = 0, k = -5, and p = 3. Vertex: (0, -5) (h, k) Focus: (0, -2)Directrix: y = -8 y = k - p Axis of Symmetry: x = 0

The axis of symmetry is the *y*-axis. Since p is positive, the parabola opens upward. Graph the directrix, the vertex, and the focus. To determine the shape of the parabola, graph several other ordered pairs that satisfy the equation and connect them with a smooth curve.

(h, k + p)

DATE PERIOD

Example 2 Write the equation $y^2 + 6y + 8x + 25 = 0$ in standard form. Find the coordinates of the focus and the vertex, and the equations of the directrix and the axis of symmetry. Then graph the parabola.

 $y^{2} + 6y + 8x + 25 = 0$ $y^{2} + 6y = -8x - 25$ $y^{2} + 6y + ? = -8x - 25 + ?$ $y^{2} + 6y + 9 = -8x - 25 + 9$ $(y + 3)^{2} = -8(x + 2)$

Isolate the x terms and the y terms.

Complete the square. Simplify and factor.

From the standard form, we can see that h = -2and k = -3. Since 4p = -8, p = -2. Since *y* is squared, the directrix is parallel to the *y*-axis. The axis of symmetry is the *x*-axis. Since *p* is negative, the parabola opens to the left.

 Vertex: (-2, -3) (h, k)

 Focus: (-4, -3) (h + p, k)

 Directrix: x = 0 x = h - p

 Axis of Symmetry: y = -3 y = k

NAME ____

Practice

Parabolas

For the equation of each parabola, find the coordinates of the vertex and focus, and the equations of the directrix and axis of symmetry. Then graph the equation.

1.
$$x^2 - 2x - 8y + 17 = 0$$

2. $y^2 + 6y + 9 = 12 - 12x$

_____ DATE _____ PERIOD _____

Write the equation of the parabola that meets each set of conditions. Then graph the equation.

3. The vertex is at (-2, 4) and the focus is at (-2, 3).

4. The focus is at (2, 1), and the equation of the directrix is x = -2.

5. Satellite Dish Suppose the receiver in a parabolic dish antenna is 2 feet from the vertex and is located at the focus. Assume that the vertex is at the origin and that the dish is pointed upward. Find an equation that models a cross section of the dish.

DATE PERIOD

Enrichment

Tilted Parabolas

The diagram at the right shows a fixed point F(1, 1)and a line *d* whose equation is y = -x - 2. If P(x, y)satisfies the condition that PD = PF, then P is on a parabola. Our objective is to find an equation for the tilted parabola; which is the locus of all points that are the same distance from (1.1) and the line y = -x - 2.

To do this, first find an equation for the line *m* through P(x, y) and perpendicular to line d at D(a, b). Using this equation and the equation for line d, find the coordinates (a, b) of point D in terms of x and y. Then use $(PD)^2 = (PF)^2$ to find an equation for the parabola.

Refer to the discussion above.

- **1.** Find an equation for line *m*.
- **2.** Use the equations for lines *m* and *d* to show that the coordinates of point *D* are $D(a, b) = D(\frac{x - y - 2}{2}, \frac{y - x - 2}{2}).$

- **3.** Use the coordinates of *F*, *P*, and *D*, along with $(PD)^2 = (PF)^2$ to find an equation of the parabola with focus F and directrix d.
- 4. a. Every parabola has an axis of symmetry. Find an equation for the axis of symmetry of the parabola described above. Justify your answer.
 - **b.** Use your answer from part **a** to find the coordinates of the vertex of the parabola. Justify your answer.

Rectangular and Parametric Forms of Conic Sections

Use the table to identify a conic section given its equation in general form.

conic	$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$
circle	A = C
parabola	Either A or C is zero.
ellipse	A and C have the same sign and $A \neq C$.
hyperbola	A and C have opposite signs.

Example 1 Identify the conic section represented by the equation $5x^2 + 4y^2 - 10x - 8y + 18 = 0$.

> A = 5 and C = 4. Since A and C have the same signs and are not equal, the conic is an ellipse.

Example 2 Find the rectangular equation of the curve whose parametric equations are x = 2t and $y = 4t^2 + 4t - 1$. Then identify the conic section represented by the equation.

Then substitute $\frac{x}{2}$ for t in the equation $y = 4t^2 + 4t - 1$. $y = 4t^2 + 4t - 1$ $y = 4\left(\frac{x}{2}\right)^2 + 4\left(\frac{x}{2}\right) - 1$ $t = \frac{x}{2}$ $y = x^2 + 2x - 1$ First, solve the equation x = 2tfor t. x = 2t $\frac{x}{2} = t$

Since C = 0, the equation $y = x^2 + 2x - 1$ is the equation of a parabola.

Find the rectangular equation of the curve whose Example 3 parametric equations are $x = 3 \cos t$ and $y = 5 \sin t$, where $0 \le t \le 2\pi$. Then graph the equation using arrows to indicate orientation.

> Solve the first equation for $\cos t$ and the second equation for $\sin t$. $\cos t = \frac{x}{3}$ and $\sin t = \frac{y}{5}$ Use the trigonometric identity $\cos^2 t + \sin^2 t = 1$ to eliminate *t*. $\cos^2 t + \sin^2 t = 1$ $\left(\frac{x}{3}\right)^2 + \left(\frac{y}{5}\right)^2 = 1$ Substitution $\frac{x^2}{9} + \frac{y^2}{25} = 1$

This is the equation of an ellipse with the center at (0, 0). As t increases from 0 to 2π , the curve is traced in a counterclockwise motion.

Practice

Rectangular and Parametric Forms of Conic Sections

Identify the conic section represented by each equation. Then write the equation in standard form and graph the equation.

1.
$$x^2 - 4y + 4 = 0$$

2. $x^2 + y^2 - 6x - 6y - 18 = 0$

3. $4x^2 - y^2 - 8x + 6y = 9$

4. $9x^2 + 5y^2 + 18x = 36$

Find the rectangular equation of the curve whose parametric equations are given. Then graph the equation using arrows to indicate orientation.

5. $x = 3 \cos t, y = 3 \sin t, 0 \le t \le 2\pi$

6. $x = -4 \cos t, y = 5 \sin t, 0 \le t \le 2\pi$

Enrichment

Polar Graphs of Conics

A conic is the locus of all points such that the ratio *e* of the distance from a fixed point F and a fixed line d is constant.

$$\frac{FP}{DP} = e$$

To find the polar equation of the conic, use a polar coordinate system with the origin at the focus.

Since FP = r and $DP = p + r \cos \theta$, $\frac{r}{p + r \cos \theta} = e$. Now solve for r. $r = \frac{ep}{1 - e \cos \theta}$

You can classify a conic section by its eccentricity.

Graph each relation and identify the conic.

d∜

_____ DATE _____ PERIOD _____

Transformation of Conics

Translations are often written in the form $T_{(h,k)}$. To find the equation of a rotated conic, replace x with x' $\cos \theta + y' \sin \theta$ and y with $-x' \sin \theta + y' \cos \theta$.

Example Identify the graph of each equation. Write an equation of the translated or rotated graph in general form.

a. $4x^2 + y^2 = 12$ for $T_{(-2, 3)}$

The graph of this equation is an ellipse. To write the equation of $4x^2 + y^2 = 12$ for $T_{(-2,3)}$, let h = -2 and k = 3. Then replace x with x - h and y with y - k.

$$x^2 \Rightarrow (x - (-2))^2$$
 or $(x + 2)^2$
 $y^2 \Rightarrow (y - 3)^2$

Thus, the translated equation is $4(x + 2)^2 + (y - 3)^2 = 12$.

Write the equation in general form.

 $4(x+2)^2 + (y-3)^2 = 12$ $4(x^2 + 4x + 4) + y^2 - 6y + 9 = 12$ Expand the binomial. $4x^2 + y^2 + 16x - 6y + 25 = 12$ Simplify. $4x^2 + y^2 + 16x - 6y + 13 = 0$ Subtract 12 from both sides.

b. $x^2 - 4y = 0, \theta = 45^\circ$

The graph of this equation is a parabola. Find the expressions to replace x and y.

Replace x with x' cos 45° + y' sin 45° or $\frac{\sqrt{2}}{2}x' + \frac{\sqrt{2}}{2}y'$. Replace y with $-x' \sin 45^\circ + y' \cos 45^\circ$ or $-\frac{\sqrt{2}}{2}x' + \frac{\sqrt{2}}{2}y'$.

$$\begin{aligned} x^2 - 4y &= 0\\ \left(\frac{\sqrt{2}}{2}x' + \frac{\sqrt{2}}{2}y'\right)^2 - 4\left(-\frac{\sqrt{2}}{2}x' + \frac{\sqrt{2}}{2}y'\right) &= 0 \qquad \text{Replace x and y.}\\ \left[\frac{1}{2}(x')^2 + x'y' + \frac{1}{2}(y')^2\right] - 4\left(-\frac{\sqrt{2}}{2}x' + \frac{\sqrt{2}}{2}y'\right) &= 0 \qquad \text{Expand the binomial.}\\ \frac{1}{2}(x')^2 + x'y' + \frac{1}{2}(y')^2 + 2\sqrt{2}x' - 2\sqrt{2}y' &= 0 \qquad \text{Simplify.} \end{aligned}$$

The equation of the parabola after the 45° rotation is $\frac{1}{2}(x')^2 + x'y' + \frac{1}{2}(y')^2 + 2\sqrt{2}x' - 2\sqrt{2}y' = 0$

Practice

Transformations of Conics

Identify the graph of each equation. Write an equation of the translated or rotated graph in general form.

1.
$$2x^2 + 5y^2 = 9$$
 for $T_{(-2,1)}$
2. $2x^2 - 4x + 3 - y = 0$ for $T_{(1,-1)}$

3.
$$xy = 1, \theta = \frac{\pi}{4}$$
 4. $x^2 - 4y = 0, \theta = 90^{\circ}$

Identify the graph of each equation. Then find θ to the nearest degree.

5. $2x^2 + 2y^2 - 2x = 0$ 6. $3x^2 + 8xy + 4y^2 - 7 = 0$

7.
$$16x^2 - 24xy + 9y^2 - 30x - 40y = 0$$

8. $13x^2 - 8xy + 7y^2 - 45 = 0$

9. *Communications* Suppose the orientation of a satellite dish that monitors radio waves is modeled by the equation $4x^2 + 2xy + 4y^2 + \sqrt{2}x - \sqrt{2}y = 0$. What is the angle of rotation of the satellite dish about the origin?

Enrichment

Graphing with Addition of y-Coordinates

Equations of parabolas, ellipses, and hyperbolas that are "tipped" with respect to the *x*- and *y*-axes are more difficult to graph than the equations you have been studying.

Often, however, you can use the graphs of two simpler equations to graph a more complicated equation. For example, the graph of the ellipse in the diagram at the right is obtained by adding the y-coordinate of each point on the circle and the *y*-coordinate of the corresponding point of the line.

Graph each equation. State the type of curve for each graph.

2.
$$y = x \pm \sqrt{x}$$

Use a separate sheet of graph paper to graph these equations. State the type of curve for each graph.

3.
$$y = 2x \pm \sqrt{7} + 6x - x^2$$

4. $y = -2x \pm \sqrt{-2x}$

Study Guide

Systems of Second-Degree Equations and Inequalities

To find the exact solution to a system of second-degree equations, you must use algebra. Graph systems of inequalities involving second-degree equations to find solutions for the inequality.

Example a. Solve the system of equations algebraically. Round to the nearest tenth. $x^2 + 2y^2 = 9$ $3x^2 - y^2 = 1$

Since both equations contain a single term involving y, you can solve the system as follows.

First, multiply each side of the second equation by 2. $2(3x^2 - y^2) = 2(1)$ $6x^2 - 2y^2 = 2$ $7x^2 = 11$ $x = \pm \sqrt{\frac{11}{7}}$

Now find y by substituting $\pm \sqrt{\frac{11}{7}}$ for x in one of the original equations.

$$x^{2} + 2y^{2} = 9 \rightarrow \left(\pm \sqrt{\frac{11}{7}}\right)^{2} + 2y^{2} = 9$$

11 + 14y^{2} = 63
$$y^{2} = \frac{26}{7}$$

$$y \approx \pm 1.9$$

The solutions are $(1.3, \pm 1.9)$, and $(-1.3, \pm 1.9)$.

b. Graph the solutions for the system of inequalities.

 $\begin{array}{l} x^2 + 2y^2 < 9 \\ 3x^2 - y^2 \ge 1 \end{array}$

First graph $x^2 + 2y^2 < 9$. The ellipse should be dashed. Test a point either inside or outside the ellipse to see if its coordinates satisfy the inequality. Since (0, 0) satisfies the inequality, shade the interior of the ellipse.

Then graph $3x^2 - y^2 \ge 1$. The hyperbola should be a solid curve. Test a point inside the branches of the hyperbola or outside its branches. Since (0, 0) does not satisfy the inequality, shade the regions inside the branches. The intersection of the two graphs represents the solution of the system.

Practice

Systems of Second-Degree Equations and Inequalities

Solve each system of equations algebraically. Round to the nearest tenth. Check the solutions by graphing each system.

3. xy = 4 $x^2 = y^2 + 1$

Graph each system of inequalities.

7. Sales Vincent's Pizzeria reduced prices for large specialty pizzas by \$5 for 1 week in March. In the previous week, sales for large specialty pizzas totaled \$400. During the sale week, the number of large pizzas sold increased by 20 and total sales amounted to \$600. Write a system of second-degree equations to model this situation. Find the regular price and the sale price of large specialty pizzas.

$$\begin{array}{ll} \mathbf{4.} & x^2 + y^2 = 4 \\ & 4x^2 + 9y^2 = 36 \end{array}$$

4

2. $x^2 - y^2 = 4$

© Glencoe/McGraw-Hill

Advanced Mathematical Concepts

NAME _____

Enrichment

Intersections of Circles

Many interesting problems involving circles can be solved by using a system of equations. Consider the following problem.

Find an equation for the straight line that contains the two points of intersection of two intersecting circles whose equations are given.

You may be surprised to find that if the given circles intersect in two points, then the difference of their equations is the equation of the line containing the intersection points.

- **1.** Circle *A* has equation $x^2 + y^2 = 1$ and circle *B* has equation $(x 3)^2 + y^2 = 1$. Use a sketch to show that the circles do not intersect. Use an algebraic argument to show that circles *A* and *B* do not intersect.
- **2.** Circle *A* has equation $(x 2)^2 + (y + 1)^2 = 16$ and circle *B* has equation $(x + 3)^2 + y^2 = 9$. Use a sketch to show that the circles meet in two points. Then find an equation in standard form for the line containing the points of intersection.

3. Without graphing the equations, decide if the circles with equations $(x - 2)^2 + (y - 2)^2 = 8$ and $(x - 3)^2 + (y - 4)^2 = 4$ are tangent. Justify your answer.

	y'	ł					
	1						
	-						
┥							┢
	0		1				X
		ł					

Chapter 10 Test, Form 1A

1. Find the coordinates of the center: A. (1, 2) B. (1, -2) C. (-1, 2) D. (-2, 1) 2. Find the coordinates of the foci. A. (1 ± $\sqrt{7}$, -2) B. (1, -2 ± $\sqrt{7}$) C. (5, -2), (-3, -2) D. (1, 4), (1, -8) 3. Find the coordinates of the vertices. A. (1, 2), (1, -6), (4, -2), (-2, -2) B. (4, 2), (-2, 2), (1, 1), (1, -5) C. (5, -2), (-3, -2), (1, 1), (1, -5) D. (5, -2), (-3, -2), (1, 2), (1, -6) 4. Write the standard form of the equation of the circle that passes through the points at (4, 5), (-2, 3), and (-4, -3). A. $(x - 5)^2 + (y + 4)^2 = 49$ B. $(x - 3)^2 + (y + 2)^2 = 50$ C. $(x + 4)^2 + (y - 2)^2 = 36$ D. $(x - 2)^2 + (y + 2)^2 = 25$ 5. For $4x^2 - 4xy + y^2 = 4$, find θ , the angle of rotation about the origin, to the nearest degree. A. 27° B. 63° C. 333° D. 307° 6. Find the rectangular equation of the curve whose parametric equations are $x = 5 \cos 2t$ and $y = -\sin 2t$, $0^\circ \le t \le 180^\circ$. A. $\frac{x^2}{5} + y^2 = 1$ B. $\frac{x^2}{5} - y^2 = 1$ 7. Find the distance between points at $(m + 4, n)$ and $(m, n - 3)$. A. $(x - 2)^2 + (y + 7)^2 = 25$ B. $(x - 2)^2 + (y - 7)^2 = 5$ 7. Find the distance between points at $(x - 2)^2 + (y - 7)^2 = 25$ 9. Find the coordinates of the point(s) of intersection for the graphs of $x^2 + 2y^2 = 33$ and $x^2 + y^2 = 2x + 19$. A. $(5, 2), (-1, 4)$ B. $(5, 4), (-1, 2)$ C. $(5, \pm 2), (-1, \pm 4)$ D. Graphs do not intersect. 10. Identify the conic section represented by $9y^2 + 4x^2 - 108y + 24x = -144$. A. parabola B. hyperbola C. ellipse D. circle 11. Write the equation of the conic section $y^2 - x^2 = 5$ after a rotation of 11.	Wri Exe	te the letter for the correct answ proises 1–3 refer to the ellipse re	ver in the blank at the right of each plane $2 + 16v^2 - 18v + 64v$	roblem. — 71 = 0
A. (1, 2) B. (1, -2) C. (-1, 2) D. (-2, 1) 2. Find the coordinates of the foci. A. (1 ± $\sqrt{7}$, -2) B. (1, -2 ± $\sqrt{7}$) C. (5, -2), (-3, -2) D. (1, 4), (1, -8) 3. Find the coordinates of the vertices. A. (1, 2), (1, -6), (4, -2), (-2, -2) B. (4, 2), (-2, 2), (1, 1), (1, -5) C. (5, -2), (-3, -2), (1, 1), (1, -5) D. (5, -2), (-3, -2), (1, 2), (1, -6) 4. Write the standard form of the equation of the circle that passes through the points at (4, 5), (-2, 3), and (-4, -3). A. (x - 5) ² + (y + 4) ² = 49 B. (x - 3) ² + (y + 2) ² = 50 C. (x + 4) ² + (y - 2) ² = 36 D. (x - 2) ² + (y + 2) ² = 25 5. For $4x^2 - 4xy + y^2 = 4$, find θ , the angle of rotation about the origin, to the nearest degree. A. 27° B. 63° C. 333° D. 307° 6. Find the rectangular equation of the curve whose parametric equations are $x = 5 \cos 2t$ and $y = -\sin 2t$, $0^2 \le t \le 180^\circ$. A. $\frac{x^2}{5} + y^2 = 1$ B. $\frac{x^2}{5} - y^2 = 1$ C. $\frac{x}{25} + y^2 = 1$ D. $\frac{(x - 2)^2}{5} + (y - 2)^2 = 1$ 7. Find the distance between points at $(m + 4, n)$ and $(m, n - 3)$. A. 3.5 B. 5 C. 1 D. 7 8. Write the standard form of the equation of the circle that is tangent to the line $x = -3$ and has its center at $(2, -7)$. A. $(x - 2)^2 + (y + 7)^2 = 16$ D. $(x + 2)^2 + (y - 7)^2 = 25$ 9. Find the coordinates of the point(s) of intersection for the graphs of $x^2 + 2y^2 = 33$ and $x^2 + y^2 = 2x + 19$. A. $(5, 2), (-1, 4)$ B. $(5, 4), (-1, 2)$ C. $(5, \pm 2), (-1, \pm 4)$ D. Graphs do not intersect. 10. Identify the conic section represented by $9y^2 + 4x^2 - 108y + 24x = -144$. A. parabola B. hyperbola C. ellipse D. circle 11. Write the equation of the conic section $y^2 - x^2 = 5$ after a rotation of 45° about the origin. A. $x'y' = -2.5$ B. $x'y' = -5$ C. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$ 12. Write the equation for the maximum exactions for the graphs of yith exaction for the origin. A. $x'y' = -2.5$ B. $x'y' = -5$ C. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$	1	Find the coordinates of the center	r	1
2. Find the coordinates of the foci. A. $(1 \pm \sqrt{7}, -2)$ B. $(1, -2 \pm \sqrt{7})$ C. $(5, -2), (-3, -2)$ D. $(1, 4), (1, -8)$ 3. Find the coordinates of the vertices. A. $(1, 2), (1, -6), (4, -2), (-2, -2)$ B. $(4, 2), (-2, 2), (1, 1), (1, -5)$ C. $(5, -2), (-3, -2), (1, 1), (1, -5)$ D. $(5, -2), (-3, -2), (1, 2), (1, -6)$ 4. Write the standard form of the equation of the circle that passes through the points at $(4, 5), (-2, 3), and (-4, -3).$ A. $(x - 5)^2 + (y + 4)^2 = 49$ B. $(x - 3)^2 + (y + 2)^2 = 50$ C. $(x + 4)^2 + (y - 2)^2 = 36$ D. $(x - 2)^2 + (y + 2)^2 = 25$ 5. For $4x^2 - 4xy + y^2 = 4$, find θ , the angle of rotation about the origin, to the nearest degree. A. 27° B. 63° C. 333° D. 307° 6. Find the rectangular equation of the curve whose parametric equations are $x = 5 \cos 2t$ and $y = -\sin 2t, 0^{\circ} \le t \le 180^{\circ}$. A. $\frac{x^2}{5} + y^2 = 1$ B. $\frac{x^2}{5} - y^2 = 1$ C. $\frac{x^2}{25} + y^2 = 1$ D. $\frac{(x - 2)^2}{5} + (y - 2)^2 = 1$ 7. Find the distance between points at $(m + 4, n)$ and $(m, n - 3)$. A. 3.5 B. 5 C. 1 D. 7 8. Write the standard form of the equation of the circle that is tangent to the line $x = -3$ and has its center at $(2, -7)$. A. $(x - 2)^2 + (y + 7)^2 = 25$ B. $(x - 2)^2 + (y + 7)^2 = 5$ C. $(x - 2)^2 + (y + 7)^2 = 16$ D. $(x + 2)^2 + (y - 7)^2 = 25$ 9. Find the coordinates of the point(s) of intersection for the graphs of $x^2 + 2y^2 = 33$ and $x^2 + y^2 = 2x + 19$. A. $(5, 2), (-1, 4)$ B. $(5, 4), (-1, 2)$ C. $(5, \pm 2), (-1, \pm 4)$ D. Graphs do not intersect. 10. Identify the conic section represented by $9y^2 + 4x^2 - 108y + 24x = -144$. A. parabola B. hyperbola C. ellipse D. circle 11. Write the equation of the conic section $y^2 - x^2 = 5$ after a rotation of 45° about the origin. A. $x'y' = -2.5$ B. $x'y' = -5$ C. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$ 12. We have margentic equations for the securation $x = xy' = 2.5y'$ 13. Find the corgention. A. $x'y' = -2.5$ B. $x'y' = -5$ C. $(y'')^2 - (x')^2 = 2.5$ D. $(x')^2 =$	1.	A. $(1, 2)$ B. $(1, -2)$	C. $(-1, 2)$ D. $(-2, 1)$	1
A. $(1 \pm \sqrt{7}, -2)$ B. $(1, -2 \pm \sqrt{7})$ C. $(5, -2), (-3, -2)$ D. $(1, 4), (1, -8)$ 3. Find the coordinates of the vertices. A. $(1, 2), (1, -6), (4, -2), (-2, -2)$ B. $(4, 2), (-2, 2), (1, 1), (1, -5)$ C. $(5, -2), (-3, -2), (1, 1), (1, -5)$ D. $(5, -2), (-3, -2), (1, 2), (1, -6)$ 4. Write the standard form of the equation of the circle that passes through the points at $(4, 5), (-2, 3), and (-4, -3).$ A. $(x - 5)^2 + (y + 4)^2 = 49$ B. $(x - 3)^2 + (y + 2)^2 = 50$ C. $(x + 4)^2 + (y - 2)^2 = 36$ D. $(x - 2)^2 + (y + 2)^2 = 25$ 5. For $4x^2 - 4xy + y^2 = 4$, find θ , the angle of rotation about the origin, to the nearest degree. A. 27° B. 63° C. 333° D. 307° 6. Find the rectangular equation of the curve whose parametric equations are $x = 5 \cos 2t$ and $y = -\sin 2t, 0^\circ \le t \le 180^\circ$. A. $\frac{x^2}{5} + y^2 = 1$ B. $\frac{x^2}{5} - y^2 = 1$ C. $\frac{x^2}{25} + y^2 = 1$ D. $\frac{(x - 2)^2}{5} + (y - 2)^2 = 1$ 7. Find the distance between points at $(m + 4, n)$ and $(m, n - 3)$. A. 3.5 B. 5 C. 1 D. 7 8. Write the standard form of the equation of the circle that is tangent to the line $x = -3$ and has its center at $(2, -7)$. A. $(x - 2)^2 + (y + 7)^2 = 16$ D. $(x + 2)^2 + (y - 7)^2 = 5$ 7. C. $(x - 2)^2 + (y + 7)^2 = 16$ D. $(x + 2)^2 + (y - 7)^2 = 5$ 9. Find the coordinates of the point(s) of intersection for the graphs of $x^2 + 2y^2 = 33$ and $x^2 + y^2 = 2x + 19$. A. $(5, 2), (-1, 4)$ B. $(5, 4), (-1, 2)$ C. $(5, \pm 2), (-1, \pm 4)$ D. Graphs do not intersect. 10. Identify the conic section represented by $9y^2 + 4x^2 - 108y + 24x = -144$. A. parabola B. hyperbola C. ellipse D. circle 11. Write the equation of the conic section $y^2 - x^2 = 5$ after a rotation of 11. A. $x'y' = -2.5$ B. $x'y' = -5$ C. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$ 12. The harmonetic encurrence for the graphs of $x'y' = -5$ C. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$	2.	Find the coordinates of the foci.		2
C. $(5, -2), (-3, -2)$ D. $(1, 4), (1, -8)$ 3. Find the coordinates of the vertices. A. $(1, 2), (1, -6), (4, -2), (-2, -2)$ B. $(4, 2), (-2, 2), (1, 1), (1, -5)$ C. $(5, -2), (-3, -2), (1, 1), (1, -5)$ D. $(5, -2), (-3, -2), (1, 2), (1, -6)$ 4. Write the standard form of the equation of the circle that passes through the points at $(4, 5), (-2, 3),$ and $(-4, -3)$. A. $(x - 5)^2 + (y + 4)^2 = 49$ B. $(x - 3)^2 + (y + 2)^2 = 50$ C. $(x + 4)^2 + (y - 2)^2 = 36$ D. $(x - 2)^2 + (y + 2)^2 = 25$ 5. For $4x^2 - 4xy + y^2 = 4$, find θ , the angle of rotation about the origin, to the nearest degree. A. 27° B. 63° C. 333° D. 307° 6. Find the rectangular equation of the curve whose parametric equations are $x = 5 \cos 2t$ and $y = -\sin 2t, 0^\circ \le t \le 180^\circ$. A. $\frac{x^2}{5} + y^2 = 1$ B. $\frac{x^2}{5} - y^2 = 1$ C. $\frac{x^2}{25} + y^2 = 1$ D. $\frac{(x - 2)^2}{5} + (y - 2)^2 = 1$ 7. Find the distance between points at $(m + 4, n)$ and $(m, n - 3)$. A. 3.5 B. 5 C. 1 D. 7 8. Write the standard form of the equation of the circle that is tangent to the line $x = -3$ and has its center at $(2, -7)$. A. $(x - 2)^2 + (y + 7)^2 = 25$ B. $(x - 2)^2 + (y + 7)^2 = 5$ C. $(x - 2)^2 + (y + 7)^2 = 16$ D. $(x + 2)^2 + (y - 7)^2 = 25$ 9. Find the coordinates of the point(s) of intersection for the graphs of $x^2 + 2y^2 = 33$ and $x^2 + y^2 = 2x + 19$. A. $(5, 2), (-1, 4)$ B. $(5, 4), (-1, 2)$ C. $(5, \pm 2), (-1, \pm 4)$ D. Graphs do not intersect. 10. Identify the conic section represented by $9y^2 + 4x^2 - 108y + 24x = -144$. A. parabola B. hyperbola C. ellipse D. circle 11. Write the equation of the conic section $y^2 - x^2 = 5$ after a rotation of 11. A. $x'y' = -2.5$ B. $x'y' = -5$ C. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$ 12		A. $(1 \pm \sqrt{7}, -2)$	B. $(1, -2 \pm \sqrt{7})$	
3. Find the coordinates of the vertices. A. $(1, 2), (1, -6), (4, -2), (-2, -2)$ B. $(4, 2), (-2, 2), (1, 1), (1, -5)$ C. $(5, -2), (-3, -2), (1, 1), (1, -5)$ D. $(5, -2), (-3, -2), (1, 2), (1, -6)$ 4. Write the standard form of the equation of the circle that passes through the points at $(4, 5), (-2, 3), and (-4, -3)$. A. $(x - 5)^2 + (y + 4)^2 = 49$ B. $(x - 3)^2 + (y + 2)^2 = 50$ C. $(x + 4)^2 + (y - 2)^2 = 36$ D. $(x - 2)^2 + (y + 2)^2 = 25$ 5. For $4x^2 - 4xy + y^2 = 4$, find θ , the angle of rotation about the origin, to the nearest degree. A. 27° B. 63° C. 333° D. 307° 6. Find the rectangular equation of the curve whose parametric equations are $x = 5 \cos 2t$ and $y = -\sin 2t, 0^{\circ} \le t \le 180^{\circ}$. A. $\frac{x^2}{25} + y^2 = 1$ B. $\frac{x^2}{5} - y^2 = 1$ C. $\frac{x^2}{25} + y^2 = 1$ D. $\frac{(x - 2)^2}{5} + (y - 2)^2 = 1$ 7. Find the distance between points at $(m + 4, n)$ and $(m, n - 3)$. A. 3.5 B. 5 C. 1 D. 7 8. Write the standard form of the equation of the circle that is tangent to the line $x = -3$ and has its center at $(2, -7)$. A. $(x - 2)^2 + (y + 7)^2 = 25$ B. $(x - 2)^2 + (y + 7)^2 = 5$ C. $(x - 2)^2 + (y + 7)^2 = 16$ D. $(x + 2)^2 + (y - 7)^2 = 25$ 9. Find the coordinates of the point(s) of intersection for the graphs of $x^2 + 2y^2 = 33$ and $x^2 + y^2 = 2x + 19$. A. $(5, 2), (-1, 4)$ B. $(5, 4), (-1, 2)$ C. $(5, \pm 2), (-1, \pm 4)$ D. Graphs do not intersect. 10. Identify the conic section represented by $9y^2 + 4x^2 - 108y + 24x = -144$. A. parabola B. hyperbola C. ellipse D. circle 11. Write the equation of the conic section $y^2 - x^2 = 5$ after a rotation of 45° about the origin. A. $x'y' = -2.5$ B. $x'y' = -5$ C. $(y')^2 - (x)^2 = 2.5$ D. $(x')^2 = 2.5y'$		C. $(5, -2), (-3, -2)$	D. $(1, 4), (1, -8)$	
A. $(1, 2), (1, -6), (4, -2), (-2, -2)$ B. $(4, 2), (-2, 2), (1, 1), (1, -5)$ C. $(5, -2), (-3, -2), (1, 1), (1, -5)$ D. $(5, -2), (-3, -2), (1, 2), (1, -6)$ 4. Write the standard form of the equation of the circle that passes through the points at $(4, 5), (-2, 3),$ and $(-4, -3).$ A. $(x - 5)^2 + (y + 4)^2 = 49$ B. $(x - 3)^2 + (y + 2)^2 = 50$ C. $(x + 4)^2 + (y - 2)^2 = 36$ D. $(x - 2)^2 + (y + 2)^2 = 25$ 5. For $4x^2 - 4xy + y^2 = 4$, find θ , the angle of rotation about the origin, to the nearest degree. A. 27° B. 63° C. 333° D. 307° 6. Find the rectangular equation of the curve whose parametric equations are $x = 5 \cos 2t$ and $y = -\sin 2t, 0^\circ \le t \le 180^\circ$. A. $\frac{x^2}{5} + y^2 = 1$ B. $\frac{x^2}{5} - y^2 = 1$ C. $\frac{x^2}{25} + y^2 = 1$ D. $\frac{(x - 2)^2}{5} + (y - 2)^2 = 1$ 7. Find the distance between points at $(m + 4, n)$ and $(m, n - 3)$. A. 3.5 B. 5 C. 1 D. 7 8. Write the standard form of the equation of the circle that is tangent to the line $x = -3$ and has its center at $(2, -7)$. A. $(x - 2)^2 + (y + 7)^2 = 25$ B. $(x - 2)^2 + (y + 7)^2 = 5$ C. $(x - 2)^2 + (y + 7)^2 = 16$ D. $(x + 2)^2 + (y - 7)^2 = 25$ 9. Find the coordinates of the point(s) of intersection for the graphs of $x^2 + 2y^2 = 33$ and $x^2 + y^2 = 2x + 19$. A. $(5, 2), (-1, 4)$ B. $(5, 4), (-1, 2)$ C. $(5, \pm 2), (-1, \pm 4)$ D. Graphs do not intersect. 10. Identify the conic section represented by $9y^2 + 4x^2 - 108y + 24x = -144$. A. parabola B. hyperbola C. ellipse D. circle 11. Write the equation of the conic section $y^2 - x^2 = 5$ after a rotation of 45° about the origin. A. $x'y' = -2.5$ B. $x'y' = -5$ C. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$ 12.	3.	Find the coordinates of the vertic	es.	3
C. $(5, -2), (-3, -2), (1, 1), (1, -5) D. (5, -2), (-3, -2), (1, 2), (1, -6)$ 4. Write the standard form of the equation of the circle that passes through the points at $(4, 5), (-2, 3), and (-4, -3).$ A. $(x - 5)^2 + (y + 4)^2 = 49$ B. $(x - 3)^2 + (y + 2)^2 = 50$ C. $(x + 4)^2 + (y - 2)^2 = 36$ D. $(x - 2)^2 + (y + 2)^2 = 25$ 5. For $4x^2 - 4xy + y^2 = 4$, find θ , the angle of rotation about the origin, to the nearest degree. A. 27° B. 63° C. 333° D. 307° 6. Find the rectangular equation of the curve whose parametric equations are $x = 5 \cos 2t$ and $y = -\sin 2t, 0^\circ \le t \le 180^\circ$. A. $\frac{x^2}{5} + y^2 = 1$ B. $\frac{x^2}{5} - y^2 = 1$ C. $\frac{x^2}{25} + y^2 = 1$ D. $\frac{(x - 2)^2}{5} + (y - 2)^2 = 1$ 7. Find the distance between points at $(m + 4, n)$ and $(m, n - 3)$. A. 3.5 B. 5 C. 1 D. 7 8. Write the standard form of the equation of the circle that is tangent to the line $x = -3$ and has its center at $(2, -7)$. A. $(x - 2)^2 + (y + 7)^2 = 25$ B. $(x - 2)^2 + (y + 7)^2 = 5$ C. $(x - 2)^2 + (y + 7)^2 = 16$ D. $(x + 2)^2 + (y - 7)^2 = 25$ 9. Find the coordinates of the point(s) of intersection for the graphs of $x^2 + 2y^2 = 33$ and $x^2 + y^2 = 2x + 19$. A. $(5, 2), (-1, 4)$ B. $(5, 4), (-1, 2)$ C. $(5, \pm 2), (-1, \pm 4)$ D. Graphs do not intersect. 10. Identify the conic section represented by $9y^2 + 4x^2 - 108y + 24x = -144$. A. parabola B. hyperbola C. ellipse D. circle 11. Write the equation of the conic section $y^2 - x^2 = 5$ after a rotation of 45° about the origin. A. $x'y' = -2.5$ B. $x'y' = -5$ C. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$ [2]		A. $(1, 2), (1, -6), (4, -2), (-2, -2)$	B. $(4, 2), (-2, 2), (1, 1), (1, -5)$	
4. Write the standard form of the equation of the circle that passes through the points at $(4, 5), (-2, 3), and (-4, -3).$ A. $(x - 5)^2 + (y + 4)^2 = 49$ B. $(x - 3)^2 + (y + 2)^2 = 50$ C. $(x + 4)^2 + (y - 2)^2 = 36$ D. $(x - 2)^2 + (y + 2)^2 = 25$ 5. For $4x^2 - 4xy + y^2 = 4$, find θ , the angle of rotation about the origin, to the nearest degree. A. 27° B. 63° C. 333° D. 307° 6. Find the rectangular equation of the curve whose parametric equations are $x = 5 \cos 2t$ and $y = -\sin 2t, 0^\circ \le t \le 180^\circ$. A. $\frac{x^2}{5} + y^2 = 1$ B. $\frac{x^2}{5} - y^2 = 1$ C. $\frac{x^2}{25} + y^2 = 1$ D. $\frac{(x - 2)^2}{5} + (y - 2)^2 = 1$ 7. Find the distance between points at $(m + 4, n)$ and $(m, n - 3)$. A. 3.5 B. 5 C. 1 D. 7 8. Write the standard form of the equation of the circle that is tangent to the line $x = -3$ and has its center at $(2, -7)$. A. $(x - 2)^2 + (y + 7)^2 = 25$ B. $(x - 2)^2 + (y + 7)^2 = 5$ C. $(x - 2)^2 + (y + 7)^2 = 16$ D. $(x + 2)^2 + (y - 7)^2 = 25$ 9. Find the coordinates of the point(s) of intersection for the graphs of $x^2 + 2y^2 = 33$ and $x^2 + y^2 = 2x + 19$. A. $(5, 2), (-1, 4)$ B. $(5, 4), (-1, 2)$ C. $(5, \pm 2), (-1, \pm 4)$ D. Graphs do not intersect. 10. Identify the conic section represented by $9y^2 + 4x^2 - 108y + 24x = -144$. A. parabola B. hyperbola C. ellipse D. circle 11. Write the equation of the conic section $y^2 - x^2 = 5$ after a rotation of 45° about the origin. A. $x'y' = -2.5$ B. $x'y' = -5$ C. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$ 12		C. $(5, -2), (-3, -2), (1, 1), (1, -5)$	D. $(5, -2), (-3, -2), (1, 2), (1, -6)$	
through the points at $(4, 5), (-2, 3), and (-4, -3).$ A. $(x - 5)^2 + (y + 4)^2 = 49$ B. $(x - 3)^2 + (y + 2)^2 = 50$ C. $(x + 4)^2 + (y - 2)^2 = 36$ D. $(x - 2)^2 + (y + 2)^2 = 25$ 5. For $4x^2 - 4xy + y^2 = 4$, find θ , the angle of rotation about the origin, to the nearest degree. A. 27° B. 63° C. 333° D. 307° 6. Find the rectangular equation of the curve whose parametric equations are $x = 5 \cos 2t$ and $y = -\sin 2t$, $0^\circ \le t \le 180^\circ$. A. $\frac{x^2}{5} + y^2 = 1$ B. $\frac{x^2}{5} - y^2 = 1$ C. $\frac{x^2}{25} + y^2 = 1$ D. $\frac{(x - 2)^2}{5} + (y - 2)^2 = 1$ 7. Find the distance between points at $(m + 4, n)$ and $(m, n - 3)$. A. 3.5 B. 5 C. 1 D. 7 8. Write the standard form of the equation of the circle that is tangent to the line $x = -3$ and has its center at $(2, -7)$. A. $(x - 2)^2 + (y + 7)^2 = 25$ B. $(x - 2)^2 + (y + 7)^2 = 5$ C. $(x - 2)^2 + (y + 7)^2 = 16$ D. $(x + 2)^2 + (y + 7)^2 = 5$ 9. Find the coordinates of the point(s) of intersection for the graphs of $x^2 + 2y^2 = 33$ and $x^2 + y^2 = 2x + 19$. A. $(5, 2), (-1, 4)$ B. $(5, 4), (-1, 2)$ C. $(5, \pm 2), (-1, \pm 4)$ D. Graphs do not intersect. 10. Identify the conic section represented by $9y^2 + 4x^2 - 108y + 24x = -144$. A. parabola B. hyperbola C. ellipse D. circle 11. Write the equation of the conic section $y^2 - x^2 = 5$ after a rotation of 45° about the origin. A. $x'y' = -2.5$ B. $x'y' = -5$ C. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$ (12)	4.	Write the standard form of the ed	quation of the circle that passes	4
A. $(x - 5)^2 + (y + 4)^2 = 49$ B. $(x - 3)^2 + (y + 2)^2 = 50$ C. $(x + 4)^2 + (y - 2)^2 = 36$ D. $(x - 2)^2 + (y + 2)^2 = 25$ 5. For $4x^2 - 4xy + y^2 = 4$, find θ , the angle of rotation about the origin, to the nearest degree. A. 27° B. 63° C. 333° D. 307° 6. Find the rectangular equation of the curve whose parametric equations are $x = 5 \cos 2t$ and $y = -\sin 2t$, $0^\circ \le t \le 180^\circ$. A. $\frac{x^2}{5} + y^2 = 1$ B. $\frac{x^2}{5} - y^2 = 1$ C. $\frac{x^2}{25} + y^2 = 1$ D. $\frac{(x - 2)^2}{5} + (y - 2)^2 = 1$ 7. Find the distance between points at $(m + 4, n)$ and $(m, n - 3)$. A. 3.5 B. 5 C. 1 D. 7 8. Write the standard form of the equation of the circle that is tangent to the line $x = -3$ and has its center at $(2, -7)$. A. $(x - 2)^2 + (y + 7)^2 = 25$ B. $(x - 2)^2 + (y + 7)^2 = 5$ C. $(x - 2)^2 + (y + 7)^2 = 16$ D. $(x + 2)^2 + (y - 7)^2 = 25$ 9. Find the coordinates of the point(s) of intersection for the graphs of $x^2 + 2y^2 = 33$ and $x^2 + y^2 = 2x + 19$. A. $(5, 2), (-1, 4)$ B. $(5, 4), (-1, 2)$ C. $(5, \pm 2), (-1, \pm 4)$ D. Graphs do not intersect. 10. Identify the conic section represented by $9y^2 + 4x^2 - 108y + 24x = -144$. A. parabola B. hyperbola C. ellipse D. circle 11. Write the equation of the conic section $y^2 - x^2 = 5$ after a rotation of 45° about the origin. A. $x'y' = -2.5$ B. $x'y' = -5$ C. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$ 12		through the points at $(4, 5), (-2,$	3), and $(-4, -3)$.	
C. $(x + 4)^2 + (y - 2)^2 = 36$ D. $(x - 2)^2 + (y + 2)^2 = 25$ 5. For $4x^2 - 4xy + y^2 = 4$, find θ , the angle of rotation about the origin, to the nearest degree. A. 27° B. 63° C. 333° D. 307° 6. Find the rectangular equation of the curve whose parametric equations are $x = 5 \cos 2t$ and $y = -\sin 2t$, $0^{\circ} \le t \le 180^{\circ}$. A. $\frac{x^2}{5} + y^2 = 1$ B. $\frac{x^2}{5} - y^2 = 1$ C. $\frac{x^2}{25} + y^2 = 1$ D. $\frac{(x - 2)^2}{5} + (y - 2)^2 = 1$ 7. Find the distance between points at $(m + 4, n)$ and $(m, n - 3)$. A. 3.5 B. 5 C. 1 D. 7 8. Write the standard form of the equation of the circle that is tangent to the line $x = -3$ and has its center at $(2, -7)$. A. $(x - 2)^2 + (y + 7)^2 = 25$ B. $(x - 2)^2 + (y + 7)^2 = 5$ C. $(x - 2)^2 + (y + 7)^2 = 16$ D. $(x + 2)^2 + (y - 7)^2 = 25$ 9. Find the coordinates of the point(s) of intersection for the graphs of $x^2 + 2y^2 = 33$ and $x^2 + y^2 = 2x + 19$. A. $(5, 2), (-1, 4)$ B. $(5, 4), (-1, 2)$ C. $(5, \pm 2), (-1, \pm 4)$ D. Graphs do not intersect. 10. Identify the conic section represented by $9y^2 + 4x^2 - 108y + 24x = -144$. A. parabola B. hyperbola C. ellipse D. circle 11. Write the equation of the conic section $y^2 - x^2 = 5$ after a rotation of 45° about the origin. A. $x'y' = -2.5$ B. $x'y' = -5$ C. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$		A. $(x-5)^2 + (y+4)^2 = 49$	B. $(x-3)^2 + (y+2)^2 = 50$	
5. For $4x^2 - 4xy + y^2 = 4$, find θ , the angle of rotation about the origin, to the nearest degree. A. 27° B. 63° C. 333° D. 307° 6. Find the rectangular equation of the curve whose parametric equations are $x = 5 \cos 2t$ and $y = -\sin 2t$, $0^{\circ} \le t \le 180^{\circ}$. A. $\frac{x^2}{5} + y^2 = 1$ B. $\frac{x^2}{5} - y^2 = 1$ C. $\frac{x^2}{25} + y^2 = 1$ D. $\frac{(x-2)^2}{5} + (y-2)^2 = 1$ 7. Find the distance between points at $(m + 4, n)$ and $(m, n - 3)$. A. 3.5 B. 5 C. 1 D. 7 8. Write the standard form of the equation of the circle that is tangent to the line $x = -3$ and has its center at $(2, -7)$. A. $(x - 2)^2 + (y + 7)^2 = 25$ B. $(x - 2)^2 + (y + 7)^2 = 5$ C. $(x - 2)^2 + (y + 7)^2 = 16$ D. $(x + 2)^2 + (y - 7)^2 = 25$ 9. Find the coordinates of the point(s) of intersection for the graphs of $x^2 + 2y^2 = 33$ and $x^2 + y^2 = 2x + 19$. A. $(5, 2), (-1, 4)$ B. $(5, 4), (-1, 2)$ C. $(5, \pm 2), (-1, \pm 4)$ D. Graphs do not intersect. 10. Identify the conic section represented by $9y^2 + 4x^2 - 108y + 24x = -144$. A. parabola B. hyperbola C. ellipse D. circle 11. Write the equation of the conic section $y^2 - x^2 = 5$ after a rotation of 45° about the origin. A. $x'y' = -2.5$ B. $x'y' = -5$ C. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$		C. $(x + 4)^2 + (y - 2)^2 = 36$	D. $(x-2)^2 + (y+2)^2 = 25$	
to the nearest degree. A. 27° B. 63° C. 333° D. 307° 6. Find the rectangular equation of the curve whose parametric equations are $x = 5 \cos 2t$ and $y = -\sin 2t$, $0^{\circ} \le t \le 180^{\circ}$. A. $\frac{x^2}{5} + y^2 = 1$ B. $\frac{x^2}{5} - y^2 = 1$ C. $\frac{x^2}{25} + y^2 = 1$ D. $\frac{(x-2)^2}{5} + (y-2)^2 = 1$ 7. Find the distance between points at $(m + 4, n)$ and $(m, n - 3)$. A. 3.5 B. 5 C. 1 D. 7 8. Write the standard form of the equation of the circle that is tangent to the line $x = -3$ and has its center at $(2, -7)$. A. $(x - 2)^2 + (y + 7)^2 = 25$ B. $(x - 2)^2 + (y + 7)^2 = 5$ C. $(x - 2)^2 + (y + 7)^2 = 16$ D. $(x + 2)^2 + (y - 7)^2 = 25$ 9. Find the coordinates of the point(s) of intersection for the graphs of $x^2 + 2y^2 = 33$ and $x^2 + y^2 = 2x + 19$. A. $(5, 2), (-1, 4)$ B. $(5, 4), (-1, 2)$ C. $(5, \pm 2), (-1, \pm 4)$ D. Graphs do not intersect. 10. Identify the conic section represented by $9y^2 + 4x^2 - 108y + 24x = -144$. A. parabola B. hyperbola C. ellipse D. circle 11. Write the equation of the conic section $y^2 - x^2 = 5$ after a rotation of 45° about the origin. A. $x'y' = -2.5$ B. $x'y' = -5$ C. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$ 12. Find an expendicular for the parametric equation for the graphs of 13. $(x')^2 = -2.5y'$	5.	For $4x^2 - 4xy + y^2 = 4$, find θ , the	e angle of rotation about the origin,	5
A. 27° B. 63° C. 333° D. 307° 6. Find the rectangular equation of the curve whose parametric equations are $x = 5 \cos 2t$ and $y = -\sin 2t$, $0^{\circ} \le t \le 180^{\circ}$. A. $\frac{x^2}{5} + y^2 = 1$ B. $\frac{x^2}{5} - y^2 = 1$ C. $\frac{x^2}{25} + y^2 = 1$ D. $\frac{(x-2)^2}{5} + (y-2)^2 = 1$ 7. Find the distance between points at $(m + 4, n)$ and $(m, n - 3)$. A. 3.5 B. 5 C. 1 D. 7 8. Write the standard form of the equation of the circle that is tangent to the line $x = -3$ and has its center at $(2, -7)$. A. $(x - 2)^2 + (y + 7)^2 = 25$ B. $(x - 2)^2 + (y + 7)^2 = 5$ C. $(x - 2)^2 + (y + 7)^2 = 16$ D. $(x + 2)^2 + (y - 7)^2 = 25$ 9. Find the coordinates of the point(s) of intersection for the graphs of $x^2 + 2y^2 = 33$ and $x^2 + y^2 = 2x + 19$. A. $(5, 2), (-1, 4)$ B. $(5, 4), (-1, 2)$ C. $(5, \pm 2), (-1, \pm 4)$ D. Graphs do not intersect. 10. Identify the conic section represented by $9y^2 + 4x^2 - 108y + 24x = -144$. A. parabola B. hyperbola C. ellipse D. circle 11. Write the equation of the conic section $y^2 - x^2 = 5$ after a rotation of 45° about the origin. A. $x'y' = -2.5$ B. $x'y' = -5$ C. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$ 12. Find arcamentic mention for the graphs on particular of the origin. A. $x'y' = -2.5$ D. $(x')^2 = 2.5y'$		to the nearest degree.		
6. Find the rectangular equation of the curve whose parametric equations are $x = 5 \cos 2t$ and $y = -\sin 2t$, $0^{\circ} \le t \le 180^{\circ}$. A. $\frac{x^2}{5} + y^2 = 1$ B. $\frac{x^2}{5} - y^2 = 1$ C. $\frac{x^2}{25} + y^2 = 1$ D. $\frac{(x-2)^2}{5} + (y-2)^2 = 1$ 7. Find the distance between points at $(m + 4, n)$ and $(m, n - 3)$. A. 3.5 B. 5 C. 1 D. 7 8. Write the standard form of the equation of the circle that is tangent to the line $x = -3$ and has its center at $(2, -7)$. A. $(x - 2)^2 + (y + 7)^2 = 25$ B. $(x - 2)^2 + (y + 7)^2 = 16$ D. $(x + 2)^2 + (y - 7)^2 = 25$ 9. Find the coordinates of the point(s) of intersection for the graphs of $x^2 + 2y^2 = 33$ and $x^2 + y^2 = 2x + 19$. A. $(5, 2), (-1, 4)$ B. $(5, 4), (-1, 2)$ C. $(5, \pm 2), (-1, \pm 4)$ D. Graphs do not intersect. 10. Identify the conic section represented by $9y^2 + 4x^2 - 108y + 24x = -144$. A. parabola B. hyperbola C. ellipse D. circle 11. Write the equation of the conic section $y^2 - x^2 = 5$ after a rotation of 45° about the origin. A. $x'y' = -2.5$ B. $x'y' = -5$ C. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$ 12. Eight a comparison for the graphic accuration. 13. $(x')^2 = 2.5y'$		A. 27° B. 63°	C. 333° D. 307°	
equations are $x = 5 \cos 2t$ and $y = -\sin 2t$, $0^{\circ} \le t \le 180^{\circ}$. A. $\frac{x^2}{5} + y^2 = 1$ B. $\frac{x^2}{5} - y^2 = 1$ C. $\frac{x^2}{25} + y^2 = 1$ D. $\frac{(x-2)^2}{5} + (y-2)^2 = 1$ 7. Find the distance between points at $(m + 4, n)$ and $(m, n - 3)$. A. 3.5 B. 5 C. 1 D. 7 8. Write the standard form of the equation of the circle that is tangent to the line $x = -3$ and has its center at $(2, -7)$. A. $(x-2)^2 + (y+7)^2 = 25$ B. $(x-2)^2 + (y+7)^2 = 5$ C. $(x-2)^2 + (y+7)^2 = 16$ D. $(x+2)^2 + (y-7)^2 = 25$ 9. Find the coordinates of the point(s) of intersection for the graphs of $x^2 + 2y^2 = 33$ and $x^2 + y^2 = 2x + 19$. A. $(5, 2), (-1, 4)$ B. $(5, 4), (-1, 2)$ C. $(5, \pm 2), (-1, \pm 4)$ D. Graphs do not intersect. 10. Identify the conic section represented by $9y^2 + 4x^2 - 108y + 24x = -144$. A. parabola B. hyperbola C. ellipse D. circle 11. Write the equation of the conic section $y^2 - x^2 = 5$ after a rotation of 45° about the origin. A. $x'y' = -2.5$ B. $x'y' = -5$ C. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$ 12. Find a commetric equations for the graphs or graphs on a containt of the conic section for the origin of the origin of the conic section $y^2 - x^2 = 5$ after a rotation of 11 . y'' = -2.5 D. $(x')^2 = 2.5y'$	6.	Find the rectangular equation of	the curve whose parametric	6
A. $\frac{x^2}{5} + y^2 = 1$ B. $\frac{x^2}{5} - y^2 = 1$ C. $\frac{x^2}{25} + y^2 = 1$ D. $\frac{(x-2)^2}{5} + (y-2)^2 = 1$ 7. Find the distance between points at $(m + 4, n)$ and $(m, n - 3)$. A. 3.5 B. 5 C. 1 D. 7 8. Write the standard form of the equation of the circle that is tangent to the line $x = -3$ and has its center at $(2, -7)$. A. $(x - 2)^2 + (y + 7)^2 = 25$ B. $(x - 2)^2 + (y + 7)^2 = 16$ D. $(x + 2)^2 + (y - 7)^2 = 25$ 9. Find the coordinates of the point(s) of intersection for the graphs of $x^2 + 2y^2 = 33$ and $x^2 + y^2 = 2x + 19$. A. $(5, 2), (-1, 4)$ B. $(5, 4), (-1, 2)$ C. $(5, \pm 2), (-1, \pm 4)$ D. Graphs do not intersect. 10. Identify the conic section represented by $9y^2 + 4x^2 - 108y + 24x = -144$. A. parabola B. hyperbola C. ellipse D. circle 11. Write the equation of the conic section $y^2 - x^2 = 5$ after a rotation of 11 . A. $x'y' = -2.5$ C. $(x')^2 - (x')^2 = 2.5$ B. $x'y' = -5$ C. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$ 12. Find a normatric equations for the graphs or accuration $(x')^2 = 2.5y'$		equations are $x = 5 \cos 2t$ and $y = 5 \cos 2t$	$= -\sin 2t, 0^{\circ} \le t \le 180^{\circ}.$	
C. $\frac{x^2}{25} + y^2 = 1$ D. $\frac{(x-2)^2}{5} + (y-2)^2 = 1$ 7. Find the distance between points at $(m + 4, n)$ and $(m, n - 3)$. A. 3.5 B. 5 C. 1 D. 7 8. Write the standard form of the equation of the circle that is tangent to the line $x = -3$ and has its center at $(2, -7)$. A. $(x - 2)^2 + (y + 7)^2 = 25$ B. $(x - 2)^2 + (y + 7)^2 = 5$ C. $(x - 2)^2 + (y + 7)^2 = 16$ D. $(x + 2)^2 + (y - 7)^2 = 25$ 9. Find the coordinates of the point(s) of intersection for the graphs of $x^2 + 2y^2 = 33$ and $x^2 + y^2 = 2x + 19$. A. $(5, 2), (-1, 4)$ B. $(5, 4), (-1, 2)$ C. $(5, \pm 2), (-1, \pm 4)$ D. Graphs do not intersect. 10. Identify the conic section represented by $9y^2 + 4x^2 - 108y + 24x = -144$. A. parabola B. hyperbola C. ellipse D. circle 11. Write the equation of the conic section $y^2 - x^2 = 5$ after a rotation of 45° about the origin. A. $x'y' = -2.5$ C. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$ 12. Find a normatria equations for the sectory and a sectory of the sectory and the sectory is a sectory of the sectory is a sectory is a sectory of the sectory is a sectory is a sectory of the sectory is a sectory is a sectory of the sectory is a sectory is a		A. $\frac{x^2}{5} + y^2 = 1$	B. $\frac{x^2}{5} - y^2 = 1$	
b. $\frac{1}{25} + (y-2) = 1$ 7. Find the distance between points at $(m + 4, n)$ and $(m, n - 3)$. A. 3.5 B. 5 C. 1 D. 7 8. Write the standard form of the equation of the circle that is tangent to the line $x = -3$ and has its center at $(2, -7)$. A. $(x - 2)^2 + (y + 7)^2 = 25$ B. $(x - 2)^2 + (y + 7)^2 = 5$ C. $(x - 2)^2 + (y + 7)^2 = 16$ D. $(x + 2)^2 + (y - 7)^2 = 25$ 9. Find the coordinates of the point(s) of intersection for the graphs of $x^2 + 2y^2 = 33$ and $x^2 + y^2 = 2x + 19$. A. $(5, 2), (-1, 4)$ B. $(5, 4), (-1, 2)$ C. $(5, \pm 2), (-1, \pm 4)$ D. Graphs do not intersect. 10. Identify the conic section represented by $9y^2 + 4x^2 - 108y + 24x = -144$. A. parabola B. hyperbola C. ellipse D. circle 11. Write the equation of the conic section $y^2 - x^2 = 5$ after a rotation of 45° about the origin. A. $x'y' = -2.5$ B. $x'y' = -5$ C. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$ 12. Find a prometrie equations for the graphene equation. 13. $(x')^2 = 2.5y'$		$x^{2} + x^{2} - 1$	D $\frac{5}{(x-2)^2} + (x-2)^2 - 1$	
7. Find the distance between points at $(m + 4, n)$ and $(m, n - 3)$. A. 3.5 B. 5 C. 1 D. 7 8. Write the standard form of the equation of the circle that is tangent to the line $x = -3$ and has its center at $(2, -7)$. A. $(x - 2)^2 + (y + 7)^2 = 25$ B. $(x - 2)^2 + (y + 7)^2 = 5$ C. $(x - 2)^2 + (y + 7)^2 = 16$ D. $(x + 2)^2 + (y - 7)^2 = 25$ 9. Find the coordinates of the point(s) of intersection for the graphs of $x^2 + 2y^2 = 33$ and $x^2 + y^2 = 2x + 19$. A. $(5, 2), (-1, 4)$ B. $(5, 4), (-1, 2)$ C. $(5, \pm 2), (-1, \pm 4)$ D. Graphs do not intersect. 10. Identify the conic section represented by $9y^2 + 4x^2 - 108y + 24x = -144$. A. parabola B. hyperbola C. ellipse D. circle 11. Write the equation of the conic section $y^2 - x^2 = 5$ after a rotation of 45° about the origin. A. $x'y' = -2.5$ B. $x'y' = -5$ C. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$ 12. Find normetria equations for the represented provide represented by 13. $(x')^2 = 2.5y'$ 14. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$ 15. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$ 16. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$	_	$\frac{1}{25} + y = 1$	D: $\frac{1}{5}$ + (y 2) = 1	_
A. 3.5 B. 5 C. 1 D. 7 8. Write the standard form of the equation of the circle that is tangent to the line $x = -3$ and has its center at $(2, -7)$. A. $(x - 2)^2 + (y + 7)^2 = 25$ B. $(x - 2)^2 + (y + 7)^2 = 5$ C. $(x - 2)^2 + (y + 7)^2 = 16$ D. $(x + 2)^2 + (y - 7)^2 = 25$ 9. Find the coordinates of the point(s) of intersection for the graphs of $x^2 + 2y^2 = 33$ and $x^2 + y^2 = 2x + 19$. A. $(5, 2), (-1, 4)$ B. $(5, 4), (-1, 2)$ C. $(5, \pm 2), (-1, \pm 4)$ D. Graphs do not intersect. 10. Identify the conic section represented by $9y^2 + 4x^2 - 108y + 24x = -144$. A. parabola B. hyperbola C. ellipse D. circle 11. Write the equation of the conic section $y^2 - x^2 = 5$ after a rotation of 45° about the origin. A. $x'y' = -2.5$ B. $x'y' = -5$ C. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$ 12. Find parametria equations for the angular equation 13. $(x')^2 = 2.5y'$	7.	Find the distance between points	a at (m + 4, n) and (m, n - 3).	7
8. Write the standard form of the equation of the circle that is tangent to the line $x = -3$ and has its center at $(2, -7)$. A. $(x - 2)^2 + (y + 7)^2 = 25$ B. $(x - 2)^2 + (y + 7)^2 = 5$ C. $(x - 2)^2 + (y + 7)^2 = 16$ D. $(x + 2)^2 + (y - 7)^2 = 25$ 9. Find the coordinates of the point(s) of intersection for the graphs of $x^2 + 2y^2 = 33$ and $x^2 + y^2 = 2x + 19$. A. $(5, 2), (-1, 4)$ B. $(5, 4), (-1, 2)$ C. $(5, \pm 2), (-1, \pm 4)$ D. Graphs do not intersect. 10. Identify the conic section represented by $9y^2 + 4x^2 - 108y + 24x = -144$. A. parabola B. hyperbola C. ellipse D. circle 11. Write the equation of the conic section $y^2 - x^2 = 5$ after a rotation of 45° about the origin. A. $x'y' = -2.5$ B. $x'y' = -5$ C. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$ 12. Find normatrie equations for the parategraphic equation y = 12	~	A. 3.5 B. 5	C. 1 D. 7	
to the line $x = -3$ and has its center at $(2, -7)$. A. $(x - 2)^2 + (y + 7)^2 = 25$ B. $(x - 2)^2 + (y + 7)^2 = 5$ C. $(x - 2)^2 + (y + 7)^2 = 16$ D. $(x + 2)^2 + (y - 7)^2 = 25$ 9. Find the coordinates of the point(s) of intersection for the graphs of $x^2 + 2y^2 = 33$ and $x^2 + y^2 = 2x + 19$. A. $(5, 2), (-1, 4)$ B. $(5, 4), (-1, 2)$ C. $(5, \pm 2), (-1, \pm 4)$ D. Graphs do not intersect. 10. Identify the conic section represented by 10 . $9y^2 + 4x^2 - 108y + 24x = -144$. A. parabola B. hyperbola C. ellipse D. circle 11. Write the equation of the conic section $y^2 - x^2 = 5$ after a rotation of 11 . 45° about the origin. A. $x'y' = -2.5$ B. $x'y' = -5$ C. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$ 12. Find normatrin equations for the matangular equation 12	8.	Write the standard form of the ed	quation of the circle that is tangent	8
A. $(x - 2)^2 + (y + 7)^2 = 25$ B. $(x - 2)^2 + (y + 7)^2 = 3$ C. $(x - 2)^2 + (y + 7)^2 = 16$ D. $(x + 2)^2 + (y - 7)^2 = 25$ 9. Find the coordinates of the point(s) of intersection for the graphs of $x^2 + 2y^2 = 33$ and $x^2 + y^2 = 2x + 19$. 9		to the line $x = -3$ and has its cert	$\frac{1}{2} \frac{1}{2} \frac{1}$	
9. Find the coordinates of the point(s) of intersection for the graphs of $x^2 + 2y^2 = 33$ and $x^2 + y^2 = 2x + 19$. A. $(5, 2), (-1, 4)$ B. $(5, 4), (-1, 2)$ C. $(5, \pm 2), (-1, \pm 4)$ D. Graphs do not intersect. 10. Identify the conic section represented by $9y^2 + 4x^2 - 108y + 24x = -144$. A. parabola B. hyperbola C. ellipse D. circle 11. Write the equation of the conic section $y^2 - x^2 = 5$ after a rotation of 11 . 45° about the origin. A. $x'y' = -2.5$ B. $x'y' = -5$ C. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$ 12. Find perspective equations for the restormal equation $y^2 - x^2 = 12$		A. $(x - 2)^2 + (y + 7)^2 = 23$ C $(x - 2)^2 + (y + 7)^2 - 16$	D. $(x - 2)^2 + (y + 7)^2 = 3$ D $(x + 2)^2 + (x - 7)^2 - 25$	
9. Find the coordinates of the point(s) of intersection for the graphs of $x^2 + 2y^2 = 33$ and $x^2 + y^2 = 2x + 19$. A. $(5, 2), (-1, 4)$ B. $(5, 4), (-1, 2)$ A. $(5, 2), (-1, 4)$ D. Graphs do not intersect. 10. Identify the conic section represented by $9y^2 + 4x^2 - 108y + 24x = -144$. 10. A. parabola B. hyperbola C. ellipse D. circle 11. Write the equation of the conic section $y^2 - x^2 = 5$ after a rotation of 11 . 11. 45° about the origin. B. $x'y' = -5$ B. $x'y' = -5$ C. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$ 12. Find parametria equations for the metaporal or equation.	0	Find the accordinates of the point.	D. $(x + 2) + (y + 1) - 25$	0
A. $(5, 2), (-1, 4)$ B. $(5, 4), (-1, 2)$ C. $(5, \pm 2), (-1, \pm 4)$ D. Graphs do not intersect. 10. Identify the conic section represented by 10 $9y^2 + 4x^2 - 108y + 24x = -144.$ 10 A. parabola B. hyperbola C. ellipse 11. Write the equation of the conic section $y^2 - x^2 = 5$ after a rotation of 11 45° about the origin. A. $x'y' = -2.5$ B. $x'y' = -5$ C. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$ 12. Find perspectric equations for the metaporal equation 12	J.	$r^2 + 2v^2 = 33$ and $r^2 + v^2 = 2r + 2r^2$	(s) of intersection for the graphs of	9
C. $(5, \pm 2), (-1, \pm 4)$ D. Graphs do not intersect. 10. Identify the conic section represented by $9y^2 + 4x^2 - 108y + 24x = -144.$ A. parabola B. hyperbola C. ellipse D. circle 11. Write the equation of the conic section $y^2 - x^2 = 5$ after a rotation of 45° about the origin. A. $x'y' = -2.5$ B. $x'y' = -5$ C. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$ 12. Find percentation for the metangular equation 13. $(x')^2 = 2.5y'$ 14. $(x')^2 = 2.5y'$		$A_{x} = 2y = 55$ and $x = y = 2x = 4$ $A_{y} = (5 - 2)(-1 - 4)$	B $(5 \ 4) \ (-1 \ 2)$	
10. Identify the conic section represented by $9y^2 + 4x^2 - 108y + 24x = -144.$ A. parabola B. hyperbola C. ellipse D. circle 11. Write the equation of the conic section $y^2 - x^2 = 5$ after a rotation of 11 45° about the origin. A. $x'y' = -2.5$ B. $x'y' = -5$ C. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$ 12. Find perspectric equations for the metaporal equation $x'' = -12$		\mathbf{C}_{1} (5, 2), (-1, 1) \mathbf{C}_{2} (5, +2) (-1, +4)	D . Graphs do not intersect	
10. Further the control becauter by resented by $9y^2 + 4x^2 - 108y + 24x = -144.$ A. parabolaB. hyperbolaC. ellipseD. circle11. Write the equation of the conic section $y^2 - x^2 = 5$ after a rotation of 45° about the origin.A. $x'y' = -2.5$ B. $x'y' = -5$ C. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$	10.	Identify the conic section represe	nted hy	10.
A. parabola B. hyperbola C. ellipse D. circle 11. Write the equation of the conic section $y^2 - x^2 = 5$ after a rotation of 11 45° about the origin. A. $x'y' = -2.5$ B. $x'y' = -5$ C. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$ 12 Find percentation for the metangular equation 12	10.	$9y^2 + 4x^2 - 108y + 24x = -144$	nice sy	10.
11. Write the equation of the conic section $y^2 - x^2 = 5$ after a rotation of 11 45° about the origin. A. $x'y' = -2.5$ B. $x'y' = -5$ C. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$ 12. Find parametric equations for the metangular equation 12.		A. parabola B. hyperbola	C. ellipse D. circle	
45° about the origin. A. $x'y' = -2.5$ B. $x'y' = -5$ C. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$ 12. Find parametric equations for the metangular equation $(x')^2 = 2.5y'$	11.	Write the equation of the conic se	ection $v^2 - x^2 = 5$ after a rotation of	11.
A. $x'y' = -2.5$ C. $(y')^2 - (x')^2 = 2.5$ B. $x'y' = -5$ D. $(x')^2 = 2.5y'$ 12 Find parametric equations for the metangular equation 13		45° about the origin.		
C. $(y')^2 - (x')^2 = 2.5$ D. $(x')^2 = 2.5y'$ 12 Find parametric equations for the rectangular equation 12		A. $x'y' = -2.5$	B. $x'y' = -5$	
19 Find nonemetric equations for the restangular equation 19		C. $(y')^2 - (x')^2 = 2.5$	D. $(x')^2 = 2.5y'$	
12. Find parametric equations for the rectangular equation 12.	12.	Find parametric equations for the	rectangular equation	12
$(x+2)^2 = 4(y-1).$		$(x+2)^2 = 4(y-1).$		
A. $x = t, y = t^2 + 2, -\infty < t < \infty$		A. $x = t, y = t^2 + 2, -\infty < t < \infty$		
B. $x = t, y = \frac{1}{4}t^2 + t + 2, -\infty < t < \infty$		B. $x = t, y = \frac{1}{4}t^2 + t + 2, -\infty < t$	$< \infty$	
C. $x = t, y = \frac{1}{2}t^2 - t + 2, -\infty < t < \infty$		C. $x = t, y = \frac{1}{2}t^2 - t + 2, -\infty < t < 0$	< ∞	
D $r = t v = 4t^2 + t + 2 - \infty \le t \le \infty$		D $r = t$ $v = 4t^2 + t + 2$ $-\infty < t < 0$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

Chapter 10 Test, Form 1A (continued)

Exercises 14 and	15 refer to the hyperbola represented by
$-2x^2 + y^2 + 4x +$	6y = -3.

NAME ____

Chapter 10 Test, Form 1B

Write the letter for the correct answer in the blank at the right of each problem. Exercises 1-3 refer to the ellipse represented by $x^2 + 25y^2 - 6x - 100y + 84 = 0$.

1.	Find the coordin A. $(2, 3)$	nates of the center \mathbf{B} , $(3, 2)$	er. C. (-3, -2)	D. $(-2, -3)$	1
2.	Find the coordin A. $(3, 2 \pm \sqrt{26})$	nates of the foci. B. $(-2, 2), (8, 2)$) C. $(3 \pm \sqrt{26}, 2)$) D. $(2 \pm \sqrt{26}, 3)$	2
3.	Find the coordin A. (8, 2), (-2, 2) C. (4, 2), (2, 2), (2, 2), (3, 2)	nates of the vertice, $(3, 3), (3, 1)$ (3, 3), (3, 1)	ces. B. (8, 2), (-2, 2) D. (4, 2), (2, 2),	(3, 7), (3, -3) (3, 7), (3, -3)	3
4.	Write $6x^2 - 12x$ A. $(x - 3)^2 + (y)$ C. $(x - 1)^2 + (y)$	$+ 6y^{2} + 36y = 3$ $- 1)^{2} = 16$ $+ 3)^{2} = 16$	6 in standard for B. $(x + 1)^2 + (y)$ D. $(x - 3)^2 + (y)$	m. $(-3)^2 = 16$ $(+1)^2 = 16$	4
5.	For $2x^2 + 3xy +$ to the nearest d A. -9°	$y^2 = 1$, find θ , th egree. B. 36°	e angle of rotatio C36°	on about the origin, D. 324°	5
6.	Find the rectange are $x = 3 \cos t$ at A . $\frac{x^2}{9} + y^2 = 1$	gular equation of nd $y = \sin t$, 0° \leq B. $\frac{x^2}{9} - y^2 = 1$	f the curve whose $t \le 360^{\circ}$. C. $y^2 - \frac{x^2}{3} = 1$	e parametric equations D. $y^2 + \frac{x^2}{3} = 1$	6
7.	Find the distance A. $\sqrt{5}$	ce between point B. 13	s at $(-5, 2)$ and $($ C. $\sqrt{29}$	7, -3). D. $\sqrt{119}$	7
8.	Write the stand the <i>y</i> -axis and h A. $(x + 3)^2 + (y)$ C. $(x + 3)^2 + (y)$	ard form of the e as its center at $(-5)^2 = 9$ $(-5)^2 = 3$	equation of the cir -3, 5). B. $(x + 3)^2 + (y)$ D. $(x - 3)^2 + (y)$	rcle that is tangent to $(x - 5)^2 = 25$ $(x + 5)^2 = 9$	8
9.	Find the coordin $x^2 + y^2 = 4$ and A. (1.3, 1.5) C. ($\pm 1.3, \pm 1.5$)	hates of the point y = 2x - 1. $y = (\pm 0.5, \pm 1.9)$	B. (1.3, 1.5), (– D. Graphs do n	n for the graphs of $0.5, -1.9)$ ot intersect.	9
10.	Identify the con A. parabola	ic section represe B. hyperbola	ented by $3y^2 - 3x$ C. ellipse	$x^2 + 12y + 18x = 42.$ D. circle	10
11.	Write the equat 45° about the or A. $x'y' = -1$	ion of the conic s igin. B. $x'y' = -2$	ection $y^2 - x^2 = 2$ C. $(y')^2 - (x')^2 = 2$	2 after a rotation of = 2 D. $(x')^2 = y'$	11
12.	Find parametric A. $x = \cos 5t, y$	equations for the $= \sin 5t, 0 \le t \le t$	e rectangular equ 2π B. $x = \cos t$,	ation $x^2 + y^2 - 25 = 0$. $y = 5 \sin t, 0 \le t \le 2\pi$	12

© Glencoe/McGraw-Hill

Chapter 10 Test, Form 1B (continued)

Exercises 14 and 15 ref	er to the hyperbola represented by
$36x^2 - y^2 - 4y = -32.$	

14. Write the equations of the asymptotes.

A. $y - 1 = \pm 6(x - 2)$	B. $y = \pm 6x$
C. $y + 2 = \pm 6(x - 1)$	D. $y + 2 = \pm 6x$

- **15.** Find the coordinates of the foci.
 - **A.** $(1 \pm \sqrt{37}, -2)$ **B.** $(\pm \sqrt{37}, -2)$ **D.** $(0, -2 \pm \sqrt{37})$ **C.** $(6 \pm \sqrt{37}, -2)$

16. Write the standard form of the equation of the hyperbola for which a = 2, the transverse axis is vertical, and the equations of the asymptotes are $y = \pm 2x$. **A.** $\frac{x^2}{4} - y^2 = 1$ **B.** $y^2 - \frac{x^2}{4} = 1$ **C.** $x^2 - \frac{y^2}{4} = 1$ **D.** $\frac{y^2}{4} - x^2 = 1$

17. The graph at the right shows the solution set for which system of inequalities? **A.** $v - 1 \ge -(x - 1)^2$, $4(x - 1)^2 + 9(v + 3)^2 \le 36$

	5	_	(_,,		- ()	- /	
В.	<i>y</i> –	$1 \ge -$	(x -	$(1)^2, 4(x -$	$1)^{2} +$	9(y +	$3)^2 \ge$	36
C.	<i>y</i> –	$1 \leq -$	(x -	$(1)^2, 4(x -$	$1)^{2} +$	9(y +	$3)^2 \leq$	36
D.	<i>y</i> –	$1 \leq -$	(x -	$1)^2, 4(x -$	$1)^2 +$	9(y +	$3)^2 \ge$	36

18.

20.

14.

15.

16.

17.____

A. (-1, -3), x = -1**B.** (-1, -6), x = -1**C.** (-1, -12), x = -5**D.** (3, 2), $\gamma = -9$ **19.** Write the standard form of the equation of the parabola whose 19. directrix is y = -4 and whose focus is at (2, 2). **A.** $(y-2)^2 = 12(x+2)$

B. $y + 1 = 12(x - 2)^2$ **D.** $(x - 2)^2 = 12(y + 1)$ **C.** $(x + 2)^2 = 12(y - 2)$

20. Identify the graph of the equation $4x^2 - 5xy + 16y^2 - 32 = 0$. **A.** circle **B.** ellipse **C.** parabola **D.** hyperbola

18. Find the coordinates of the vertex and the equation of the axis of

symmetry for the parabola represented by $x^2 + 2x + 12y + 37 = 0$.

Bonus Find the coordinates of the points of intersection of the Bonus: graphs of $x^2 + y^2 = 5$, xy = -2, and y = -3x + 1. **A.** $(\pm 2, \pm 1)$ **B.** (1, -2) **C.** (2, 1)**D.** $(\pm 1, \pm 2)$

© Glencoe/McGraw-Hill

Chapter 10 Test, Form 1C

Write the letter for the correct answer in the blank at the right of each problem.

Exercises 1–3 refer to the ellipse represented by $4x^2 + 9y^2 - 18y - 27 = 0$.

1.	Find the coordin	nates of the cent	er.		1
	A. (-1, 0)	B. (0, −1)	C. (1, 0)	D. (0,1)	
2.	Find the coordinate Λ (0, 1 + $\sqrt{5}$)	nates of the foci.	B $(\sqrt{5}, 1)$ (-1)	$\sqrt{5}$ 1)	2
	C. $(\sqrt{5}, 3), (-\sqrt{5}, 3)$	$\sqrt{5},3)$	D. $(1, 5), (1, -5)$	5)	
3.	Find the coordinates of the coor	nates of the verti	ces.		3
	A. (2, 1), (-2, 1 C. (3, 1), (-3, 1	(0, 4), (0, -2) (0, 4), (0, -2)	B. $(3, 1), (-3, 1)$ D. $(2, 1), (-2, 1)$	$\begin{array}{l} 1), (0, 3), (0, -1) \\ 1), (0, 3), (0, -1) \end{array}$	
4.	Write the stand	lard form of the e	equation of the ci	ircle that is tangent	4
	to the x-axis an A. $(x - 3)^2 + (y - 3)^2$	$(x + 2)^2 = 4$	B. $(x+3)^2 + (x+3)^2$	$(y-2)^2 = 4$	
	C. $(x-3)^2 + (y)^2$	$(y + 2)^2 = 2$	D. $(x+3)^2 + (x+3)^2 +$	$(y-2)^2 = 2$	
5.	For $2x^2 + xy + 2$	$2y^2 = 1$, find θ , the second sec	ne angle of rotati	on about the origin,	5
	A. 215°	B. 150°	C. 45°	D. −30°	
6.	Find the rectan	gular equation o	f the curve whos	e parametric	6
	equations are x A. $v^2 - x^2 = 1$	= $-\cos t$ and $y =$ B. $x^2 + y^2 = -1$	$\sin t, 0^{\circ} \le t \le 3$ 1 C. $x^2 + y^2 = 1$	360° . D. $x^2 - v^2 = 1$	
7.	Find the distan	ce between point	s = (-1, 6) and	(5, -2).	7.
	A. $\sqrt{14}$	B. 10	C. $\sqrt{34}$	D. 8	
8.	Write $x^2 + 4x + 4$	$y^2 + 2y = 4$ in s	tandard form. \mathbf{P}_{1}	$(1)^{2}$	8
	A. $(x - 2)^2 + (y)^2$ C. $(x + 2)^2 + (y)^2$	$(y - 1)^2 = 9$ $(y + 1)^2 = 3$	D. $(x + 2)^2 + (x + 2)^2 - (x + 2)^2 -$	$(y + 1)^2 = 9$ $(y - 1)^2 = 4$	
9.	Find the coordinates of the coor	nates of the poin	t(s) of intersectio	on for the graphs of	9
	$x^2 + y^2 = 20$ an A. $(+2, +4)$ (4	$\begin{array}{l} \mathrm{d} \ y = x - 2. \\ 2 \ \mathbf{B}_{\mathrm{c}} \end{array} (-1)$	+2 +4) (+4 +9	?)	
	C. $(2, 4), (-4, -4)$	-2)	D. $(-2, -4), (4$,2)	
10.	Identify the cor	nic section repres	ented by $x^2 - y^2$	+ 12y + 18x = 42.	10
	A. parabola	B. hyperbola	C. ellipse	D. circle	
11.	of 45° about the	e origin.	section $x^2 + y^2 =$	16 after a rotation	11
	A. $(x')^2 + (y')^2$ C. $(x')^2 - 2x'y'$	$= 16 + (y')^2 = 16$	B. $(x')^2 - (y')^2$ D. $(x')^2 + 2x'y$	y = 16 $y' + (y')^2 = 16$	
12.	Find parametri	c equations for tl	ne rectangular e	quation $x^2 + y^2 = 16$.	12
	A. $x = \cos 4t, y$ B. $x = \cos 16t$	$= \sin 4t, 0^{\circ} \le t \le $	$\leq 360^{\circ}$ $t \leq 360^{\circ}$		
	C. $x = 4 \cos t, y$	$v = 4 \sin t, 0^\circ \le t$	$\leq 360^{\circ}$		
	D 10	10	- 1 - 0000		

Chapter 10 Test, Form 1C (continued)

Exercises 14 and 15 refer to the hyperbola represented by $-16y^2 - 54x + 9x^2 = 63.$

14. Write the equations of the asymptotes. 14. **A.** $y - 3 = \pm \frac{4}{3}x$ **B.** $y - 3 = \pm \frac{3}{4}x$ **C.** $y = \pm \frac{4}{3}(x-3)$ **D.** $y = \pm \frac{3}{4}(x-3)$ **15.** Find the coordinates of the foci. 15. _____ **A.** (5, 0), (-5, 0)**B.** (0, 5), (0, -5)**D.** (8, 0), (-2, 0)**C.** (3, 5), (3, -5)**16.** Write the standard form of the equation of the hyperbola for 16. _____ which a = 5, b = 6, the transverse axis is vertical, and the center is at the origin. **A.** $\frac{y^2}{25} - \frac{x^2}{36} = 1$ **B.** $\frac{x^2}{36} - \frac{y^2}{25} = 1$ **C.** $\frac{x^2}{25} - \frac{y^2}{36} = 1$ **D.** $\frac{y^2}{36} - \frac{x^2}{25} = 1$ 17. _____ **17.** The graph at the right shows the solution set for which system of inequalities? **A.** $y^2 - 4x^2 \le 1, x^2 + y^2 \le 9$ **B.** $v^2 - 4x^2 \ge 1$, $x^2 + v^2 \le 9$ **C.** $v^2 - 4x^2 \le 1$, $x^2 + v^2 \le 3$ **D.** $v^2 - 4x^2 \ge 1$, $x^2 + v^2 \le 3$ 18. Find the coordinates of the vertex and the equation of the axis of 18. symmetry for the parabola represented by $y^2 - 8x - 4y + 28 = 0$. **B.** (3, 2), y = 2**A.** (3, 2), x = 3**C.** (2, 3), y = 3**D.** (2, 3), x = 2**19.** Write the standard form of the equation of the parabola whose 19. directrix is x = -2 and whose focus is at (2, 0). **A.** $(y-2)^2 = 8(x-2)$ **B.** $(y - 2)^2 = 4(x - 2)$ **C.** $v^2 = 8x$ **D.** $x^2 = 8v$ **20.** Write the equation for the translation of the graph of 20. _____ $y^2 - 4x - 1\overline{2} = 0$ for $T_{(-1,1)}$. **A.** $(y-1)^2 = 4(x+2)^2$ **B.** $(y - 1)^2 = 4(x + 4)$ **D.** $(y + 1)^2 = 4(x - 4)$ C. $(y + 1)^2 = 4(x - 2)$ **Bonus** Find the coordinates of the points of intersection of the Bonus: graphs of $x^2 - y^2 = 4$, $x^2 + y^2 = 4$, and x - y = 2. **C.** (0, -2) **D.** (-2, 0)**A.** (2, 0) **B.** (0, 2)

DATE PERIOD

Chapter 10 Test, Form 2A

- **1.** Find the distance between points at (m, n 5) and (m-3, n+2).
- **2.** Determine whether the quadrilateral *ABCD* with vertices $A\left(-1,\frac{1}{2}\right), B\left(\frac{1}{2}, -\frac{1}{2}\right), C\left(1, -\frac{3}{2}\right)$, and $D\left(-\frac{1}{2}, -1\right)$ is a parallelogram
- **3.** Write the standard form of the equation of the circle that passes through the point at (2, -2) and has its center at (-2, 3).
- 4. Write the standard form of the equation of the circle that passes through the points at (1, 3), (7, 3), and (8, 2).
- 5. Write $2x^2 10x + 2y^2 18y 1 = 0$ in standard form. Then, graph the equation, labeling the center.

6. Write $3x^2 + 2y^2 + 24x - 4y + 26 = 0$ in standard form. Then, graph the equation, labeling the center, foci, and vertices.

- 7. Find the equation of the ellipse that has its major axis parallel to the y-axis and its center at (4, -3), and that passes through points at (1, -3) and (4, 2).
- 8. Find the equation of the equilateral hyperbola that has its foci at $(-2, -3 - 2\sqrt{3})$ and $(-2, -3 + 2\sqrt{3})$, and whose conjugate axis is 6 units long.
- **9.** Write $-2x^2 + 3y^2 24x 6y 93 = 0$ in standard form. Find the equations of the asymptotes of the graph. Then, graph the equation, labeling the center, foci, and vertices.

1. _____ 2. 3. 4. 5. 6. 7. 8. 9. x n

NAME

Chapter 10 Test, Form 2A (continued)

10. Write $x = y^2 - 2y - 5$ in standard form. Find the equations **10.** of the directrix and axis of symmetry. Then, graph the equation, labeling the focus, vertex, and directrix.

11. Find the equation of the parabola that passes through the point at $\left(0, -\frac{1}{2}\right)$, has a vertical axis, and has a maximum at (-2, 1).

- 12. Find the equation of the hyperbola that has eccentricity $\frac{9}{5}$ and foci at (4, 6) and (4, -12).
- **13.** Identify the conic section represented by xy + 3y + 4x = 0.
- 14. Find a rectangular equation for the curve whose parametric equations are $x = -\frac{1}{2}\cos 4t + 2$, $y = -2\sin 4t - 3$, $0^{\circ} \le t \le 90^{\circ}$.
- **15.** Find parametric equations for the equation $\frac{(x+1)^2}{16} + 2(y-3)^2 = 1.$

Identify the graph of each equation. Write an equation of the translated or rotated graph in general form.

16. $x^2 + 12y = -31 - 10x$ for $T_{(3, -5)}$	

- **17.** $x^2 xy + 2y^2 = 2$, $\theta = -30^\circ$
- **18.** Identify the graph of $4x^2 + 7xy 5y^2 = -3$. Then, find θ , the angle of rotation about the origin, to the nearest degree.
- **19.** Solve the system $4x^2 + y^2 = 32 4y$ and $x^2 = 7 + y$ algebraically. Round to the nearest tenth.
- **20.** Graph the solutions for the system of inequalities. $9x^2 > v^2$ $x^2 \leq 100 - y^2$

Bonus Find the coordinates of the point(s) of intersection of the graphs of 2x + 1 = y, $x^2 = 10 - y^2$, and $y - 4x^2 = -1$.

Bonus:

Chapter

10

Chapter 10 Test, Form 2B

- **1.** Find the distance between points at (-2, -5) and (6, -1).
- **2.** Determine whether the quadrilateral *ABCD* with vertices A(-1, 2), B(2, 0), C(-2, -2), and D(-5, 0) is a parallelogram.
- **3.** Write the standard form of the equation of the circle that is tangent to x = -3 and has its center at (1, -3).
- **4.** Write the standard form of the equation of the circle that passes through the points at (-6, 3), (-4, -1),and (-2, 5).
- **5.** Write $x^2 + y^2 + 6x 14y 42 = 0$ in standard form. Then, graph the equation, labeling the center.

6. Write $4x^2 + 9y^2 - 24x + 18y + 9 = 0$ in standard form. Then, 6. graph the equation, labeling the center, foci, and vertices.

- **7.** Find the equation of the ellipse that has its foci at (2, 1) and **7.** (2, -7) and b = 2.
- **8.** Find the equation of the hyperbola that has its foci at (0, -4) **8.** and (10, -4), and whose conjugate axis is 6 units long.
- **9.** Write $4x^2 y^2 + 24x + 4y + 28 = 0$ in standard form. Find the equations of the asymptotes of the graph. Then, graph the equation, labeling the center, foci, and vertices.

5.										
.						16	y			
						12				_
						8				
						4				_
	+	-	3	-4	1	0	,	4	-	x

1. _____

2. _____

4.

DATE PERIOD

NAME

Chapter 10 Test, Form 2B (continued)

10. Write $-2x + y^2 - 2y + 5 = 0$ in standard form. Find the 10 equations of the directrix and axis of symmetry. Then, gra the equation, labeling the focus, vertex and directrix.

- **11.** Find the equation of the parabola that passes through the point at (-8, 15), has its vertex at (2, -5), and opens to the left.
- **12.** Find the equation of the ellipse that has its center at the origin, eccentricity $\frac{2\sqrt{2}}{3}$, and a vertical major axis of 6 uni
- **13.** Identify the conic section represented by $x^2 3xy + y^2 = 8$
- 14. Find a rectangular equation for the curve whose paramet equations are $x = \cos 3t$, $y = -2 \sin 3t$, $0^{\circ} \le t \le 120^{\circ}$.
- **15.** Find parametric equations for the equation $\frac{x^2}{16} + \frac{y^2}{36} = 1$.

Identify the graph of each equation. Write an equation of th translated or rotated graph in general form. **16.** $x^2 - 2x - 2y - 9 = 0$ for $T_{(-2,3)}$

- 17. $2x^2 + 5y^2 20 = 0, \theta = 30^\circ$
- **18.** Identify the graph of $3x^2 8xy 3y^2 = 3$. Then, find θ , the angle of rotation about the origin, to the nearest degree.
- **19.** Solve the system $5x^2 = 10 2y^2$ and $3y^2 = 84 2x^2$ algebraically. Round to the nearest tenth.
- **20.** Graph the solutions for the system of inequalities. $(x+2)^2 + (y-1)^2 > 9$ $\frac{x^2}{16} - y^2 \le 1$

	TO.	
aph		$\begin{array}{c c} 3 \\ \hline 2 \\ \hline 1 \\ \hline 0 \\ \hline 1 \\ \hline 0 \\ \hline 1 \\ 1 \\$
	11.	
its.	12.	
5.	13.	
ric	14.	
	15.	
ie		
	16.	
	17.	
e	18.	
	19.	
	20.	

Bonus Find the coordinates of the point(s) of intersection **Bonus**: of the graphs of x + y + 1 = 0, $x^2 + y^2 = 5$, $v = -3x^2 + 1.$

Chapter 10 Test, Form 2C

1. Find the distance between points at (2, 1) and (5, -3).

NAME

- **2.** Determine whether the guadrilateral *ABCD* with vertices A(5, 3), B(7, 3), C(5, 1), and D(2, 1) is a parallelogram.
- 3. Write the standard form of the equation of the circle that has its center at (-4, 3) and a radius of 5.
- 4. Write the standard form of the equation of the circle that passes through the points at (-2, 2), (2, 2), and (2, -2).
- **5.** Write $x^2 8x + y^2 + 4y + 16 = 0$ in standard form. Then, graph the equation, labeling the center.

6. Write $9x^2 + 54x + 4y^2 - 16y + 61 = 0$ in standard form. Then, graph the equation, labeling the center, foci, and vertices.

- 7. Find the equation of the ellipse that has its center at (-1, 3), a horizontal major axis of 6 units, and a minor axis of 2 units.
- 8. Find the equation of the hyperbola that has its center at (-2, 4), a = 3, b = 5, and a vertical transverse axis.
- **9.** Write $x^2 4x 4y^2 8y 16 = 0$ in standard form. Find the equations of the asymptotes of the graph. Then, graph the equation, labeling the center, foci, and vertices.

1. _____ 2. 3.

8.

© Glencoe/McGraw-Hill

Chapter 10 Test, Form 2C (continued)

10.	Write $y^2 + 4y - 4x + 12 = 0$ in standard form. Find the equations of the directrix and axis of symmetry. Then, graph the equation, labeling the focus, vertex, and directrix.	10.	
11.	Find the equation of the parabola that has its vertex at $(5, -1)$, and the focus at $(5, -2)$.	11.	
12.	Find the eccentricity of the ellipse $\frac{(x-2)^2}{4} + \frac{(y+3)^2}{8} = 1.$	12.	
13.	Identify the conic section represented by $x^2 - 2y^2 + 16y - 42 = 0.$	13.	
14.	Find a rectangular equation for the curve whose parametric equations are $x = 2 \cos t$, $y = -3 \sin t$, $0^{\circ} \le t \le 360^{\circ}$.	14.	
15.	Find parametric equations for the equation $x^2 + y^2 = 8$.	15.	
lde of t	ntify the graph of each equation. Write an equation he translated or rotated graph in general form.		
16.	$y^2 + 8y + 8x + 32 = 0$ for $T_{(1, -4)}$	16.	
17.	$5x^2 + 4y^2 = 20, heta = 45^\circ$	17.	
18.	Identify the graph of $4x^2 - 9xy - 3y^2 = 5$. Then, find θ , the angle of rotation about the origin, to the nearest degree.	18.	
19.	Solve the system algebraically. Round to the nearest tenth. $x^2 + y^2 = 9$ $2x^2 + 3y^2 = 18$	19.	
20.	Graph the solutions for the system of inequalities. $(x - 1)^2 + 2(y + 3)^2 < 16$ $(x - 3)^2 \le -8(y + 2)$	20.	
Bo	nus Find the coordinates of the point(s) of Bon intersection of the graphs of $-\frac{3}{2}x + y = 0$,	us:	
	$x^2 + y^2 = 13$, and $y + 1 = \frac{1}{4}(x + 2)^2$.		

452

- 18. Id th
- **19.** Set x^2 20
- **20.** G (x(x

Chapter 10 Open-Ended Assessment

Instructions: Demonstrate your knowledge by giving a clear, concise solution to each problem. Be sure to include all relevant drawings and justify your answers. You may show your solution in more than one way or investigate beyond the requirements of the problem.

- **1.** Consider the equation of a conic section written in the form $Ax^2 + By^2 + Cx + Dy + E = 0.$
 - **a.** Explain how you can tell if the equation is that of a circle. Write an equation of a circle whose center is not the origin. Graph the equation.
 - **b.** Explain how you can tell if the equation is that of an ellipse. Write an equation of an ellipse whose center is not the origin. Graph the equation.
 - **c.** Explain how you can tell if the equation is that of a parabola. Write an equation of a parabola with its vertex at (-1, 2). Graph the equation.
 - **d.** Explain how you can tell if the equation is that of a hyperbola. Write an equation of a hyperbola with a vertical transverse axis.
 - **e.** Identify the graph of $3x^2 xy + 2y^2 3 = 0$. Then find the angle of rotation θ to the nearest degree.
- **2. a.** Describe the graph of $x^2 4y^2 = 0$.
 - **b.** Graph the relation to verify your conjecture.
 - c. What conic section does this graph represent?
- **3.** Give a real-world example of a conic section. Discuss how you know the object is a conic section and analyze the conic section if possible.

Chapter

Chapter 10 Mid-Chapter Test (Lessons 10-1 through 10-4)

Find the distance between each pair of points with the given coordinates. Then, find the midpoint of the segment that has endpoints at the given coordinates. 1.

- **2.** (s, -t), (6 + s, -5 t)1. (1, -4), (2, -9)
- **3.** Determine whether the quadrilateral *ABCD* with vertices A(-2, 2), B(1, 3), C(4, -1), and D(1, -2) is a parallelogram.
- **4.** Write the standard form of $x^2 6x + y^2 + 4y 12 = 0$. Then, graph the equation labeling the center.

5. Write the standard form of the equation of the circle that passes through the points (-2, 16), (-2, 0), and (-32, 0).Then, identify the center and radius.

For the equation of each ellipse, find the coordinates of the center, foci, and vertices. Then, graph the equation.

- **6.** Write the standard form of $9x^2 + y^2 + 18x 6y + 9 = 0$. Then, find the coordinates of the center, the foci, and the vertices of the ellipse.
- 7. Graph the ellipse with equation $\frac{(x+5)^2}{25} + \frac{(y-4)^2}{16} = 1$. Label the center and vertices.
- **8.** Write the equation of the hyperbola graphed at the right.

9. Find the coordinates of the center, the foci, and the vertices for the hyperbola whose equation is $4y^2 - 9x^2 - 48y -$ 18x + 99 = 0. Then, find the equations of the asymptotes and graph the equation.

0

1

8

2.

5.

9.

© Glencoe/McGraw-Hill

≮ (β, ⊵)

NAME

Chapter 10, QUIZ A (Lessons 10-1 and 10-2)

Find the distance between each pair of points with the given coordinates. Then, find the midpoint of the segment that has endpoints at the given coordinates.

1. (-2, 4), (5, -3) **2.** (a, b), (a - 4, b + 3)

Then, identify the center and radius.

NAME

- **3.** Determine whether the guadrilateral *ABCD* with vertices A(-1, 1), B(3, 3), C(3, 0), D(-1, -1) is a parallelogram.
- **4.** Write the standard form of $x^2 6x + y^2 10y 2 = 0$. Then graph the equation, labeling the center.

passes through the points (2, 10), (2, 0), and (-10, 0).

Chapter 10, Quiz B (Lessons 10-3 and 10-4)

- **1.** Write the standard form of $16x^2 + 4y^2 96x + 8y + 84 = 0$. Then, find the coordinates of the center, the foci, and the vertices of the ellipse.
- **2.** Graph the ellipse with equation $\frac{(x-6)^2}{64} + \frac{(y+1)^2}{100} = 1$. Label the center and vertices.
- **3.** Write the equation of the hyperbola shown in the graph at the right.

4. Find the coordinates of the center, the foci, and the vertices for the hyperbola whose equation is $25x^2 - 4y^2 - 150x -$ 16y = -109. Then, find the equations of the asymptotes and graph the equation.

1.

Advanced Mathematical Concepts

NAME

Chapter 10, Quiz C (Lessons 10-5 and 10-6)

- **1.** Write the standard form of $x^2 4x + 8y + 12 = 0$. Identify the coordinates of the focus and vertex, and the equations of the directrix and axis of symmetry. Then, graph the equation.
- **2.** Write the equation of the parabola that has a focus at (-2, 3) and whose directrix is given by the equation x = 4.
- **3.** Identify the conic section represented by the equation $4x^2 + 25y^2 + 16x + 50y - 59 = 0$. Then, write the equation in standard form.
- 4. Find the rectangular equation of the curve whose parametric 4. equations are $x = -3t^2$ and $y = 2t, -2 \le t \le 2$. Then graph the equation, using arrows to indicate the orientation.

5. Find parametric equations for the equation $x^2 + y^2 = 100$. 5. ____

Chapter 10 SAT and ACT Practice

After working each problem, record the correct answer on the answer sheet provided or use your own paper.

Multiple Choice

- **1.** Three points on a line are *X*, *Y*, and *Z*, in that order. If XZ YZ = 6, what is the ratio $\frac{YZ}{XZ}$?
 - **A** 1 to 2^{2}
 - **B** 1 to 3
 - **C** 1 to 4
 - **D** 1 to 5
 - **E** It cannot be determined from the information given.
- **2.** A train traveling 90 miles per hour for 1 hour covers the same distance as a train traveling 60 miles per hour for how many hours?

A	$\frac{1}{2}$	В	$\frac{1}{3}$
С	$\frac{2}{3}$	D	$\frac{3}{2}$
Е	3		

3. If *x* and *y* are integers and *xy* = 48, then which of the following CANNOT be true?

A
$$x + y < 14$$
 B $x - y > 14$
C $x + y = 14$ **D** $|x + y| < 1$

- **C** x + y = 14 **D** |x + y| < 14
- **E** |x + y| > 14
- 4. If $x \neq 0$, then $\frac{(-4x)^3}{-4x^3} =$ A -16 B -1 C 3 D 1
 - \mathbf{D} 1
 - **E** 16
- **5.** A framed picture is 5 feet by 8 feet, including the frame. If the frame is 8 inches wide, what is the ratio of the area of the frame to the area of the framed picture, including the frame?
 - **A** 7 to 18
 - **B** 7 to 11
 - **C** 11 to 18
 - **D** 143 to 180
 - **E** 37 to 180

- **6.** In circle O, OA = 6 and $OA \perp OB$. Find the area of the shaded region.
 - **A** 2π units²
 - **B** $(\pi 2)$ units²
 - **C** $(6\pi 9\sqrt{3})$ units²
 - \mathbf{D} (9 π 18) units²
 - **E** $(36\pi 9\sqrt{3})$ units²
- **7.** If 1 dozen pencils cost 1 dollar, how many dollars will *n* pencils cost?
 - **A** 12*n*
 - **B** $\frac{n}{12}$
 - $\mathbf{C} = \frac{12}{2}$
 - $\mathbf{D} = \frac{n}{12}$
 - $\mathbf{D} = \frac{1}{12n}$
 - **E** It cannot be determined from the information given.
- 8. On a map drawn to scale, 0.125 inch represents 10 miles. What is the actual distance between two cities that are 2.5 inches apart on the map?
 - **A** 12.5 mi
 - **B** 25 mi
 - **C** 200 mi
 - **D** 250 mi
 - **E** 1250 mi
- **9.** In the diagram below, if $\ell \parallel m$, then **I.** $\angle 3$ and $\angle 4$ are supplementary. **II.** $m \angle 2 = m \angle 10$.
 - III. $m \angle 6 = m \angle 8 + m \angle 9$.

- A I only
- **B** II only
- **C** III only
- **D** II and III only
- **E** I and III only

NAME

25d

h

dh

h + 25

Chapter 10 SAT and ACT Practice (continued)

- **10.** *PC* and *AB* intersect at point *Q*. $m \angle PQB = (2z + 80)^\circ, m \angle BQC =$ $(4x + 3y)^\circ$, m $\angle CQA = 5w^\circ$, and
 - $m \angle AQP = 2z^{\circ}$. Find the value of *w*.
 - **A** 20
 - **B** 26
 - C 75
 - **D** 130
 - **E** It cannot be determined from the information given.
- **11.** Which point lies the greatest distance from the origin?
 - **A** (0, −9)
 - **B** (-2, 9)
 - **C** (−7, −6)
 - **D** (8, 5)
 - **E** (-5,7)
- **12.** The vertices of rectangle *ABCD* are the points A(0, 0), B(8, 0), C(8, k), and D(0, 5). What is the value of k?
 - **A** 2
 - **B** 3
 - **C** 4
 - **D** 5
 - **E** 6
- **13.** The measures of three exterior angles of a quadrilateral are 37°, 58°, and 92°. What is the measure of the exterior angle at the fourth vertex?
 - A 7°
 - **B** 173°
 - C 83°
 - **D** 49°
 - **E** 81°
- 14. The diagonals of parallelogram ABCD intersect at point *O*. If AO = 2x + 1and AC = 5x - 5, then AO =
 - A 5
 - **B** 7
 - **C** 15
 - **D** 30
 - **E** It cannot be determined from the information given.

15. If Nancy earns *d* dollars in *h* hours, how many dollars will she earn in h + 25 hours?

D

$$\mathbf{A} \quad \frac{25d}{h} \qquad \qquad \mathbf{B} \quad d +$$

$$\mathbf{C}$$
 26d

- **E** None of these
- **16.** If 6n cans fill $\frac{n}{2}$ cartons, how many cans does it take to fill 2 cartons?
 - **B** 24*n* **A** 12 **C** 24 **D** $6n^2$ **E** $\frac{3}{2}n^2$

17–18. Quantitative Comparison

- **A** if the quantity in Column A is greater
- **B** if the quantity in Column B is greater
- **C** if the two quantities are equal
- **D** if the relationship cannot be determined from the information given

Column B

17.Ratio of
$$\frac{1}{3}$$
 to $\frac{1}{5}$ Ratio of $\frac{2}{5}$ to $\frac{1}{3}$ 18.Ratio of boys to
girls in a class
with half as many
boys as girlsRatio of boys to
girls in a class
with twice as many
girls as boys

- **19. Grid-In** If 4 pounds of fertilizer cover 1500 square feet of lawn, how many pounds of fertilizer are needed to cover 2400 square feet?
- **20. Grid-In** The distance between two cities is 750 miles. How many inches apart will the cities be on a map with a scale of 1 inch = 250 miles?

Chapter 10 Cumulative Review (Chapters 1-10)

1. Write a linear function that has no zero.	1
2. Find <i>BC</i> if $B = \begin{bmatrix} 3 & -2 \\ 6 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 5 & -1 & 0 \\ 2 & 7 & -4 \end{bmatrix}$.	2
3. Consider the system of inequalities $3x + 2y \ge 10$, $x + 3y \ge 9, x \ge 0$, and $y \ge 0$. In a problem asking you to find the minimum value of $f(x, y) = x + 3y$, state whether the situation is <i>infeasible</i> , has <i>alternate optimal solutions</i> , or is <i>unbounded</i> .	3
4. Given $f(x) = \frac{2}{x-5}$, find $f^{-1}(x)$. Then, state whether $f^{-1}(x)$ is a function.	4
5. If <i>y</i> varies directly as the square of <i>x</i> , inversely as <i>w</i> , inversely as the square of <i>z</i> , and $y = 2$ when $x = 1$, $w = 4$, and $z = -2$, find <i>y</i> when $x = 3$, $w = -6$, and $z = -3$.	5
6. Solve $\frac{x+1}{x-3} = \frac{3}{x} + \frac{12}{x^2 - 3x}$.	6
7. Suppose θ is an angle in standard position whose terminal side lies in Quadrant II. If $\cos \theta = -\frac{7}{13}$, find the value of $\csc \theta$.	7
8. Solve $\triangle ABC$ if $B = 47^{\circ}$, $C = 68^{\circ}$, and $b = 29.2$.	8
9. Find the linear velocity of the tip of an airplane propeller that is 3 meters long and rotating 500 times per minute. Give the velocity to the nearest meter per second.	9
10. Solve $\tan \theta = \cot \theta$ for $0^{\circ} \le \theta < 360^{\circ}$.	10
11. Jason is riding his sled down a hill. If the hill is inclined at an angle of 20° with the horizontal, find the force that propels Jason down the hill if he weighs 151 pounds.	11
12. Find $(\sqrt{3} + i)^5$. Express the result in rectangular form.	12
13. Write the equation in standard form of the ellipse graphed at the right.	13

Blank

SAT and ACT Practice Answer Sheet (10 Questions)

2 A B C D E 3 A B C D E 4 A B C D E 5 A B C D E 6 A B C D E 7 (A) (B) (C) (D) (E) 8 A B C D E 9 A B C D E

NAME

SAT and ACT Practice Answer Sheet (20 Questions)

2 A B C D E 3 A B C D E 4 (A) (B) (C) (D) (E) 5 A B C D E 6 A B C D E 7 A B C D E 8 A B C D E 9 A B C D E 10 A B C D E 11 A B C D E 12 A B C D E 13 A B C D E 14 A B C D E 15 A B C D E 16 A B C D E 17 A B C D E 18 A B C D E

20

	1	1	1
	\bigcirc	\bigcirc	_
\bigcirc	\bigcirc	0	\bigcirc
	\bigcirc	\bigcirc	\odot
	\bigcirc	\bigcirc	(1)
2	2	2	2
3	3	3	3
4	4	(4)	4
5	5	5	5
6	6	6	6
\bigcirc	\bigcirc	\bigcirc	
8	8	8	8
9	9	9	9

NAME Practice	DATE PERIOD	NAME DATE DATE PERIOD
Introduction to Analytic Ge	ometry	Mathematics and History: Hypatia
Find the distance between each pair of pc coordinates. Then find the midpoint of the endpoints at the given coordinates.	ints with the given segment that has	Hypatia (A.D. 370–415) is the earliest woman mathematician whose life is well documented. Born in Alexandria, Egypt, she was widely known for her keen intellect and extraordinary mathematical ability. Students from Europe. Asia, and Africa flocked to the university at
1. $(-2, 1), (3, 4)$ $\sqrt{34}, (0.5, 2.5)$	2. (1, 1), (9, 7) 10: (5, 4)	Alexandria to attend her lectures on mathematics, astronomy, philosophy, and mechanics.
		Hypatia wrote several major treatises in mathematics. Perhaps the most significant of these was her commentary on the <i>Arithmetica</i> of Diophantus, a mathematician who lived and worked in Alexandria in the third century In her commentary Hypatia offered several
3. (3, −4),(5, 2) 2 √10; (4, −1)	4. (-1, 2), (5, 4) 2 \sqrt{10}; (2, 3)	observations about the <i>Arithmetica's</i> Diophantine problems— problems for which one was required to find only the rational solutions. It is believed that many of these observations were subsequently incorporated into the original manuscript of the <i>Arithmetica</i> .
5.(-7, -4), (2, 8)	6. $(-4, 10), (4, -5)$	In modern mathematics, the solutions of a Diophantine equation
15; (-2.5, 2)	17; (0, 2.5)	are restricted to integers. In the exercises, you will explore some questions involving simple Diophantine equations.
		For each equation, find three solutions that consist of an ordered pair of integers.
Determine whether the quadrilateral havir. given coordinates is a parallelogram.	g vertices with the	1. $2x - y = 7$ (1, -5), (0, -7), (-1, -9) 2. $x + 3y = 5$ (2, 1), (5, 0), (8, -1)
7. $(4, 4), (2, -2), (-5, -1), (-3, 5)$	8. $(3, 5), (-1, 1), (-6, 2), (-3, 7)$	$\begin{array}{c} 3. \ 6x \ -5y \ = \ -8 \\ (2, \ 4), \ (-3, \ -2), \ (-8, \ -8) \\ (2, \ -7), \ (-2, \ 4), \ (-6, \ 15) \\ \end{array}$
9. $(4, -1), (2, -5), (-3, -3), (-1, 1)$	10. (2, 6), (1, 2), (-4, 4), (-3, 9)	5. Refer to your answers to Exercises 1–4. Suppose that the integer pair (x_1, y_1) is a solution of $Ax - By = C$. Describe how to find other integer pairs that are solutions of the equation. Other integer pairs are of the form $(x_1 + n \cdot B, y_1 - n \cdot A)$, where <i>n</i> is any nonzero integer.
8	2	6. Explain why the equation $3x + 6y = 7$ has no solutions that are integer pairs. Rewrite $3x + 6y = 7$ as $3(x + 2y) = 7$. If x and y are
11. Hiking Jenna and Maria are hiking to (2, 1) on a man orid where each side of 2) a campsite located at	integers 7 would have to be an integral multiple of 3.
2.5 miles. If they start their hike at (-3 hike to reach the campsite? 12.5 mi	1), how far must they	7. True or false: Any line on the coordinate plane must pass through at least one point whose coordinates are integers. Explain. False; An equation like $3x + 6y = 7$ has no integer-pair solutions, so the graph of such an equation is a line that passes through no point whose coordinates are integers.
© Glencoe/McGraw-Hill 41	8 Advanced Mathematical Concepts	© Glencoe/McGraw-Hill 419 Advanced Mathematical Concepts

Answers (Lesson 10-1)

Answers (Lesson 10-2)

Answers (Lesson 10-3)

Answers (Lesson 10-4)

Answers (Lesson 10-5)

Answers (Lesson 10-6)

Answers (Lesson 10-7)

Answers (Lesson 10-8)

	Chapter 10) Answer Key	
Fo	rm 1A	Fe	orm 1B
Page 441	Page 442	Page 443	Page 444
1. <u> </u>	13. <u>A</u>	1. <u>B</u>	13. <u> </u>
2. A		2C	
3C		3. <u>A</u>	
4. <u> </u>	14. C	4C	14. D
5. C	15. D	5. <u>B</u>	15. <u> </u>
6. <u>C</u>	16. <u> </u>	6. <u>A</u>	16D
7. <u>B</u> 8. <u>A</u>	17. C	7. <u>B</u> 8. <u>A</u>	17. A
9. <u>C</u>		9 B	
10. <u>C</u>	18. <u>C</u>		18. A
11. <u>A</u>	19. D	10. <u>B</u>	19. D
12. <u>B</u>	20. <u> </u>	11 Δ	20. R
	Bonus: C	11. <u>A</u> 12. <u>D</u>	Bonus: <u>B</u>

© Glencoe/McGraw-Hill

Advanced Mathematical Concepts

Chapter 10 Answer Key						
	Form 1C	Form	n 2A			
Page 445	Page 446	Page 447	Page 448			
1. D	13. C	1. <u></u>	$(y-1)^2 = x+6;$			
2. <u> </u>		2. <u>no</u>	10. $x = -\frac{25}{4}; y = 1$			
3B		$(x + 2)^2 +$ 3. $(y - 3)^2 = 41$	$11. (x + 2)^2 = -\frac{8}{3}(y - 1)$			
4. <u>A</u>	14 D	$(x - 4)^{2} + 4. (y + 1)^{2} = 25$ 5. $(x - 5)^{2} + (x - 9)^{2} = 27$				
5. <u> </u>	15. D	(x - 2) + (y - 2) - 21	12. $\frac{(y+3)^2}{25} - \frac{(x-4)^2}{56} = 1$ 13. <u>hyperbola</u>			
6C	16. A		$14.\frac{(x-2)^2}{\frac{1}{4}} + \frac{(y+3)^2}{4} = 1$ Sample answer: $x = 4 \cos t - 1,$ $\sqrt{2}$			
7. <u> </u>	17. <u>A</u>	$6.\frac{(x+4)^2}{8} + \frac{(y-1)^2}{12} = 1$ $(-4, -1) + 2\sqrt{3})$ $(-4 - 2\sqrt{2}, +1)$ $(-4 - 2$	$y = \frac{\sqrt{2}}{2} \sin t + 3,$ 15. <u>0° ≤ t ≤ 360°</u>			
9. <u>D</u>	10 🖪	$7. \frac{(x-4)^2}{9} + \frac{(y+3)^2}{25} = 1$	parabola; 16. $x^2 + 4x + 12y + 70 = 0$ ellipse; $(5 - \sqrt{3})x^2 - 17$. $(2 - 2\sqrt{3})xy + (7 + \sqrt{3})y^2 - 8 = 0$			
10. <u> </u>		$8 \cdot \frac{(y+3)^2}{2} - \frac{(x+2)^2}{2} = 1$	 18. hyperbola, 19° 19. (±2.7, 0.5) 			
11. <u>A</u>	19. <u>C</u>	$9. y - 1 = \pm \frac{\sqrt{6}}{3} (x + 6)^{2}$	20.			
12. C	20. <u>B</u>	(-6,1)				
	Bonus: <u>A</u>	(+6,1 + 2v2) x+ (+6,1 + 2v5)	Bonus: (1, 3)			

© Glencoe/McGraw-Hill

Advanced Mathematical Concepts

Chapter 10 Answer Key

CHAPTER 10 SCORING RUBRIC

Level	Specific Criteria
3 Superior	 Shows thorough understanding of the concepts <i>circle</i>, <i>ellipse</i>, <i>parabola</i>, <i>hyperbola</i>, <i>center</i>, <i>vertex</i>, and <i>angle of rotation</i>. Uses appropriate strategies to identify equations of conic sections. Computations are correct. Written explanations are exemplary. Real-world example of conic section is appropriate and makes sense. Graphs are accurate and appropriate. Goes beyond requirements of some or all problems.
2 Satisfactory, with Minor Flaws	 Shows understanding of the concepts <i>circle</i>, <i>ellipse</i>, <i>parabola</i>, <i>hyperbola</i>, <i>center</i>, <i>vertex</i>, and <i>angle of rotation</i>. Uses appropriate strategies to identify equations of conic sections. Computations are mostly correct. Written explanations are effective. Real-world example of conic section is appropriate and makes sense. Graphs are mostly accurate and appropriate. Satisfies all requirements of problems.
1 Nearly Satisfactory, with Serious Flaws	 Shows understanding of most of the concepts <i>circle</i>, <i>ellipse</i>, <i>parabola</i>, <i>hyperbola</i>, <i>center</i>, <i>vertex</i>, and <i>angle of rotation</i>. May not use appropriate strategies to identify equations of conic sections. Computations are mostly correct. Written explanations are satisfactory. Real-world example of conic section is mostly appropriate and sensible. Graphs are mostly accurate and appropriate. Satisfies most requirements of problems.
0 Unsatisfactory	 Shows little or no understanding of the concepts <i>circle</i>, <i>ellipse</i>, <i>parabola</i>, <i>hyperbola</i>, <i>center</i>, <i>vertex</i>, and <i>angle of rotation</i>. May not use appropriate strategies to identify equations of conic sections. Computations are incorrect. Written explanations are not satisfactory. Real-world example of conic section is not appropriate or sensible. Graphs are not accurate or appropriate. Does not satisfy requirements of problems.

Chapter 10 Answer Key

Page 453

1a. The equation is a circle if A = B. Sample answer:

1b. The equation is an ellipse if $A \neq B$ and A and B have the same sign. Sample answer:

1c. The equation is a parabola when A or *B* is zero, but not both. Sample answer: $y - 2 = 4(x + 1)^2$

1d. The equation is a hyperbola if A and *B* have opposite signs. Sample answer: $\frac{y^2}{4} - \frac{x^2}{1} = 1$

Open-Ended Assessment

$$(-1)^2 - 4(3)(2) < 0.$$

$$\tan 2\theta = \frac{-1}{3-2} = -1, \ 2\theta = -45^\circ,$$

$$\theta = -\frac{\pi}{9}, \ \text{or} \ -22.5^\circ.$$

2a. The graph of $x^2 - 4y^2 = 0$ is two lines of slope $\frac{1}{2}$ and slope $-\frac{1}{2}$ that intersect at the origin.

$$x^{2} - 4y^{2} = 0$$
$$x^{2} = 4y^{2}$$
$$|x| = 2|y|$$

$$|x| = 2|y|$$
$$\frac{|x|}{2} = |y|$$
$$\frac{x}{2} = y \text{ or } \frac{-x}{2} = y$$

- 2c. degenerate hyperbola
- 3. Sample answer: Most lamps with circular shades shine a cone of light. When this light cone strikes a nearby wall, the resulting shape is a hyperbola. The hyperbola is formed by the cone of light intersecting the plane of the wall.

Chapter 10 Answer Key		
SAT/AC	T Practice	Cumulative Review
Page 457	Page 458	Page 459
1 E	10. <u> </u>	1. Sample answer: $f(x) = 3$
2D	11. <u>D</u>	2. $\begin{bmatrix} 11 & -17 & 8 \\ 32 & 1 & -4 \end{bmatrix}$ 3. <u>Alternate optimal solutions</u>
3	12 D	
4. <u> </u>	13. <u>B</u>	4. $f^{-1}(x) = \frac{2}{x} + 5$; yes 5. $-\frac{16}{3}$
5. <u>A</u>	14. <u>C</u>	61
6. <u>D</u>	15. <u>B</u>	7. $\frac{13\sqrt{30}}{60}$
7. <u> </u>	16C	8. <u>A = 65°, a = 36.2, c = 37.</u> 0 9. <u>79 m/s</u>
8C	17. <u>A</u>	10. <u>45°, 135°</u>
9. <u> </u>	18. <u>C</u>	11
	19. <u>6.4</u>	$13. \frac{(x-1)^2}{9} + \frac{(y-2)^2}{4} = 1$
	203	

BLANK

