Chapter 10 - Rotation and Rolling

I. Rotational variables

- Angular position, displacement, velocity, acceleration
II. Rotation with constant angular acceleration
III. Relation between linear and angular variables
- Position, speed, acceleration
IV. Kinetic energy of rotation
V. Rotational inertia
VI. Torque
VII. Newton's second law for rotation
VIII. Work and rotational kinetic energy
IX. Rolling motion

I. Rotational variables

Rigid body: body that can rotate with all its parts locked together and without shape changes.

Rotation axis: every point of a body moves in a circle whose center lies on the rotation axis. Every point moves through the same angle during a particular time interval.

Reference line: fixed in the body, perpendicular to the rotation axis and rotating with the body.

Angular position: the angle of the reference line relative to the positive direction of the x -axis.

$$
\theta=\frac{\text { arc length }}{\text { radius }}=\frac{s}{r}
$$

Units: radians (rad)

$1 \mathrm{rev}=360^{\circ}=\frac{2 \pi r}{r}=2 \pi \mathrm{rad}$
$1 \mathrm{rad}=57.3^{\circ}=0.159 \mathrm{rev}$

Note: we do not reset θ to zero with each complete rotation of the reference line about the rotation axis. 2 turns $\rightarrow \theta=4 \pi$

Translation: body's movement described by $x(t)$.
Rotation: body's movement given by $\theta(\mathrm{t})=$ angular position of the body's reference line as function of time.

Angular displacement: body's rotation about its axis changing the angular position from θ_{1} to θ_{2}.

$$
\Delta \theta=\theta_{2}-\theta_{1}
$$

Clockwise rotation \rightarrow negative Counterclockwise rotation \rightarrow positive

Angular velocity:
Average:

$$
\omega_{\text {avg }}=\frac{\theta_{2}-\theta_{1}}{t_{2}-t_{1}}=\frac{\Delta \theta}{\Delta t}
$$

Instantaneous:

$$
\omega=\lim _{\Delta t \rightarrow 0} \frac{\Delta \theta}{\Delta t}=\frac{d \theta}{d t}
$$

Units: rad/s or rev/s

These equations hold not only for the rotating rigid body as a whole but also for every particle of that body because they are all locked together.

Angular speed $(\boldsymbol{\omega})$: magnitude of the angular velocity.
Angular acceleration:
Average: $\quad \alpha_{\text {avg }}=\frac{\omega_{2}-\omega_{1}}{t_{2}-t_{1}}=\frac{\Delta \omega}{\Delta t}$
Instantaneous:

$$
\alpha=\lim _{\Delta t \rightarrow 0} \frac{\Delta \omega}{\Delta t}=\frac{d \omega}{d t}
$$

Angular quantities are "normally" vector quantities \rightarrow right hand rule.

Examples: angular velocity, angular acceleration

Object rotates around the direction of the vector \rightarrow a vector defines an axis of rotation not the direction in which something is moving.

Angular quantities are "normally" vector quantities \rightarrow right hand rule.

Exception: angular displacements
The order in which you add two angular displacements influences the final result $\rightarrow \Delta \theta$ is not a vector.

II. Rotation with constant angular acceleration

Linear equations

$$
\begin{aligned}
& v=v_{0}+a t \\
& x-x_{0}=v_{0} t+\frac{1}{2} a t^{2} \\
& v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right) \\
& x-x_{0}=\frac{1}{2}\left(v_{0}+v\right) t \\
& x-x_{0}=v t-\frac{1}{2} a t^{2}
\end{aligned}
$$

Angular equations
$\omega=\omega_{0}+\alpha t$

$$
\theta-\theta_{0}=\omega_{0} t+\frac{1}{2} \alpha t^{2}
$$

$$
\omega^{2}=\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right)
$$

$$
\theta-\theta_{0}=\frac{1}{2}\left(\omega_{0}+\omega\right) t
$$

$$
\theta-\theta_{0}=\omega t-\frac{1}{2} \alpha t^{2}
$$

III. Relation between linear and angular variables

Position:

$$
s=\theta \cdot r \quad \theta \text { always in radians }
$$

Speed:

$$
\frac{d s}{d t}=r \frac{d \theta}{d t} \rightarrow v=\omega \cdot r \quad \omega \text { in } \mathrm{rad} / \mathrm{s}
$$

\vec{v} is tangent to the circle in which a point moves

Since all points within a rigid body have the same angular speed ω, points located at greater distance with respect to the rotational axis have greater linear (or tangential) speed, v.
If $\omega=$ constant, $v=$ constant \rightarrow each point within the body undergoes uniform circular motion.

Period of revolution:

$$
T=\frac{2 \pi r}{v}=\frac{2 \pi r}{\omega r}=\frac{2 \pi}{\omega}
$$

Acceleration:

$$
\frac{d v}{d t}=\frac{d(\omega \cdot r)}{d t}=\frac{d \omega}{d t} r=\alpha \cdot r \rightarrow a_{t}=\alpha \cdot r
$$

Responsible for changes in the magnitude of the linear velocity vector $\overrightarrow{\mathrm{v}}$.

Radial compor
linear accelerati

$$
a_{r}=\frac{v^{2}}{r}=\omega^{2} \cdot r
$$

Responsible for changes in the direction of the linear velocity vector \vec{v}
IV. Kinetic energy of rotation

Reminder: Angular velocity, ω is the same for all particles within the rotating body.

Linear velocity, v of a particle within the rigid body depends on the particle's distance to the rotation axis (r).

$$
\left.K=\frac{1}{2} m v_{1}^{2}+\frac{1}{2} m v_{2}^{2}+\frac{1}{2} m v_{3}^{2}+\ldots=\sum_{i} \frac{1}{2} m_{i} v_{i}^{2}=\sum_{i} \frac{1}{2} m_{i}\left(\omega \cdot r_{i}\right)^{2}=\frac{1}{2}\left(\sum_{i} m_{i} r_{i}^{2}\right) \omega^{2}\right)
$$

Rotational inertia = Moment of inertia, l:
Indicates how the mass of the rotating body is distributed about its axis of rotation.

The moment of inertia is a constant for a particular rigid body and a particular rotation axis.

$I=\sum_{i} m_{i} r_{i}^{2}$
Units: kg m²

Example: long metal rod.
Smaller rotational inertia in (a) \rightarrow easier to rotate.

Kinetic energy of a body in pure rotation

$$
K=\frac{1}{2} I \omega^{2}
$$

Kinetic energy of a body in pure translation

$$
K=\frac{1}{2} M v_{C O M}^{2}
$$

V. Rotational inertia

$$
\text { Discrete rigid body } \rightarrow I=\sum m_{i} r_{i}^{2} \quad \text { Continuous rigid body } \rightarrow I=\int r^{2} \mathrm{dm}
$$

Parallel axis theorem

$I=I_{\text {COM }}+M h^{2}$
$\mathrm{h}=$ perpendicular distance between the given axis and axis through COM.

Rotational inertia about = Rotational
Inertia about a parallel axis that extends trough body's
Center of Mass + Mh²

Proof:

$$
\begin{aligned}
& I=\int r^{2} d m=\int\left[(x-a)^{2}+(y-b)^{2}\right] d m=\int\left(x^{2}+y^{2}\right) d m-2 a \int x d m-2 b \int y d m+\int\left(a^{2}+b^{2}\right) d m \\
&\left.I=\int R^{2} d m-2 a / / x_{\text {СОМ }}-2 b M\right)_{\text {СОМ }}+M h^{2}=I_{\text {СОМ }}+M h^{2}
\end{aligned}
$$

VI. Torque

Torque: Twist \rightarrow "Turning action of force \vec{F} ".

Radial component, F_{r} : does not cause rotation
\rightarrow pulling a door parallel to door's plane.

Tangential component, F: does cause rotation
\rightarrow pulling a door perpendicular to its plane.

$$
F_{t}=F \sin \varphi
$$

Units: Nm
$\tau=r \cdot(F \cdot \sin \varphi)=r \cdot F_{t}=(r \sin \varphi) F=r_{\perp} F$
r_{\perp} : Moment arm of \vec{F}
r : Moment arm of F_{t}
Vector quantity

Sign: Torque >0 if body rotates counterclockwise. Torque <0 if clockwise rotation.

Superposition principle: When several torques act on a body, the net torque is the sum of the individual torques

VII. Newton's second law for rotation

$$
F=m a \rightarrow \tau=I \alpha
$$

Proof:

Particle can move only along the circular path \rightarrow only the tangential component of the force F_{t} (tangent to the circular path) can accelerate the particle along the path.

$$
\begin{aligned}
& F_{t}=m a_{t} \\
& \tau=F_{t} \cdot r=m a_{t} \cdot r=m(\alpha \cdot r) r=\left(m r^{2}\right) \alpha=I \alpha
\end{aligned}
$$

$$
\tau_{\text {net }}=I \alpha
$$

VIII. Work and Rotational kinetic energy

Translation
$\Delta K=K_{f}-K_{i}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}=W$

$$
W=\int_{x}^{x_{f}} F d x
$$

$W=F \cdot d$
$P=\frac{d W}{d t}=F \cdot v$

Rotation

$$
\Delta K=K_{f}-K_{i}=\frac{1}{2} I \omega_{f}^{2}-\frac{1}{2} I \omega_{i}^{2}=W
$$

Work-kinetic energy Theorem

$$
W=\int_{\theta_{1}}^{\theta_{i}} \tau \cdot d \theta
$$

$$
W=\tau\left(\theta_{f}-\theta_{i}\right)
$$

$$
P=\frac{d W}{d t}=\tau \cdot \omega
$$

Work, rotation about fixed axis

Work, constant torque

Power, rotation about fixed axis

Proof:
$W=\Delta K=K_{f}-K_{i}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}=\frac{1}{2} m\left(\omega_{f} r\right)^{2}-\frac{1}{2} m\left(\omega_{i} r\right)^{2}=\frac{1}{2}\left(m r^{2}\right) \omega_{f}^{2}-\frac{1}{2}\left(m r^{2}\right) \omega_{i}^{2}=\frac{1}{2} I \omega_{f}^{2}-\frac{1}{2} I \omega_{i}^{2}$

$$
d W=F_{t} d s=F_{t} \cdot r \cdot d \theta=\tau \cdot d \theta \rightarrow W=\int_{\theta_{t}}^{\theta_{t}} \tau \cdot d \theta
$$

$$
P=\frac{d W}{d t}=\frac{\tau \cdot d \theta}{d t}=\tau \cdot \omega
$$

IX. Rolling

- Rotation + Translation combined.

Example: bicycle's wheel.

$$
s=\theta \cdot R \rightarrow \frac{d s}{d t}=\frac{d \theta}{d t} R=\omega \cdot R=v_{\text {COM }}
$$

Smooth rolling motion

The motion of any round body rolling smoothly over a surface can be separated into purely rotational and purely translational motions.

- Pure rotation.

Rotation axis \rightarrow through point where wheel contacts ground.
Angular speed about P = Angular speed about O for stationary observer.

$$
v_{\text {top }}=(\omega)(2 R)=2(\omega R)=2 v_{\text {Сом }}
$$

= sum of translational
and rotational motions.

- Kinetic energy of rolling.

$$
I_{p}=I_{C O M}+M R^{2}
$$

$K=\frac{1}{2} I_{p} \omega^{2}=\frac{1}{2} I_{\text {СОМ }} \omega^{2}+\frac{1}{2} M R^{2} \omega^{2}=\frac{1}{2} I_{\text {СОМ }} \omega^{2}+\frac{1}{2} M v_{\text {COM }}^{2}$

A rolling object has two types of kinetic energy \rightarrow Rotational: $0.5 \mathrm{I}_{\text {COM }} \omega^{2}$ (about its COM).

Translational: $0.5 \mathrm{Mv}^{2} \mathrm{com}$
(translation of its COM).

- Forces of rolling.

(a) Rolling at constant speed \rightarrow no sliding at P \rightarrow no friction.
(b) Rolling with acceleration \rightarrow sliding at $P \rightarrow$ friction force opposed to sliding.

Static friction \rightarrow wheel does not slide \rightarrow smooth rolling motion $\rightarrow \mathbf{a}_{\text {com }}=\alpha R$

Increasing acceleration

Example e_{1} : wheels of a car moving forward while its tires are spinning madly, leaving behind black stripes on the road \rightarrow rolling with slipping $=$ skidding \rightarrow lcy pavements.
Antiblock braking systems are designed to ensure that tires roll without slipping during braking.

Example 2 : ball rolling smoothly down a ramp. (No slipping).

1. Frictional force causes the rotation. Without friction the ball will not roll down the ramp, will just slide.
2. Rolling without sliding \rightarrow the point of contact between the sphere and the surface is at rest \rightarrow the frictional force is the static frictional force.
3. Work done by frictional force $=0 \rightarrow$ the point of contact is at rest (static friction).

Example: ball rolling smoothly down a ramp.

$$
F_{n e t, x}=m a_{x} \rightarrow f_{s}-M g \sin \theta=M a_{\text {COM }, x}
$$

Note: Do not assume $f_{s}=f_{s, \max }$. The only f_{s} requirement is that its magnitude is just right for the body to roll smoothly down the ramp, without sliding.

Newton's second law in angular form \rightarrow Rotation about center of mass

$$
\begin{aligned}
\tau=r_{\perp} F \rightarrow \tau_{f_{s}} & =R \cdot f_{s} \\
\tau_{F_{g}} & =\tau_{N}=0
\end{aligned}
$$

$\tau_{\text {net }}=I \alpha \rightarrow R \cdot f_{s}=I_{\text {СОМ }} \alpha=I_{\text {СОМ }} \frac{-a_{\text {СОМ }, x}}{R}$
$\rightarrow f_{s}=-I_{\text {СОМ }} \frac{a_{\text {СОМ }, \chi}}{R^{2}}$

$$
\begin{aligned}
& f_{s}-M g \sin \theta=M a_{C O M, x} \\
& f_{s}=-I_{C O M} \frac{a_{C O M, x}}{R^{2}}=M g \sin \theta+M a_{C O M, x} \rightarrow-\left(M+\frac{I_{C O M}}{R^{2}}\right) a_{C O M, x}=M g \sin \theta \\
& a_{C O M, x}=-\frac{g \sin \theta}{1+I_{\text {Com }} / M R^{2}} \quad \begin{array}{l}
\text { Linear acceleration of a body rolling along an } \\
\text { incline plane }
\end{array}
\end{aligned}
$$

Example: ball rolling smoothly down a ramp of height h

Conservation of Energy

$$
\begin{aligned}
& K_{f}+U_{f}=K_{i}+U_{i} \\
& 0.5 I_{\text {COM }} \omega^{2}+0.5 M v_{\text {COM }}^{2}+0=0+M g h \\
& 0.5 I_{\text {COM }} \frac{v_{C O M}^{2}}{R^{2}}+0.5 M v_{\text {COM }}^{2}+0=0+M g h \\
& 0.5 v_{\text {COM }}^{2}\left(\frac{I_{\text {COM }}}{R^{2}}+M\right)=M g h \\
& v_{\text {COM }}=\left(\frac{2 h g}{1+\left(\frac{I_{C O M}}{M R^{2}}\right)}\right)^{1 / 2}
\end{aligned}
$$

Although there is friction (static), there is no loss of Emec because the point of contact with the surface is at rest relative to the surface at any instant

- Yo-yo

Potential energy (mgh) \rightarrow kinetic energy: translational $\left(0.5 \mathrm{mv}^{2}{ }_{\text {сом }}\right)$ and rotational $\left(0.5 \mathrm{I}_{\text {Сом }} \mathrm{w}^{2}\right)$

Analogous to body rolling down a ramp:

- Yo-yo rolls down a string at an angle $\theta=90^{\circ}$ with the horizontal.
- Yo-yo rolls on an axle of radius R_{0}.
- Yo-yo is slowed by the tension on it from the string.

$$
a_{C O M, x}=\frac{-g \sin \theta}{1+I_{\text {com }} / M R^{2}}=\frac{-g}{1+I_{\text {com }} / M R_{0}^{2}}
$$

