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Chapter 10: Temperature and Heat 

 
Answers and Solutions 

 
 

1. A cup of hot coffee that is placed on a table is not in thermal equilibrium with its surroundings. It would be in thermal 
equilibrium only if it had the same temperature as its surroundings.  

 
 

2. The term heat refers to a transfer of energy between objects because of a temperature difference. For this reason, no,  
it is not correct to say that a hot object “contains” heat; it can only transfer heat. The question of whether a hot object 
contains more energy than a cold one is a complicated one because the thermal energy that an object contains depends 
upon the mass of the object, its specific heat capacity, and its temperature. However, if the two objects are otherwise 
identical, then yes, it is correct to say that a hot object contains more thermal energy than a cold object.  

 
 

3.  Picture the Problem: This is a follow-up question to Guided Example 10.1. The temperature of a system is known to 
be 110°F. 

 Strategy: Use the conversion between degrees Fahrenheit and degrees Celsius to convert the Fahrenheit temperature to 
the Celsius temperature. 

 
Solution: Convert the temperature:  ( ) ( )C F

5 5
32 110 32 F 43 C

9 9
T T= − = − ° = °  

 Insight: This is an unpleasantly hot temperature for the environment, but a pleasant temperature for a cup of coffee. 
 
 

4.  Picture the Problem: The coldest temperature ever recorded on Earth is −89.2°C at Vostok, Antarctica. 

 Strategy: Use the conversion between degrees Celsius and degrees Fahrenheit to convert the Celsius temperature to the 
Fahrenheit temperature. 

 
Solution: Convert the temperature:  ( )F

9
89.2 C 32 F 128.6 F

5
T = − ° + ° = − °  

 Insight: This temperature is well below the −109°F freezing point of CO2 (dry ice). 
 
 

5.  Picture the Problem: A temperature difference in degrees Fahrenheit is to be converted to degrees Celsius. 

 Strategy: Write the temperature difference in the Fahrenheit scale as a final temperature minus the initial temperature. 
Use the conversion between degrees Fahrenheit and degrees Celsius to convert the Fahrenheit temperatures to Celsius 
temperatures.  

 Solution: Find the temperature difference in 
Celsius. Note that the 32°F offset cancels out 
when the temperatures are subtracted: 

5
C C2 C1 F29 32°FT T T TΔ = − = −( ) 5

F19 32°FT− −( )
( )
( )

5 5
F2 F1 F9 9

5
C 9 27 F 15 C

T T T

T

= − = Δ

Δ = ° = °

 

 Insight: Because the Celsius degree and the Kelvin degree have the same size, a change in Celsius temperature has the 
same magnitude as that change in Kelvin units. 
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6.  Picture the Problem: A temperature has the same value on both the Fahrenheit and Celsius scales. 

 Strategy: Set the value of the temperature in degrees Fahrenheit, TF, equal to the same value in degrees Celsius, TC, by 
substituting a single variable T for each. Solve the resulting expression for T.  

 
Solution: Set 

set

F CT T T= =  and solve for T: F C

9
32

5
9

32
5

32
40.0

1 9 5

T T

T T

T

= +

− =

= = −
−

 

 Insight: Because the Celsius and the Kelvin scales have the same size degree and are offset from each other by 273.15, 
there is no temperature in Celsius that has the same numerical value in Kelvin. You can verify for yourself that 574.59 
is the same temperature on both the Fahrenheit and Kelvin scales. 

 
 

7.  Picture the Problem: The temperature of the surface of the Sun is given in the Kelvin scale and is to be converted to 
the Celsius and Fahrenheit scales. 

 Strategy: Use the conversion between kelvins and degrees Celsius to convert the Kelvin temperature to the Celsius 
temperature. Then use the conversion between degrees Celsius and degrees Fahrenheit to convert the Celsius 
temperature to the Fahrenheit temperature. 

 Solution: 1. (a) Convert from Kelvin to Celsius:  
3

C 273.15 K 6000 273.15 K 5.7 10 CT T= − = − = × °  

 
2. (b) Convert from Celsius to Fahrenheit: ( )  

4
F

9
5727 C 32 F 10,341°F 1.0 10 F

5
T = ° + ° = = × °  

 Insight: The surface of the Sun is hotter than 10,000°F! Remarkably, the surface is the coolest region of the Sun. 
 
 

8.  Picture the Problem: The temperature of the boiling point of water is to be converted from the Celsius scale to the 
Kelvin scale. 

 Strategy: Use the conversion between kelvins and degrees Celsius to convert the Celsius temperature to the Kelvin 
temperature.  

 Solution: Convert from Celsius to Kelvin: C 273.15 100.00 273.15 K 373.15 KT T= + = + =  

 Insight: Similarly, the freezing point of water occurs at 273.15 K. 
 
9. Temperature is a measure of the average kinetic energy of the particles in a system. Therefore, the average kinetic 

energy of the particles will increase when the temperature of the system is increased. 
 
10. The term heat refers to a transfer of energy between objects because of a temperature difference. For this reason it is  

not correct to say that hot coffee “contains” heat; it can only transfer heat. However, it is correct to say that a cup of hot 
coffee contains more thermal energy than a cup of cold coffee.  

 
11. The term heat refers to a transfer of energy between objects because of a temperature difference.  
 
12. The thermal energy of a substance is the sum of all of its kinetic and potential energy. Thus, an object’s thermal energy 

refers to both the random motion of its particles (kinetic energy) and the separation and orientation of its particles 
relative to one another (potential energy).  

 
13. The key characteristics of thermal equilibrium are that the two objects must be in contact with each other and they must 

be at the same temperature. There must be no net thermal energy transfer between the two objects.  
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14. Zero on the Kelvin temperature scale is called absolute zero. It is the temperature below which it is impossible to cool 

an object.  
 
 

15.  Picture the Problem: The temperature of the filament in an incandescent lightbulb is to be converted from degrees 
Fahrenheit to degrees Celsius. 

 Strategy: Use the conversion between degrees Fahrenheit and degrees Celsius to convert the Fahrenheit temperature to 
the Celsius temperature.  

 
Solution: Convert the temperature: ( )  

3
C

5
4500 F 32 F 2482 C 2.5 10 C

9
T = ° − ° = ° = × °  

 Insight: For temperatures this large, the 32°F shift is insignificant. The temperature in Celsius is essentially 5/9th of the 
reading in Fahrenheit. 

 
 

16.  Picture the Problem: The outside temperature drops as a cold front moves through your area. 

 Strategy: Use the conversion between degrees Fahrenheit and degrees Celsius to convert the Fahrenheit temperature 
change to the Celsius temperature change.  

 Solution: 1. (a) Find the temperature difference 
in Celsius. Note that the 32°F offset cancels out 
when the temperatures are subtracted: 

5
C C2 C1 F29 32°FT T T TΔ = − = −( ) 5

F19 32°FT− −( )
( )
( )  

5 5
F2 F1 F9 9

5
C 9 35 F 19 C

T T T

T

= − = Δ

Δ = ° = °

 

 2. (b) The temperature difference in the Kelvin 
scale has the same magnitude as the temperature 
difference in the Celsius scale: 

 C 19 KT TΔ = Δ =  

 Insight: Any temperature span in the Fahrenheit scale equals the span in the Celsius scale multiplied by 9/5, because in 
the Fahrenheit scale 180 degrees spans the freezing and boiling points of water, but there are only 100 Celsius degrees 
in that span. 

 
 

17.  Picture the Problem: The outside temperature increases as a high-pressure weather system moves into your area. 

 Strategy: Use the conversion between degrees Fahrenheit and degrees Celsius to convert the Celsius temperature 
change to the Fahrenheit temperature change.  

 Solution: 1. (a) Find the temperature difference 
in Fahrenheit. Note that the 32°F offset cancels 
out when the temperatures are subtracted: 

9
F F2 F1 C25 32T T T TΔ = − = + 9

C15 32T⎡ ⎤ − +⎣ ⎦
( )
( )  

9 9
C2 C1 C5 5

9
F 5 29 C 52 F

T T T

T

⎡ ⎤⎣ ⎦
= − = Δ

Δ = ° = °

 

 2. (b) The temperature difference in the Kelvin 
scale has the same magnitude as the temperature 
difference in the Celsius scale: 

 C 29 KT TΔ = Δ =  

 Insight: Any temperature span in the Fahrenheit scale equals the span in the Celsius multiplied by 9/5, because in the 
Fahrenheit scale 180 degrees spans the freezing and boiling points of water, but there are only 100 Celsius degrees in 
that span. 

 
 

18.  Picture the Problem: The Akashi Kaikyo Bridge in Japan is made of steel. When steel is heated it expands and when it 
is cooled it contracts.  

 Strategy: In this problem we wish to find the change in length of the bridge between a cold winter day and a warm 
summer day. Use the thermal expansion equation to determine the change in length. The coefficient of thermal 
expansion for steel is given in Table 10.1. 
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 Solution: Find the change in length:  

( )[ ]
i

5 11.2 10 K 3910 m 30.0 C ( 5.00 C) 1.6 m

L L Tα
− −

Δ = Δ

⎡ ⎤= × ° − − ° =⎣ ⎦
 

 Insight: This change in length is about the height of a person. If there were no expansion joints in the bridge this 
increase in length would be sufficient to buckle the bridge. 

 
 

19.  Picture the Problem: An aluminum meterstick increases in length as it is heated.  

 Strategy: Solve the thermal expansion equation for the temperature difference required to change the length of  
1.0000 m of aluminum by 1.0 mm. The coefficient of thermal expansion for aluminum is given in Table 10.1. 

 Solution: Solve for the 
temperature difference:  

( )( )

i

5 1
i

1.0 mm
42 K

2.4 10 K 1000.0 mm

L L T

L
T

L

α

α − −

Δ = Δ

Δ
Δ = = =

×
 

 Insight: This change in temperature is equivalent to an increase of 42°C or 75°F. 
 
 

20.  Picture the Problem: Two identical metal rods are at room temperature. One rod is heated by 10°C, and the other is 
cooled by 10°C, and their new lengths are compared. 

 Strategy: Use a ratio to compare the lengths of the two rods after the heating and cooling events. 

 Solution: 1. Make a 
ratio of the lengths:  

[ ]( )
[ ]( )

 

 

i heated i i heated inew, heated

new, cooled i cooled i i cooled i

1 10 °C 1 10

1 01 10 °C

L L L L T LL

L L L L L T L

α α α
α αα

+ Δ + Δ + + +
= = = =

+ Δ + Δ −1+ −
 

 2. The rod that is heated is slightly longer than the rod that is cooled.  

 Insight: If the two rods were made of aluminum, so that  
5 12.4 10 K ,α − −= ×  then the heated rod would be 0.048% 

longer than the cooled rod. 
 
21. Thermal conduction occurs when a hot object is in contact with a cool object. The rapidly moving molecules in the hot 

object collide with the slower molecules in the cool object, transferring some kinetic energy. Those molecules then 
collide with others in the cool object, and so the molecules in the cool object gradually move faster as energy is 
transferred by means of collisions. Thermal conduction describes how energy moves from the hot object to the cool 
object in this manner.  

 
22. As boiling water is heated on a stove, several exchange processes carry the thermal energy through the water. The water 

(and the container) conduct heat from the hot burner to the cool atmosphere, convection currents in the boiling water 
circulate and transfer energy from the hot pan bottom to the cooler water surface, and thermal radiation from the hot 
water transfers energy into the cooler surroundings. There is a fourth exchange process (discussed later in this chapter) 
by which the bubbles of steam carry the latent heat of vaporization from the hot pan bottom to the cooler air above the 
water surface.  

 
23. Thermal energy exchange by radiation is mediated by electromagnetic waves that can travel through the vacuum. No 

medium is required for the energy transfer. In fact, this is how the Sun transfers energy through the vacuum of space 
and to Earth.  

 
24. A thermal conductor will transfer energy from a hot region to a cool region much more efficiently than a thermal 

insulator.  
 
25. A bimetallic strip bends because of the different coefficients of thermal expansion between the two types of metal. 

Because aluminum has a larger coefficient of thermal expansion than does copper, it will change its length by a greater 
amount. This means the aluminum will be on the outside of the arc through which it curls, and we expect the strip to 
bend toward the copper side of the strip. See Figure 10.6 for an illustration. 
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26.  Picture the Problem: Each of four systems consists of a metal rod of a given initial length that is subjected to a certain 

increase in temperature. 

 Strategy: Use the thermal expansion equation to rank the systems in order of increasing change in length. 

 Solution: 1. Calculate 
the changes in length:  

( )( )( )
( )( )( )
( )( )( )
( )( )( )

5 1
A A i, A A

5 1
B B i, B B

5 1
C C i, C C

5 1
D D i, D D

2.4 10  K 2 m 40 K 1.92 mm

1.2 10  K 2 m 20 K 0.48 mm

1.2 10  K 1 m 30 K 0.36 mm

2.4 10  K 1 m 10 K 0.24 mm

L L T

L L T

L L T

L L T

α

α

α

α

− −

− −

− −

− −

Δ = Δ = × =

Δ = Δ = × =

Δ = Δ = × =

Δ = Δ = × =

 

 2. By comparing the length changes we arrive at the ranking D < C < B < A.  

 Insight: Aluminum expands twice as much as steel for the same initial length and change in temperature. 
 
 

27.  Picture the Problem: A copper plate has a hole cut in its center. The plate expands 
as it is heated.  

 Strategy: The hole will expand at the same rate as the copper. Because the diameter 
of the hole is the length that is expanding, use the thermal expansion equation to 
calculate the diameter as a function of the increase in temperature. The coefficient 
of thermal expansion is given in Table 10.1. 

 Solution: 1. Solve the thermal expansion 
equation for the final diameter: ( )

i

i i i 1

d d d d T

d d d T d T

α
α α

Δ = − = Δ
= + Δ = + Δ

 

 
 2. Substitute the numerical values: ( )( )  

–5 11.325 cm 1+ 1.7 10 K 224.0 C 21.00 C 1.330 cmd −⎡ ⎤= × ° − ° =⎣ ⎦  

 Insight: The diameter of the hole expanded by 0.0046 cm or 46 μm. 
 
 

28.  Picture the Problem: A steel plate has a hole cut in its center. The plate shrinks as 
it is cooled.  

 Strategy: The hole will shrink at the same rate as the steel. Because the diameter of 
the hole is the length that is shrinking, use the thermal expansion equation to 
calculate the diameter as a function of the change in temperature. Solve the 
resulting expression for the final temperature. The coefficient of thermal expansion 
is given in Table 10.1. 

 Solution: 1. Solve the thermal expansion 
equation for the final temperature: 

i i

i

i

d d d d T

d d
T

d

α

α

Δ = − = Δ
−

Δ =
 

 

 
2. Substitute the numerical values: ( )( )5 1

1.164 1.166 cm
143 K

1.2 10  K 1.166 cm
T

− −

−
Δ = = −

×
 

 3. Find the final temperature: ( )   f i 23.00 °C 143°C 120 °CT T T= + Δ = + − = −  

 Insight: Steel has a small coefficient of thermal expansion, so that the plate must be cooled substantially in order to 
achieve the desired decrease in the hole’s diameter. 
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29.  Picture the Problem: An aluminum rod changes its length when its temperature is changed.  

 Strategy: Use the thermal expansion equation to calculate the length of the rod as a function of the change  
in temperature. Because the expansion is a linear function of the temperature change, it does not matter  
whether the rod is heated or cooled. We will assume it is heated. Solve the resulting expression for the initial  
length of the rod. The coefficient of thermal expansion is given in Table 10.1. 

 Solution: Solve the thermal expansion 
equation for the initial length: 

( )( )

i

i 5 1

0.0032 cm
1.1 cm

2.4 10  K 120 K

L L T

L
L

T

α

α − −

Δ = Δ

Δ
= = =

Δ ×
 

 Insight: The rules of significant figures prevent us from saying that the initial length was 1.1111 cm. We would need to 
know all the values to five significant figures in order to determine the initial length with such precision. 

 
 

30.  Picture the Problem: A metal rod changes its length when its temperature is changed.  

 Strategy: Solve the thermal expansion equation for the coefficient of thermal expansion. Compare its value to those 
given in Table 10.1 to determine which metal it might be. 

 Solution: 1. Solve the thermal expansion 
equation for the coefficient: 

( )( )

i

5 1

i

0.36 cm
1.7 10  K

250 cm 85 K

L L T

L

L T

α

α − −

Δ = Δ

Δ
= = = ×

Δ
 

 2. By comparing the value of the coefficient of thermal expansion with those listed in Table 10.1, we conclude that the 
metal is most likely to be copper. 

 Insight: Sometimes the measurement of the coefficient of thermal expansion can help determine the identity of an 
unknown metal, but other chemical and optical methods are easier and more precise. 

 
 

31.  Picture the Problem: This is a follow-up question to Guided Example 10.7. A 74.0-kg person drinks a thick, rich,  
305-C milkshake and then burns calories as he climbs a staircase.  

 Strategy: Use the energy conversion between Calories and joules (1 Cal = 4186 J) to convert the amount of work done 
against gravity, mgH, into an equivalent amount of Calories. 

 Solution: 1. Find the work 
done against gravity: 

( )( )( )274.0 kg 9.81 m/s 100 stairs  0.200 m/stair

14,518 J

W mgH= = ×

=
 

 2. Convert the mechanical 
energy in joules into thermal 
energy in Calories: 

1 Cal
14,518 J 3.47 Cal

4186 J
Q = × =  

 Insight: It might be disappointing to think that by climbing almost 7 stories (H = 20 m divided by about 3 m per story) 
you’ve burned less energy than that in a single saltine cracker (12 Cal). However, your body consumes much more food 
energy during the climbing process than the amount of gravitational potential energy that you gain. If your body were 
20% efficient you would actually convert 3.47 Cal / 0.20 = 17.4 Cal of food energy into mechanical and thermal 
energies. 

 
 

32.  Picture the Problem: A person lifts a weight during a workout. The person does work against gravity each time the 
weight is lifted.  

 Strategy: Calculate the amount of work done each time the weight is lifted and convert the results to calories. Divide 
the total work done by the work per lift to calculate the number of lifts necessary to expend the specified amount of 
calories. 

 Solution: 1. Multiply force by distance to  
calculate work done in each repetition: ( )( )( )26.2 kg 9.81 m/s 0.58 m 35.3 JW m g y= Δ = =  
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2. Convert from joules to Calories: 1 Cal
35.3 J 0.00843 Cal

4186 J
Q = × =  

 3. Divide the total energy by the  
energy per repetition: 

4150 Cal
repetitions 1.8 10

0.00843 Cal/rep
= = ×  

 Insight: Note that there are about 150 Calories in one-half of a standard size Snickers® candy bar. In order to do 17,800 
repetitions to “work off” this half a candy bar, at the rate of 1 repetition every 2 seconds, it will take you almost 10 h! 
However, your body consumes much more food energy during the lifting process than the change of gravitational 
potential energy, and many fewer repetitions would actually be necessary. 

 
33.  Picture the Problem: Thermal energy is added to an aluminum bar, causing its temperature to increase. 

 Strategy: Solve the specific heat capacity equation for the change in temperature of the aluminum bar. The specific heat 
of aluminum is given in Table 10.2. 

 
Solution: Solve the specific heat 
capacity for the final temperature:  ( )

( )[ ]  

f i

f i

79.3 J
22.5 C 23.3 C

0.111 kg 900 J (kg C)

Q Q
c

m T m T T

Q
T T

mc

= =
Δ −

= + = ° + = °
⋅°

 

 Insight: The relatively large specific heat of aluminum results in a small change in temperature. If the bar were made of 
lead, with a specific heat of only 128 J/kg·°C, the final temperature would be 28.1°C. 

 
34.  Picture the Problem: Thermal energy is added to a glass ball, resulting in an increase in temperature. 

 Strategy: Use the specific heat capacity equation to find the thermal energy necessary to increase the temperature.  
The specific heat of glass is given in Table 10.2. 

 Solution: Calculate the required thermal energy: ( )[ ]( ) 0.055 kg 837 J (kg C) 15°C 0.69 kJQ mc T= Δ = ⋅° =  

 Insight: The change in temperature is proportional to the heat added. Doubling the heat added would result in a 
temperature change of 30°C. 

 
35.  Picture the Problem: This is a follow-up question to Guided Example 10.9. A 0.50-kg block of metal with an initial 

temperature of 54.5 °C is dropped into a calorimeter holding 0.50 kg of water at 20.0 °C. Assume that the calorimeter 
can be ignored and that no thermal energy is exchanged with the surroundings.  

 Strategy: Thermal energy flows from the block to the water. Set the energy flow out of the block plus the energy flow 
into the water equal to zero (conservation of energy). The final temperature for both the block and the water is T. The 
initial temperature of the block is Tb, and the initial temperature of the water is Tw. Therefore, the change in temperature, 

f i ,T T TΔ = − for the block is b ,T T TΔ = − and for the water it is w .T T TΔ = − Solve the resulting expression for T. The 

specific heat of water is 4186 J/(kg·°C) and the specific heat of the metal is 390 J/(kg·°C). 

 Solution: 1. Apply conservation 
of energy by setting the sum of the 
energies equal to zero: ( ) ( )

block water

b b b w w w

0

0

Q Q

m c T T m c T T

+ =

− + − =
 

 2. Collect terms and 
rearrange to solve for T: 

b b w w b b b w w w

b b b w w w

b b w w

m c T m c T m c T m c T

m c T m c T
T

m c m c

+ = +
+

=
+

 

 
3. Cancel the masses because they 
are all 0.50 kg, then substitute the 
numerical values: 

bm
T = b b wc T m+ w w

b

c T

m b wc m+

[ ]( ) [ ]( )  

 

w

390 J (kg C) 54.5°C 4186 J (kg C) 20.0 °C
22.9 °C

390 4186 J (kg C)

c

⋅° + ⋅°
= =

+ ⋅°

 

 Insight: With less cold water available to absorb the thermal energy from the warm metal, the final temperature of the 
system is higher than the 21.4°C that resulted when the metal was placed in 1.1 kg of water. 
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36.  Picture the Problem: Thermal energy transfers from a hot lead ball to cool water, causing the lead to cool and the 

water to heat up. Eventually the water and lead will have the same equilibrium temperature. 

 Strategy: Thermal energy flows from the ball to the water. Set the energy flow out of the ball plus the energy flow into 
the water equal to zero (conservation of energy). The final temperature for both the ball and the water is T. The initial 
temperature of the ball is Tb, and the initial temperature of the water is Tw. Therefore, the change in temperature,  

f i ,T T TΔ = − for the ball is b ,T T TΔ = − and for the water it is w .T T TΔ = −  Solve the resulting expression for T.  

The specific heats of water and lead are given in Table 10.2.

 

 

 Solution: 1. Apply conservation 
of energy by setting the sum of the 
energies equal to zero: ( ) ( )

ball water

b b b w w w

0

0

Q Q

m c T T m c T T

+ =

− + − =
 

 2. Collect terms and 
rearrange to solve for T: 

b b w w b b b w w w

b b b w w w

b b w w

m c T m c T m c T m c T

m c T m c T
T

m c m c

+ = +
+

=
+

 

 

3. Substitute the numerical values: 

( )[ ]( )
[ ]( )

( )[ ] ( )[ ]

 

 

 

0.235 kg 128 J (kg C) 84.2 C

0.177 kg 4186 J (kg C) 21.5 C
23.9 C

0.235 kg 128 J (kg C) 0.177 kg 4186 J (kg C)
T

⎡ ⋅° ° ⎤
⎢ ⎥
+ ⋅° °⎢ ⎥⎣ ⎦= = °

⋅° + ⋅°
 

 Insight: Because the specific heat of water is greater than the specific heat of lead, the final temperature is much closer 
to the initial temperature of the water. 

 
 

37. Your friend is right. James Prescott Joule’s experiment showed that stirring a liquid will increase its temperature 
because frictional forces in the fluid will convert mechanical energy into thermal energy.  

 
 
 

38. A substance with a large specific heat capacity requires more heat for a given temperature change than does a substance 
with a low specific heat capacity.  

 
 

39. A calorimeter is designed with substantial insulation to minimize thermal energy exchange with the surroundings. This 
ensures that any energy lost by the hot substances inside the calorimeter is gained by the cold substances, and no heat is 
exchanged with the environment outside the calorimeter.  

 
 

40. A substance with a large specific heat capacity has a smaller temperature change for a given amount of thermal energy 
than does a substance with a low specific heat capacity. We conclude that the specific heat capacity of object A is less 
than the specific heat capacity of object B.  

 
 

41. The specific heat capacity of a substance is the energy per kilogram required to change the temperature by 1°C. It is an 
intensive property; that is, its value does not depend on the mass of the substance. Therefore, the specific heat capacity 
of a large block of gold is equal to the specific heat capacity of a small gold coin.  

 
 

42.  Picture the Problem: Thermal energy is added to a piece of copper pipe, resulting in an increase in temperature. 

 Strategy: Use the specific heat capacity equation to find the thermal energy necessary to increase the temperature.  
The specific heat of copper is given in Table 10.2. 

 Solution: Calculate the required thermal energy: ( )[ ]( ) 0.75 kg 387 J (kg C) 15°C 4.4 kJQ mc T= Δ = ⋅° =  

 Insight: The change in temperature is proportional to the heat added. Doubling the heat added would result in a 
temperature change of 30°C. 
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43.  Picture the Problem: As heat is added to an orange, its temperature increases. 

 Strategy: Use the specific heat capacity equation to find the heat necessary to increase the temperature. Because  
an orange is mostly water, use the specific heat of water, found in Table 10.2, to approximate that for an orange.  

 Solution: Calculate the required thermal energy:  ( )[ ]( )0.20 kg 4186 J (kg C) 22 15 C 5.9 kJQ mc T= Δ = ⋅° − ° =

 Insight: When you eat the orange, your body raises the orange’s temperature from 22°C to body temperature  
(roughly 37°C). The heat required to do this is 12.6 kJ, or 3.0 Calories. The chemical (food) energy in the orange  
is approximately 65 Calories. Therefore, eating the 22-°C orange gives your body a net gain of 62 Calories. 

 
 

44.  Picture the Problem: Thermal energy is added to a block of ice, causing its temperature to increase. 

 Strategy: Solve the specific heat capacity equation for the change in temperature of the ice. The specific heat of ice is 
given in Table 10.2. 

 
Solution: Solve the specific heat 
capacity for the final temperature:  ( )

( )[ ]  

f i

f i

6200 J
10 C 7.9 C

1.4 kg 2090 J (kg C)

Q Q
c

m T m T T

Q
T T

mc

= =
Δ −

= + = − ° + = − °
⋅°

 

 Insight: The relatively large specific heat of ice results in a small change in temperature. If the block were made of 
lead, with a specific heat of only 128 J/kg·K, the final temperature would be 24.6°C. 

 
 

45.  Picture the Problem: A lead bullet traveling at 250 m/s has kinetic energy. As the bullet encounters a fence post it 
slows to a stop, converting its kinetic energy to thermal energy. Half of the energy heats the bullet and increases the 
bullet’s temperature. 

 Strategy: Solve the specific heat capacity equation for the change in temperature. Set the heat equal to one-half of the 
initial kinetic energy of the bullet. The specific heat of lead is given in Table 10.2. 

 Solution: Set Q equal to half the initial 
kinetic energy and solve for :TΔ  

( ) ( )
( )

221 1 21
2 22 250 m/s

120 K
4 4 128 J/ kg K

mvKEQ v
T

mc mc mc c
Δ = = = = = =

⎡ ⋅ ⎤⎣ ⎦
 

 Insight: The relatively small specific heat of lead leads to this large increase in temperature. A silver bullet traveling  
at the same speed would only heat up by 68 K. 

 
 

46.  Picture the Problem: Steam is made by adding heat to water that is initially at 100°C. 

 Strategy: Use the latent heat equation to calculate how much heat must be added to the water to convert it to steam. 

 Solution: Calculate the heat that must be added: ( )5 6
v 1.26 kg 22.6 10 J/kg 2.8 10  JQ m L= = × = ×  

 Insight: The same amount of heat removed from the steam at 100°C will convert it back to water. 

 
47. Two phases are in equilibrium as long as the number of particles returning to one phase equals the number leaving the 

other phase. This can be verified in the lab by monitoring the mass of one of the two (or three) phases that are in contact 
with each other, ensuring that the mass of that phase remains constant. 

 
48. Energy must be added to a drop of sweat in order to provide the latent heat of vaporization necessary for converting the 

liquid water into vapor. This energy comes from your body, and as energy is extracted from your skin to evaporate  
the sweat, your body is cooled. 

 
49. Latent heat is the thermal energy required to change 1 kilogram of a substance from one phase to another. During the 

conversion process from one phase to another, the temperature of the system remains constant.  
 
50. Force per area is called pressure.  
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51. The pressure of a gas that is in equilibrium with its liquid phase is called vapor pressure. 
 
 

52.  Picture the Problem: Water is at equilibrium for a variety of 
temperatures and pressures. 

 Strategy: Use the equilibrium vapor pressure curve to decide 
whether water is a liquid or a gas at the specified temperatures 
and pressures. If the boiling point at the specified pressure is 
higher than the given temperature, the water exists as a liquid. 

 Solution: 1. (a) In the 2-atm pressure cooker and at 80°C water is 
a liquid because the boiling point is 120°C. 

 2. (b) In the 2-atm pressure cooker and at 140°C water is a vapor 
because the boiling point is 120°C. 

 3. (c) At the mountaintop and 100°C water is a vapor because the boiling point is 90°C. 

 4. (d) At the mountaintop and 60°C water is a liquid because the boiling point is 90°C. 

 Insight: The low boiling point at the mountaintop means that food cooking times and procedures must be modified at 
high altitude for best results.  

 
 

53.  Picture the Problem: Ice is made by extracting heat from water that is initially at 0°C. 

 Strategy: Use the latent heat equation to calculate how much heat must be extracted from the water to convert it to ice. 

 Solution: Calculate the heat that must be removed: ( )( )4 5
f 0.96 kg 33.5 10  J/kg 3.2 10  JQ mL= = × = ×  

 Insight: The same amount of heat flowing into the ice at 0°C will convert it back to water. 
 
 

54.  Picture the Problem: Steam is made by adding heat to water that is initially at 100°C. 

 Strategy: Use the latent heat equation to calculate how much heat must be added to the water to convert it to steam. 

 Solution: Calculate the heat that must be added: ( )( )5 6
v 0.96 kg 22.6 10  J/kg 2.2 10  JQ mL= = × = ×  

 Insight: The same amount of heat removed from the steam at 100°C will convert it back to water. 
 
 

55.  Picture the Problem: As thermal energy is added 
to ice initially at −15°C, the heat first increases the 
temperature to the melting point, then melts the  
ice, and finally raises the temperature of the melted 
water to 15°C.  

 Strategy: Set the total heat equal to the sum of the 
heat needed to (i) raise the ice to the melting point, 
(ii) melt the ice, and (iii) increase the water to the 
final temperature. Solve the resulting equation for 
the mass. 

 Solution: 1. Sum the heats using the 
appropriate expressions: ( ) ( )

( ) ( )

i ii iii

ice f water1 2

ice f water1 2

Q Q Q Q

mc T mL mc T

Q m c T L c T

= + +
= Δ + + Δ

⎡ ⎤= Δ + + Δ⎣ ⎦
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2. Solve for the mass: ( ) ( )

[ ]( ) [ ]( )  

ice f water1 2

5

4

9.5 10  J

2090 J (kg C) 15°C 33.5 10 J/kg 4186 J (kg C) 15°C

2.2 kg

Q
m

c T L c T

m

=
Δ + + Δ

×
=

⋅° + × + ⋅°

=

 

 Insight: From the mass we can calculate the amount of thermal energy used in each of the three processes: 

i 69.4 kJ, Q = ii 742 kJ, Q = and iii 139 kJ. Q =  Most of the thermal energy is needed to melt the ice. 
 
 

56.  Picture the Problem: Thermal energy is added to copper at its melting point to convert it from solid to liquid. 

 Strategy: Calculate the thermal energy needed to melt copper from the latent heat equation. 

 Solution: Calculate the required heat: ( )( )4 5
f 1.75 kg 20.7 10  J/kg 3.62 10  J 362 kJQ m L= = × = × =  

 Insight: Extracting this same amount of heat from the liquid copper will convert it back to a solid. 
 
 

57. Temperature is a measure of the average kinetic energy of the particles that comprise a system. Thermal energy is the 
total amount total amount of energy in the system, the sum of all of the kinetic and potential energy of the particles.  

 
 
 

58. When an ice cube is thrown into a swimming pool the ice and the water are at different temperatures and are not in 
equilibrium. The temperature of the water will become slightly lower as the ice cube melts, but it will not become 0°C 
because the ice cube absorbs an insufficient amount of thermal energy to cool the water significantly.  

 
 

59. A Kelvin has the same size as a Celsius degree, so a change in temperature of 20°C is equal to a change in temperature 
of 20 K.  

 
 

60. A Celsius degree is larger than a Fahrenheit degree, so a change in temperature of 20°C is greater than a change in 
temperature of 20°F.  

 
 

61. The Kelvin temperature scale has no negative values.  
 
 

62. Boiling and freezing are not opposites; they are each an example of a phase change of water. The historical reasons for 
the numerical values of the Fahrenheit scale are complex, but they are not related to the 180° that separate opposite 
directions in geometry.  

 
 

63. No. Heat is the energy that is transferred between objects of different temperatures; it is not a quantity that an object can 
“contain.” However, a hot object does contain more thermal energy than an otherwise identical cold object. 

 
 

64.  Picture the Problem: The human body temperature in degrees Fahrenheit can be converted to degrees Celsius and 
kelvins. 

 Strategy: Use the conversion between degrees Fahrenheit and degrees Celsius to convert the Fahrenheit temperature to 
the Celsius temperature, and then convert the Celsius temperature to the Kelvin temperature. 

 
Solution: 1. (a) Convert °F to °C: ( )  C

5
98.6 F 32 F 37.0 C

9
T = ° − ° = °  

 2. (b) Convert °C into kelvins: C 273.15 K 37 K 273.15 K 310.2 KT T= + = + =  

 Insight: A person is said to have a fever if her temperature is above 100°F, which is 37.8°C. 
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65.  Picture the Problem: A temperature is given in kelvins that can be converted to degrees Celsius. 

 Strategy: Subtract 273.15 from the Kelvin temperature to obtain the Celsius temperature.  

 Solution: Convert from Kelvin to Celsius:  C 273.15°C 1.0 273.15 272.2 CT T= − = − = − °  

 Insight: Note that our answer is close to absolute zero (−273.15 °C), as expected, because 1 K is close to absolute zero. 

 
66.  Picture the Problem: A freezer temperature in degrees Fahrenheit can be converted to degrees Celsius. 

 Strategy: Use the conversion between degrees Fahrenheit and degrees Celsius to convert the Fahrenheit temperature to 
the Celsius temperature. 

 
Solution: Convert °F to °C: ( )  C

5
30 F 32 F 1.1 C

9
T = ° − ° = − °  

 Insight: A more typical freezer temperature is 0°F, which is −17.8°C. 

 
67.  Picture the Problem: The temperature of molten lava in degrees Celsius can be converted to kelvins and degrees 

Fahrenheit. 

 Strategy: Convert the Celsius temperature to the Kelvin temperature, and then use the conversion between degrees 
Celsius and degrees Fahrenheit to convert the Celsius temperature to the Fahrenheit temperature. 

 Solution: 1. (a) Convert °C into kelvins: C 273.15 K 1200 273.15 K 1473 KT T= + = + =  

 
2. (b) Convert °C to °F: ( )  F C

9 9
32 1200 32 2192 F

5 5
T T= + = + = °  

 Insight: An acetylene-oxygen flame used for welding burns at 3500°C, hot enough to melt rock! 
 
68.  Picture the Problem: A temperature has twice the value on the Fahrenheit scale as it reads on the Celsius scale. 

 Strategy: Set the value of the temperature in degrees Fahrenheit, TF, equal to twice the value in degrees Celsius, TC, by 
substituting a single variable T for TC. Solve the resulting expression for T.  

 
Solution: Set 

set

C ,T T=  let 

F 2 ,T T=  and solve for T: 
F C

F

9
32

5
9

2 32
5

32
160 C 2 320 F

2 9 5

T T

T T

T T T

= +

− =

= = ° ⇒ = = °
−

 

 Insight: A similar procedure shows that 58.18°F is four times greater than its corresponding temperature of 14.55°C. 
 
69.  Picture the Problem: An initial temperature of − 4°F changes to 45°F in two minutes.  

 Strategy: We are asked to calculate the rate of change of the temperature in units of kelvins per second. Write the rate 
of change by dividing the temperature difference by the time. Then use unit conversions to convert the degrees 
Fahrenheit to kelvins and the minutes to seconds. 

 Solution: 1. Divide the change  
in temperature by the time:  

45 F ( 4.0 F) F
24.5

2.0 min min

T

t

Δ ° − − ° °= =
Δ

 

 
2. Convert the units: 

F 1 min 5 K
24.5 0.23 K/s

min 60 s 9 F

⎛ ⎞ ⎛ ⎞°⎛ ⎞ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ °⎝ ⎠ ⎝ ⎠
 

 Insight: An alternative method of solving this problem would be to convert the temperatures to Kelvin and then divide 

by the time: 
280.4 K 253.2 K

0.23 K/s.
120 s

T

t

Δ −= =
Δ

 

 



Chapter 10: Temperature and Heat  Pearson Physics by James S. Walker 

 

Copyright © 2014 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No 
portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

10 – 13 

 
70. Heating the glass jar and its metal lid to the same higher temperature results in a greater expansion in the lid than in the 

glass, because the glass has a smaller coefficient of thermal expansion. As a result, the lid can become loose enough to 
turn. 

 
71. As the temperature decreases, the wood and metal of which the house is constructed will contract at different rates. The 

house will often creak or groan as it adjusts to these changing lengths. 
 
72. Updrafts are generally caused by different areas of the ground heating up at different rates on a sunny day. Air will rise 

faster over a warm patch of ground than it will over a relatively cool patch of ground, producing convective currents 
that circulate the air in the vertical direction. 

 
73. A car will expand as it is heated, but the amount of expansion depends upon the initial length, the coefficient of thermal 

expansion, and the temperature change. Because the length of a car is longer than its height, the increase in the length of 
the car is greater than its increase in height for the same temperature change. 

 
74.  Picture the Problem: One bimetallic strip is made of copper and steel, and a second bimetallic strip is made of 

aluminum and steel.  

 Strategy: The bend in a bimetallic strip is due to the difference in the thermal expansion coefficients of the two metals. 
Compare the difference in thermal expansion coefficients for these two bimetallic strips. 

 Solution: The difference between thermal expansion coefficients for bimetallic strip A is Cu steelα α− =   

17 × 10−6 – 12 × 10−6 K−1 = 5×10−6 K−1, whereas for bimetallic strip B it’s 6 6 1
A1 steel 24 10 12 10 Kα α − − −− = × − × =  

12×10−6 K−1. Strip B has a larger coefficient difference and will therefore bend more than strip A for a given .TΔ  

 Insight: In other applications, such as reinforced concrete, the goal is to minimize the difference in coefficients of 
thermal expansion. Steel and concrete have nearly identical coefficients, so they expand and contract approximately the 
same amount for a given temperature difference. 

 
75.  Picture the Problem: The figure at right shows five metal plates, all at the 

same temperature and all made from the same material. They are all placed 
in an oven and heated by the same amount. 

 Strategy: Consider the expression for thermal expansion iL L TαΔ = Δ  to 

determine the rankings of the thermal expansions along the x and y 
directions. 

 Solution: 1. (a) The amount of expansion LΔ  in any given direction is 
proportional to the initial length Li in that direction. We conclude that 
along the vertical direction the ranking for LΔ  is B = C < D= E < A. 

 2. (b) The amount of expansion LΔ  in any given direction is proportional to the initial length Li in that direction. We 
conclude that along the horizontal direction the ranking for LΔ  is A = C = E < B < D. 

 Insight: If we were to rank the expansion along the diagonal direction 2 2x y= +  we would arrive at the ranking  

C < B = E < A < D. 
 
76.  Picture the Problem: A brass plate has a circular hole whose diameter is slightly smaller than the diameter of an 

aluminum ball. 

 Strategy: The correct approach to get the ball through the hole depends upon the relative coefficients of thermal 
expansion. If the hole expands faster than the ball, the system should be heated. If the ball contracts faster than the hole, 
the system should be cooled. 

 Solution: 1. (a) The aluminum ball 6 1
A1( 24 10 K )α − −= ×  has a higher coefficient of thermal expansion than the brass 

( 6 1
brass 19 10 Kα − −= × ) hole. It will contract by a greater amount if it is cooled by the same amount as the brass.  

We conclude that the temperature of the system should be decreased in order for the ball to fit through the hole. 
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 2. (b) The best explanation is A. The aluminum ball changes its diameter more with temperature than the brass plate 

changes its dimensions, and therefore the temperature should be decreased. Statement B is false, and statement C 
ignores the fact that the aluminum ball would expand at a faster rate than the brass if the system were heated. 

 Insight: It would also be possible to get the ball through the hole if the brass plate were heated but the aluminum ball 
was kept at the same temperature or cooled. 

 
77.  Picture the Problem: An aluminum plate has a hole cut in its center. The plate 

expands as it is heated.  

 Strategy: The hole will expand at the same rate as the aluminum. Because the 
diameter of the hole is the length that is expanding, use the thermal expansion 
equation to calculate the diameter as a function of the increase in temperature. The 
coefficient of thermal expansion is given in Table 10.1. 

 Solution: 1. Solve the thermal expansion 
equation for the final diameter: ( )

i

i i i 1

d d d d T

d d d T d T

α
α α

Δ = − = Δ
= + Δ = + Δ

 

 
 2. Substitute the numerical values: ( )( )–5 11.178 cm 1+ 2.4 10  K 199.0 C 23.00 C 1.183 cmd −⎡ ⎤= × ° − ° =⎣ ⎦  

 Insight: The diameter of the hole expanded by 0.0050 cm or 50 μm, about the width of a human hair. 
 
78.  Picture the Problem: A steel beam changes in length as its temperature is changed.  

 Strategy: Solve the thermal expansion equation for the temperature difference required to change the length of  
5.5 m of steel by 0.0012 m. The coefficient of thermal expansion for steel is given in Table 10.1. 

 Solution: Solve for the 
temperature difference:  

( )( )

i

5 1
i

0.0012 m
18 K

1.2 10 K 5.5 m

L L T

L
T

L

α

α − −

Δ = Δ

Δ
Δ = = =

×
 

 Insight: The steel beam’s length will either increase by 1.2 mm if its temperature increases by 18°C, or the length will 
decrease by 1.2 mm if its temperature decreases by 18°C. 

 
79.  Picture the Problem: The diameter of a metal ball changes when its temperature is changed.  

 Strategy: Solve the thermal expansion equation for the coefficient of thermal expansion. Compare its value to those 
given in Table 10.1 to determine which metal it might be. 

 Solution: 1. Solve the thermal expansion 
equation for the coefficient: 

( )( )

i

5 1

i

0.0022 m
1.9 10  K

1.2 m 95 K

L L T

L

L T

α

α − −

Δ = Δ

Δ
= = = ×

Δ
 

 2. By comparing the value of the coefficient of thermal expansion with those listed in Table 10.1, we conclude that the 
metal is most likely to be brass. 

 Insight: A brass ball 1.20 m in diameter would have a volume of 0.905 m3 and a mass of 7740 kg, almost 8 metric tons!
 
80.  Picture the Problem: A steel bar has a larger diameter than an aluminum 

ring that must slip over the bar.  

 Strategy: Use the thermal expansion equation to calculate the temperature 
at which the ring’s inner diameter will equal the diameter of the bar. The 
coefficient of thermal expansion is given in Table 10.1. 

 Solution: 1. (a) The ring should be heated. The reasoning in Conceptual 
Example 10.5 explains how both the inside and outside diameters of the 
aluminum ring will expand according to the thermal expansion equation. 
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 2. (b) Solve the thermal expansion 

equation for the change in temperature: 0    
d

d d T T T T
d

α
α
ΔΔ = Δ ⇒ Δ = − =  

 
3. Solve for the final temperature: ( )( )

  

 

i 5 1
i

4.040 cm – 4.000 cm
10.00 C 430 C

2.4 10 K 4.000 cm

d
T T

dα − −

Δ
= + = ° + = °

×
 

 Insight: When the aluminum is heated to 430°C it will slip over the steel rod. As it cools back down it will shrink to 
form a tight bond with the steel. The melting point of aluminum is 660°C, so it will remain solid during the process. 

 
81.  Picture the Problem: When it is at room temperature, a stainless steel pot has the 

same diameter as the pot’s copper bottom. When the pot is heated, the steel 
expands faster than the copper, causing a difference in diameters. 

 Strategy: Use the given coefficients of expansion and the thermal expansion 
equation to calculate the diameter changes of the steel and copper when the 
temperature is 610°C. 

 Solution: 1. Write the thermal expansion 
equations for copper and steel:  

copper copper i

steel steel i

d d T

d d T

α
α

Δ = Δ

Δ = Δ

 

 2. Subtract the two differences:  ( )
( )( )( ) 

steel copper steel copper i

5 5 1

steel copper

1.73 10 1.70 10  K 21 cm 610 22 °C

0.0037 cm 37 m

d d d T

d d

α α

μ

− − −

Δ − Δ = − Δ

= × − × −

Δ − Δ = =

 

 Insight: Because the coefficients of expansion between stainless steel and copper are similar (less than 2% difference) 
the difference in expansion is small. If normal steel ( 5 11.2 10  Kα − −= × ) were used instead of stainless steel, the 
difference in diameters would be 0.062 cm, enough to break the pan apart. 

 
82. The temperature change of an object is given by .T Q mcΔ =  If two different objects receive the same amount of 

thermal energy Q, their temperature changes may still be different if their masses m or specific heat capacities c are 
different. Furthermore, any phase changes that occur for either substance will affect the temperature change. 

 
83. One kilocalorie of energy is the same as 4186 joules. Because the specific heat of water is 4186 J/(kg·°C), we conclude 

that the temperature of one kilogram of water will increase by 1.0°C when one kilocalorie of energy is added. 
 
84. Water has a very high specific heat, and the energy from the lighted match is insufficient to warm the water by very 

much. The water is also better than air at conducting the heat from the match flame away from the balloon’s surface. 
The water thus keeps the latex balloon’s temperature below its melting point, and the water-filled balloon does not 
burst. 

 
85.  Picture the Problem: A certain amount of thermal energy is transferred to 2 kg of aluminum, and the same amount of 

thermal energy is transferred to 1 kg of ice. 

 Strategy: The thermal energy exchanged will be the same for each object, but the temperature change T Q mcΔ =  of 

each object is inversely proportional to its heat capacity mc. 

 Solution: 1. (a) The heat capacity of the aluminum is ( )( )2 kg 900 J/kg K 1800 J/K ,mc = ⋅ = and the heat capacity of the 

ice is ( )( )1 kg 2090 J/kg K 2090 J/K.mc = ⋅ =  The aluminum, which has the smaller heat capacity mc, will have the 

greatest change in temperature. Thus, the increase in temperature of the aluminum is greater than the increase in 
temperature of the ice. 

 2. (b) The best explanation is A. Twice the specific heat capacity of aluminum is less than the specific heat capacity of 
ice, and hence the aluminum has the greater temperature change. Statement B is false because the mass of the aluminum 
is greater than that of the ice, and statement C is false because it ignores differences in heat capacities. 
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 Insight: Statement B also ignores the fact that the heat capacity of an object depends upon both its mass and its specific 

heat capacity, so the mass alone is not enough information with which to predict the temperature change for a given heat 
input. 

 
86.  Picture the Problem: You have 0.5 kg of isopropyl alcohol at the temperature 20°C in one container, and 0.5 kg of 

water at the temperature 30°C in a second container. The two fluids are then poured into the same container and allowed 
to come to thermal equilibrium. 

 Strategy: Use the principles of specific heat and conservation of energy to answer the conceptual question. 

 Solution: 1. (a) The heat capacity of the isopropyl alcohol a am c  is about half that of the water because the masses are 

the same but 1
a w2 .c c≅  The same amount of thermal energy that is removed from the warm water will enter the cool 

alcohol, but due to the smaller heat capacity the temperature of the alcohol increases more than the temperature of the 
water decreases ( T Q mcΔ = ). Therefore, the final temperature will be closer to the initial water temperature (30°C) 

than to the initial alcohol temperature (20°C); that is, the final temperature will be greater than 25°C. 

 2. (b) The best explanation is B. More thermal energy is required to change the temperature of water than to change the 
temperature of isopropyl alcohol. Therefore, the final temperature will be greater than 25°C. Statement A is false and 
statement C ignores the difference in the specific heat capacities of the water and the alcohol.  

 Insight: The final temperature would be 25°C only if the specific heat capacities of the two liquids were identical. 
 
87.  Picture the Problem: Thermal energy is removed from a piece of iron, causing its temperature to decrease. 

 Strategy: Solve the specific heat capacity equation for the final temperature of the iron. The specific heat of iron is 
given in Table 10.2. The value of Q is negative because thermal energy is removed from the iron. 

 
Solution: Solve the specific heat 
capacity for the final temperature:  ( )

( )[ ]  

f i

f i

66.2 J
26.5 C 25.5 C

0.141 kg 448 J (kg C)

Q Q
c

m T m T T

Q
T T

mc

= =
Δ −

−
= + = ° + = °

⋅°

 

 Insight: The relatively large specific heat of iron results in a small change in temperature. If the metal piece had been 
made of lead, with a specific heat of only 128 J/kg·K, the final temperature would have been 22.8°C. 

 
88.  Picture the Problem: Thermal energy is removed from a chunk of ice, resulting in a decrease in temperature. 

 Strategy: Use the specific heat capacity equation to find the thermal energy that must be removed to decrease the 
temperature. The specific heat of ice is given in Table 10.2. 

 Solution: Calculate the required thermal energy: ( )[ ]( ) 0.21 kg 2090 J (kg C) 7.5°C 3.3 kJQ mc T= Δ = ⋅° − = −

 Insight: The change in temperature is proportional to the heat removed. Doubling the heat removed would result in a 
temperature change of −15°C. 

 
89.  Picture the Problem: As thermal energy is added to an apple, its temperature increases. 

 Strategy: Use the specific heat equation to find the thermal energy necessary to increase the temperature. Because an 
apple is mostly water, use the specific heat of water, found in Table 10.1, to approximate that of an apple.  

 Solution: Calculate the thermal energy required: ( ) ( ) ( )0.15 kg 4186 J/ kg K 36 12 C 15 kJQ mc T= Δ = ⎡ ⋅ ⎤ − ° =⎣ ⎦  

 Insight: When you eat an apple, your body raises the apple’s temperature (roughly 20°C if it is at room temperature) to 
body temperature (roughly 37°C). The heat required to do this is 11 kJ, or 2.6 Calories.  

 
 

90.  Picture the Problem: The metabolic rate is the number of calories expended in bodily functions per second per 
kilogram.  

 Strategy: Multiply the metabolic rate by the person’s mass to calculate the calories expended per second. Multiply this 
result by 8.0 hours to calculate the calories expended in a full night’s sleep. 
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 Solution: Multiply together the  

metabolic rate, mass, and time: 
( ) ( )( )4 3600 s

2.6 10 Cal/ s kg 75 kg 8.0 h 560 Cal
h

− ⎛ ⎞⎡ ⎤× ⋅ =⎜ ⎟⎣ ⎦ ⎝ ⎠
 

 Insight: Extending this metabolic rate to a full day (24 hrs) shows that a person needs to consume a minimum of  
1680 Calories, on average, per day, in order to support their metabolic rate. 

 
 

91.  Picture the Problem: An exercise machine records work in units of Calories and time in minutes. We wish to calculate 
the rate at which work is done (power) in units of watts and horsepower. 

 Strategy: Divide the work by the time elapsed to calculate the power. Convert calories to joules and convert watts to 
horsepower to obtain the desired units. 

 Solution: 1. Divide the work  
by the time to calculate power: 

2.5 Cal 1 min 4186 J
116 W 0.12 kW

1.5 min 60 s Cal

E
P

t

Δ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠Δ
 

 
2. Convert to horsepower:  ( ) 1.0 hp

116.3 W 0.16 hp
746 W

P
⎛ ⎞= =⎜ ⎟⎝ ⎠

 

 Insight: The power expended on the machine is more than sufficient to light a 100-W light bulb. 
 
 

92.  Picture the Problem: Thermal energy is transferred from a hot horseshoe to cold water. This decreases the temperature 
of the horseshoe and increases the temperature of the water until the water and horseshoe are at the same equilibrium 
temperature. 

 Strategy: Thermal energy flows from the horseshoe to the water. Set the energy flow out of the horseshoe plus the 
energy flow into the water equal to zero (conservation of energy). The final temperature for both the horseshoe and  
the water is T. The initial temperature of the horseshoe is Th, and the initial temperature of the water is Tw. Therefore, 
the change in temperature, f i ,T T TΔ = − for the horseshoe is h ,T T TΔ = − and for the water it is w .T T TΔ = −  Solve the 

resulting expression for T. The specific heats of water and iron are given in Table 10.2. 

 Solution: 1. Apply conservation 
of energy by setting the sum of the 
energies equal to zero: ( ) ( )

horseshoe water

h h h w w w

0

0

Q Q

m c T T m c T T

+ =

− + − =
 

 2. Collect terms and rearrange 
to solve for T: 

h h w w h h h w w w

h h h w w w

h h w w

m c T m c T m c T m c T

m c T m c T
T

m c m c

+ = +
+

=
+

 

 

3. Substitute the numerical values: 

( )[ ]( )
[ ]( )

( )[ ] ( )[ ]

 

 

 

0.50 kg 448 J (kg C) 450 C

25 kg 4186 J (kg C) 23 C
24 °C

0.50 kg 448 J (kg C) 25 kg 4186 J (kg C)
T

⎡ ⋅° ° ⎤
⎢ ⎥
+ ⋅° °⎢ ⎥⎣ ⎦= =

⋅° + ⋅°
 

 Insight: The temperature change of the water is only 1°C while the temperature change of the horseshoe is 426°C. This 
is due to the smaller mass and smaller specific heat capacity of the iron when compared with the water.  

 
 

93.  Picture the Problem: Thermal energy transfers from a hot lead ball to cool water, causing the lead to cool and the 
water to heat up. Eventually the water and lead will have the same equilibrium temperature. 

 Strategy: Thermal energy flows from the ball to the water. Set the energy flow out of the ball plus the energy flow into 
the water equal to zero (conservation of energy). The final temperature for both the ball and the water is T. The initial 
temperature of the ball is Tb, and the initial temperature of the water is Tw. Therefore, the change in temperature,  

f i ,T T TΔ = − for the ball is b ,T T TΔ = − and for the water it is w .T T TΔ = − Solve the resulting expression for T. The 

specific heats of water and lead are given in Table 10.2.

 

 

 Solution: 1. Apply conservation 
of energy by setting the sum of the 
energies equal to zero: ( ) ( )

ball water

b b b w w w

0

0

Q Q

m c T T m c T T

+ =

− + − =
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 2. Collect terms and 

rearrange to solve for T: 
b b w w b b b w w w

b b b w w w

b b w w

m c T m c T m c T m c T

m c T m c T
T

m c m c

+ = +
+

=
+

 

 

3. Substitute the numerical values: 

( )[ ]( )
[ ]( )

( )[ ] ( )[ ]

 

 

 

0.235 kg 128 J (kg C) 84.2 C

0.177 kg 4186 J (kg C) 21.5 C
23.9 C

0.235 kg 128 J (kg C) 0.177 kg 4186 J (kg C)
T

⎡ ⋅° ° ⎤
⎢ ⎥
+ ⋅° °⎢ ⎥⎣ ⎦= = °

⋅° + ⋅°
 

 Insight: Because the specific heat of water is greater than the specific heat of lead, the final temperature is much closer 
to the initial temperature of the water. 

 
94.  Picture the Problem: As hot silver pellets are dropped into a container of cool water, heat transfers from the pellets to 

the water. This results in a decrease in the temperature of the pellets and an increase in the temperature of the water. 

 Strategy: Use conservation of energy to set the sum of the thermal energy lost by the silver and the thermal energy 
gained by the water equal to zero. Solve the resulting equation for the mass of the silver that gives a final temperature  
of 25°C. Divide the resulting mass by the mass of each silver pellet to calculate the number of pellets needed. For the 
copper pellets, repeat the same calculation, but substitute the specific heat of copper. The specific heats of water, silver, 
and copper are found in Table 10.2. 

 Solution: 1. (a) Set the net heat transfer to zero: 

( ) ( )
Ag w

Ag Ag Ag w w w

0

0

Q Q

m c T T m c T T

+ =

− + − =

 

 
2. Solve for the mass of silver: 

( )
( )

( ) ( )
( ) ( )

w w w
Ag

Ag Ag

0.220 kg 4186 J/ kg K 14 25 C
0.722 kg

234 J/ kg K 25 85 C

m c T T
m

c T T

−
=

−

⎡ ⋅ ⎤ − °⎣ ⎦= =
⎡ ⋅ ⎤ − °⎣ ⎦

 

 
3. Divide by the mass of one pellet:  Ag 2

pellet

0.722 kg
722 pellets 7.2 10  pellets

0.0010 kg

m
n

m
= = = = ×  

 4. (b) Copper has a higher specific heat capacity, which implies that the same mass of copper will transfer more thermal 
energy than is needed, so the required number of pellets would decrease. 

 
5. (c) Solve the conservation of energy  
equation for the mass of copper: 

( )
( )

( ) ( )
( ) ( )

w w w
Cu

Cu Cu

(0.220 kg) 4186 J/ kg K 14 25 C
0.436 kg

387 J/ kg K 25 85 C

m c T T
m

c T T

−
=

−

⎡ ⋅ ⎤ − °⎣ ⎦= =
⎡ ⋅ ⎤ − °⎣ ⎦

 

 
6. Divide by the mass of one pellet:  2Cu

pellet

0.436 kg
436 pellets 4.4 10  pellets

0.0010 kg

m
n

m
= = = = ×  

 Insight: The amount of thermal energy needed to increase the water’s temperature does not depend on whether silver or 
copper pellets provide the energy. Because the copper has a higher specific heat, each pellet is able to transfer more heat 
to the water, so fewer copper pellets are needed. 

 
95.  Picture the Problem: A hot object is immersed in water in an aluminum calorimeter cup. Heat transfers from the hot 

object to the cold water and cup, causing the temperature of the object to decrease and the temperature of the water and 
aluminum cup to increase.  

 Strategy: Assume that thermal energy is only transferred between the water, cup, and object, and use conservation of 
energy to set the net heat transfer to zero. Solve the resulting expression for the specific heat capacity of the unknown 
object, and use Table 10.2 to identify its composition. 
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 Solution: 1. Let 0Q =∑   

and solve for object .Q  Use the 

specific heat equation to expand 
the resulting expression: 

( )
( )

object w Al

object w Al

object object object w w Al Al w

0 Q Q Q

Q Q Q

m c T m c m c T

= + +

= − +

Δ = − + Δ

 

 
2. Solve for the specific heat  
of the object and substitute the 
numerical values: 

( )( )
( )
[ ] [ ]( )( )

( )( )
 

 

w w Al A1 w
object

object object

object

0.103 kg 4186 J (kg C) 0.155 kg 900 J (kg C) 22 20 °C

0.0380 kg 22.0 100 °C

385 J (kg C)

m c m c T T
c

m T T

c

− + −
=

−

− ⋅° + ⋅° −
=

−

= ⋅°

 

 3. Look up the specific  
heat in Table 10.2:  The object is made of copper. 

 Insight: It is important to include the effect of the aluminum cup in this calculation. If the contribution of the cup were 
excluded, the specific heat of the object would have been calculated as 291 J/(kg °C). 

 
 

96.  Picture the Problem: As coffee and cream are poured and mixed in a 
ceramic cup, thermal energy is transferred between the three objects 
until they have the same equilibrium temperature. 

 Strategy: Set the net heat transfer by the coffee, cream, and cup equal 
to zero because no heat leaves the system. Then use the specific heat 
equation to solve for the equilibrium temperature. The specific heat of 
ceramic is given in the problem. Use the specific heat of water (from 
Table 10.2) for the specific heat of the coffee and cream.

 

  
 Solution: 1. Set the sum  

of the heats equal to zero:  ( ) ( ) ( )
( ) ( )

cup cof crm

cup cup cup cof w cof crm w crm

cup cup cof crm w cup cup cup cof cof crm crm w

0

0

Q Q Q

m c T T m c T T m c T T

T m c m m c m c T m T m T c

= + +

= − + − + −

⎡ ⎤ ⎡ ⎤= + + − + +⎣ ⎦ ⎣ ⎦

 

 
2. Solve for the equilib- 
rium temperature: 

( )
( )

( )[ ]( )
( )( ) ( )( ) [ ]

( )[ ] ( )[ ]

cup cup cup cof cof crm crm w

cup cup cof crm w

0.116 kg 1090 J (kg C) 24.0 C

0.225 kg 80.3 C 0.0122 kg 5.00 C 4186J (kg C)
70.5 C

0.116 kg 1090 J (kg C) 0.225 kg 0.0122 kg 4186J (kg C)

m c T m T m T c
T

m c m m c

+ +
=

+ +

⎧ ⋅° ° ⎫⎪ ⎪
⎨ ⎬

+ ⎡ ° + ° ⎤ ⋅°⎪ ⎪⎣ ⎦⎩ ⎭= = °
⋅° + + ⋅°

 

 Insight: The comparatively large heat capacity mc of the coffee, compared with the smaller heat capacities mc of the 
cream and cup, causes the equilibrium temperature to be much closer to the initial temperature of the coffee than to the 
initial temperature of the cream or cup. 

 
 

97. A fan can make you feel cooler on a hot day for two reasons. First, the moving air carries thermal energy from your skin 
by a process similar to convection. (It is more precisely called advection.) More importantly, the moving air accelerates 
the evaporation of moisture from your skin, carrying away the latent heat of vaporization and cooling your body. 

 
 

98. The isopropyl alcohol evaporates readily, carrying away the latent heat of vaporization from the body. 
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99.  Picture the Problem: Water, initially at the freezing point, freezes to ice. 

 Strategy: Examine the properties of an equilibrium mixture of water and ice at the freezing point. During a phase 
change the temperature remains constant. Adding thermal energy during the phase change converts ice to water, but 
extracting thermal energy converts water to ice.  

 Solution: The answer is (d) a removal of thermal energy from the water. Removing the latent heat of fusion from the 
water will cause it to freeze if it is at the freezing point temperature. 

 Insight: Water is unusual because the freezing process is also accompanied by an increase in volume. This makes ice 
less dense than water, and causes ice to float at the surface. 

 
 

100. An equilibrium mixture of ice and water maintains a constant temperature of 0°C. Therefore, as long as some ice 
remains in equilibrium with the water, the resulting temperature of the system is equal to 0°C. 

 
 

101.  Picture the Problem: Heat is removed from four liquids that are at their freezing temperature, and they each solidify 
completely. The amount of heat that must be removed, Q, and the mass, m, of each of the liquids is given. 

 Strategy: Use fL Q m= (the latent heat equation) to determine the ranking of the latent heats of fusion. 

 
Solution: 1. Find Lf,A and Lf,B: 5 5A B

f, A f, B
A B

16,600 J 3,150 J
= = 3.3 10  J/kg,  and  = = 1.3 10  J/kg

0.050 kg 0.025 kg

Q Q
L L

m m
= × = ×  

 
2. Find Lf,C and Lf,D: 

5 5C D
f,C f, D

C D

3,350 J 5,400 J
= = 3.4 10  J/kg,  and  = = 1.1 10  J/kg

0.010 kg 0.050 kg

Q Q
L L

m m
= × = ×  

 3. By comparing the values of the latent heats we arrive at the ranking D < B < A < C. 

 Insight: A large latent heat of fusion corresponds to a material that is difficult to melt, requiring a large amount of heat 
Q to melt a small amount of mass m. Such a material typically has very strong attractive forces between its molecules. 

 
 

102.  Picture the Problem: The liquid vapor curve shows the 
relationship between the vapor pressure and boiling point 
temperature of water. 

 Strategy: Examine the graph to find at what pressure the 
boiling point is 30°C. 

 Solution: The pressure is about 4.2 kPa. 

 Insight: Note from the graph that the vapor pressure increases 
as the temperature increases. This is why the boiling point is 
low on a mountaintop, where the pressure is low. 

 
 

103.  Picture the Problem: The liquid vapor curve shows the 
relationship between the vapor pressure and boiling point 
temperature of water. 

 Strategy: Examine the graph to find at what temperature 
water boils when the vapor pressure is 1.5 kPa: 

 Solution: The temperature is about 13°C. 

 Insight: Note from the graph that the boiling temperature 
increases as the vapor pressure increases. This is why the boiling 
point is low on a mountaintop, where the pressure is low. 
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104.  Picture the Problem: Ice is made by extracting heat from water that is initially at 0°C. 

 Strategy: Use the latent heat equation to find the thermal energy that must be extracted from the water to freeze it.  

 Solution: Calculate the thermal energy to extract: ( )( )4 5
f 1.7 kg 33.5 10  J/kg 5.7 10  JQ mL= = × = ×  

 Insight: The same amount of heat flowing into the ice at 0°C will convert it back to water. 
 
 

105.  Picture the Problem: Thermal energy is added to lead at its melting point to convert it from solid to liquid. 

 Strategy: Use the latent heat equation to calculate the thermal energy needed to melt the piece of lead. 

 Solution: Calculate the required heat: ( )( )4 4
f 0.95 kg 2.32 10  J/kg 2.2 10  J 22 kJQ m L= = × = × =  

 Insight: Extracting this same amount of heat from the liquid lead will convert it back to a solid. 
 
 

106.  Picture the Problem: As thermal energy is added 
to ice initially at −12°C, the heat first increases the 
temperature to the melting point, then melts the ice, 
and finally raises the temperature of the melted 
water to 24°C.  

 Strategy: Set the total heat equal to the sum of the 
heat needed to (i) raise the ice to the melting point, 
(ii) melt the ice, and (iii) increase the water to the 
final temperature. Solve the resulting equation for 
the mass. 

 Solution: 1. Sum the heats using the 
appropriate expressions: ( ) ( )

( ) ( )

i ii iii

ice f water1 2

ice f water1 2

Q Q Q Q

mc T mL mc T

Q m c T L c T

= + +
= Δ + + Δ

⎡ ⎤= Δ + + Δ⎣ ⎦

 

 
2. Solve for the mass: ( ) ( )

[ ]( ) [ ]( )  

ice f water1 2

5

4

8.8 10  J

2090 J (kg C) 12 °C 33.5 10 J/kg 4186 J (kg C) 24 °C

1.9 kg

Q
m

c T L c T

m

=
Δ + + Δ

×
=

⋅° + × + ⋅°

=

 

 Insight: From the mass we can calculate the amount of thermal energy used in each of the three processes: 

i 47.9 kJ, Q = ii 640 kJ, Q = and iii 192 kJ. Q =  Most of the thermal energy is needed to melt the ice. 
 
 

107.  Picture the Problem: As a specified amount of heat is added to ice initially at −5.0°C, the heat first increases the 
temperature to the melting point, then melts the ice, and finally raises the water to its final temperature. 

 Strategy: Use the specific heat equation to calculate the amount of thermal energy necessary to raise the temperature  
to the melting point. Use the latent heat equation to calculate the amount of thermal energy necessary to melt the ice. 
Subtract these two amounts of energy from the total thermal energy available. Insert the remainder of the thermal 
energy into the specific heat equation to calculate the final temperature of the water. 

 Solution: 1. Calculate the thermal energy 
necessary to raise the ice to the melting point: 

( )[ ]( ) 
4

1 ice 1.1 kg 2090 J (kg C) 5.0 C 1.15 10  JQ mc T= Δ = ⋅° ° = ×  

 2. Calculate the heat necessary to melt the ice: ( )( )4 5
2 f 1.1 kg 33.5 10  J/kg 3.685 10  JQ m L= = × = ×  
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 3. Subtract the thermal energies from the total 

thermal energy that is added to the system: 
   

3 total 1 2

5 4 5 55.2 10 J 1.15 10 J 3.685 10 J 1.40 10  J

Q Q Q Q= − −

= × − × − × = ×

 

 4. Solve the specific heat equation for fT : 

( )[ ]  

3 water f

5
3

f
water

( 0 C)

1.40 10  J
30 °C

1.1 kg 4186 J (kg C)

Q mc T

Q
T

mc

= − °

×
= = =

⋅°

 

 5. No ice remains because f 0 C.T > °  

 Insight: If the heat added to the system had been only 53.0 10  J,× the result of step 3 above would have been a  

negative number (not possible). This would mean that only part of the ice melted. The final temperature would be 0°C, 
with 0.86 kg of water and 0.24 kg of ice remaining in the system.  

 
 

108.  Picture the Problem: A large barrel of warm water gives off heat as it cools and freezes to ice. This thermal energy is 
compared to the thermal energy from an electric heater. 

 Strategy: Use the specific heat and latent heat equations to calculate the amount of thermal energy lost by the water as 
it cools and freezes. Use the definition of power to find the time it would take an electric heater with a power output of 
2.00 kW to produce the same amount of energy.

 

 

 Solution: 1. Calculate the thermal 
energy lost by the water: 

( )
( ) ( )( )

water water f water f

4 8

20.0 C 0 C

865 kg 4186 J kg K 20.0 C 33.5 10 J/kg 3.62 10  J

Q mc T mL m c L= Δ + = ⎡ ° − ° + ⎤⎣ ⎦
⎡ ⎤= ⋅ ° + × = ×⎣ ⎦

 

 
2. Solve the power equation for time: 

8
53.62 10  J 1 hr

   1.81 10  s 50.3 hrs
2000 J/s 3600 s

Q Q
P t

t P

× ⎛ ⎞= ⇒ = = = × =⎜ ⎟⎝ ⎠
 

 Insight: Storing water in a pantry helps to keep the produce from freezing during the winter. It also helps to keep the 
pantry cool during the summer. 

 
 

109.  Picture the Problem: Thermal energy is added at a constant rate to ice initially at 0°C. Over time the heat melts the ice 
and raises the water temperature to 15°C. 

 Strategy: Calculate the time required for each step of the heating process by dividing the thermal energy added in that 
process by the rate at which the thermal energy is added.  

 Solution: 1. Solve for  
the time to melt the ice: 

( )4

melt f
melt

1.000 kg 33.5 10  J/kg
27.3 s

/ / 12,250 J/s

Q m L
t

Q t Q t

×
= = = =

Δ Δ Δ Δ
 

 2. Solve for the time to  
heat the water to 15°C: 

( )[ ]( ) 

warm

1.000 kg 4186 J (kg C) 15 0 °C
5.1 s

/ 12,250 J/s

mc T
t

Q t

⋅° −Δ
= = =

Δ Δ
 

 3. Add the time to melt the ice  
to the time to heat the water: AC AB BC 27.3 s 5.1 s 32.4 st t t= + = + =  

 Insight: The thermal energy required to boil the water is significantly greater than the heat needed to melt the same 
amount of ice or to increase the temperature of the water from freezing to boiling. 

 
 

110.  Picture the Problem: Ice cubes are placed in a bowl of lemonade. Thermal energy transfers from the lemonade to the 
ice, causing the ice to melt, until the ice and lemonade arrive at the same temperature. 

 Strategy: Assume that all of the ice melts and that the lemonade and melted ice arrive at an equilibrium temperature 
between 0° and 20.5°C. The thermal energy absorbed by the ice will raise its temperature to 0°C, melt it, and then raise 
the temperature of the melted water to the equilibrium temperature. Set the amount of thermal energy absorbed by the 
ice equal to the amount of thermal energy given off by the lemonade as it cools to the same final temperature. Solve the 
resulting equation for the final temperature. 
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 Solution: 1. Use the specific heat and 

latent heat equations to calculate the 
thermal energy gained by the ice: 

( )
( ) ( ) ( )( )

 

 

i ice ice ice ice f ice w f

4
ice w f

i ice w f

0 °C

0.0550 kg 2090 J/ kg K 10.2 °C 33.5 10  J/kg

19.6 kJ

Q m c T m L m c T

m c T

Q m c T

= Δ + + −

= ⎡ ⋅ ⎤ + × +⎣ ⎦
= +

 

 2. Calculate thermal energy 
lost by the lemonade: 

( )w lem w f20.5 C –Q m c T= °  

 3. Set the two energies equal: ( )i w ice w f lem w f    19.6 kJ 20.5 C Q Q m c T m c T= ⇒ + = ° −  

 
4. Solve for the final temperature: 

( )
( )

( )[ ]( )
( )[ ]

 

 

4
lem w

f
ice lem w

4

20.5°C –1.960 10  J

3.99 kg 4186 J (kg C) 20.5 C –1.960 10  J
19.1°C

0.0550 kg 3.99 kg 4186 J (kg C)

m c
T

m m c

×
=

+

⋅° ° ×
= =

+ ⋅°

 

 5. Because the temperature is greater than 0°C, we conclude that no ice remains in the lemonade. 

 Insight: The final temperature falls within our assumed range. If the temperature calculated by this method had been 
less than 0°C, then our assumption that the ice had completely melted would have been incorrect. We would then need 
to reevaluate our strategy to solve for the amount of ice that had melted. 

 
 

111.  Picture the Problem: A cube of very cold aluminum is placed into a container of water. Heat transfers from the warm 
water to the cold aluminum until the two are in equilibrium. 

 Strategy: Assume that the final temperature is  f 0 C,T = ° with part of the water frozen into ice. Use the specific heat 

equation to calculate the amount of thermal energy the aluminum absorbs as it heated up to 0°C. Subtract from that 
thermal energy the amount of heat the water gives off as it cools to 0°C. Finally, use the latent heat equation to calculate 
the mass of ice that freezes as the aluminum absorbs the remaining thermal energy. 

 Solution: 1. Calculate the thermal energy 
gained by the aluminum as it warms up: 

( )
( )[ ] ( )

A1 Al Al f Al,i

0.155 kg 653 J (kg C) 0 C– –196 C 19,838 J

Q m c T T= −

= ⋅° ⎡ ° ° ⎤ =⎣ ⎦

 

 2. Calculate the thermal energy removed 
from water as it cools to freezing:  ( )[ ]( ) 

w w w

0.0800 kg 4186 J (kg C) 0 15.0 C 5023 J

Q m c T= Δ
= ⋅° − ° = −

 

 3. Apply energy conservation to find 
the thermal energy removed from the 
water as it freezes:  ( )

Al w f

f Al w

0

19,838 J 5023 J 14,815 J

Q Q Q

Q Q Q

+ + =
= − − = − − − = −

 4. Divide the thermal energy by the 
latent heat of fusion to calculate the 
mass of the water that freezes to ice: 

f
f 4

f

14,815 J
44.2 g

33.5 10  J/kg

Q
m

L
= = =

×
 

 Insight: Because the mass of water that is frozen is greater than zero but less than the total mass of the water 
( 0 < 44.2 g < 80.0 g ), our assumption was correct that the final temperature would be zero and some, but not all, of the 

water would be frozen to ice. If the calculations gave a mass less than zero, we would have to reevaluate our strategy to 
calculate a final temperature greater than zero. If the calculation gave us a mass greater than the total mass of the water, 
we would reevaluate the strategy to find a temperature less than zero and all of the water frozen to ice. 

 
112. Thermal energy exchange between the Sun and the Earth is mediated by electromagnetic waves that travel through the 

vacuum of space. This kind of thermal energy transfer is called radiation.  
 
113.  Picture the Problem: A steel tape measure is marked in such a way that it gives accurate length measurements at a 

normal room temperature of 20°C. This tape measure is used outdoors on a cold day when the temperature is 0°C.  

 Strategy: Use the principle of thermal expansion to answer the conceptual question. 



Chapter 10: Temperature and Heat  Pearson Physics by James S. Walker 

 

Copyright © 2014 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No 
portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

10 – 24 

 
 Solution: The measurements of the tape measure are too long because the distance between tick marks on the measure 

has decreased. Therefore, the cool tape measure shows more tick marks between two points than should be the case.  

 Insight: The thermal expansion coefficient for steel is only 12×10−6 K−1. This means that an object that is 25.000 cm 
long will measure 25.006 cm on the cold 0°C day. The difference is barely noticeable.  

 
114.  Picture the Problem: Consider the vapor pressure curve of water depicted 

in Figure 10.28 and shown at the right. 

 Strategy: Locate the mentioned points on the vapor pressure curve in 
order to answer the conceptual questions. The points mentioned in part (a) 
are shown in green, and the points mentioned in part (b) are shown in blue.

 Solution: 1. (a) At 20°C the points corresponding to 1 kPa and 2 kPa  
are below the vapor pressure curve, in the gas region, so water is a gas  
at those temperatures and pressures. At 20°C and 3 kPa the point is above 
the vapor pressure curve, and water is a liquid at that temperature and 
pressure.  

 2. (b) The boiling point of water is the temperature that corresponds to the point along the vapor pressure curve that is at 
the specified pressure (see the blue dots on the figure above). At a pressure of 1 kPa the boiling point of water is about 
7°C. At 2 kPa the boiling point is about 18°C, and at 3 kPa it is 24°C.  

 Insight: These extremely low pressures correspond to very high altitudes, near the edge of outer space. The atmospheric 
pressure at the top of Mt. Everest is 33.6 kPa and the boiling point of water there is 71°C (160°F). 

 
115.  Picture the Problem: A copper ring stands on edge with a metal rod placed inside 

it, as shown in the figure at right. The system is then heated. 

 Strategy: Use the principle of thermal expansion to answer the conceptual question.

 Solution: 1. (a) The length of the metal rod and the diameter of the copper ring will 
each increase as the system is heated. If the coefficient of thermal expansion for the 
metal is larger than that of copper, the rod will expand faster than the ring and the 
two will touch. For a copper rod and a copper ring the coefficients of thermal 
expansion are identical and no, the rod will never touch the top of the ring.   

 2. (b) For an aluminum rod the coefficients of thermal expansion are 6 1
A1 24 10 Kα − −= ×  and 6 1

Cu 17 10 K .α − −= ×  The 

rod will expand faster than the ring and yes, it will eventually touch the top of the ring (provided neither melts first!). 

 3. (c) For a steel rod the coefficients of thermal expansion are 6 1
steel 12 10 Kα − −= ×  and 6 1

Cu 17 10 K .α − −= ×  The ring 

will expand faster than the rod and no, the rod will never touch the top of the ring. 

 Insight: If you could somehow heat the steel rod without heating the copper ring, it would eventually expand enough to 
touch the top of the ring.  

 
116.  Picture the Problem: This is a units conversion problem. 

 Strategy: Convert the Celsius temperature to the Fahrenheit temperature. 

 
Solution: Convert the temperature to Fahrenheit: ( )F C

9 9°F
32 121°C 32°F 250°F

5 5°C
T T= + = + =  

 Insight: As expected, this temperature is slightly above the boiling point of water (212°F) at atmospheric pressure. 
 
 

117.  Picture the Problem: Heat is removed from two liquids that are at their freezing temperature, and they each solidify 
completely. The amount of heat that must be removed, Q, and the mass, m, of each of the liquids is given. 

 Strategy: Use fL Q m= (the latent heat equation) to determine the ranking of the latent heats of fusion. 
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Solution: 1. Use the latent heat equation to find Lf,A: 5A
f, A

A

33,500 J
= = 3.35 10  J/kg

0.100 kg

Q
L

m
= ×  

 
2. Use the latent heat equation to find Lf,B: 5B

f, B
B

166,000 J
= = 3.32 10  J/kg

0.500 kg

Q
L

m
= ×  

 3. By comparing the values of the latent heats we conclude that the latent heat of fusion of liquid A is greater than the 
latent heat of fusion of liquid B. 

 

 Insight: A large latent heat of fusion corresponds to a material that is difficult to melt, requiring a large amount of heat 
Q to melt a small amount of mass m. Such a material typically has very strong attractive forces between its molecules. 

 
118.  Picture the Problem: A new laptop design removes heat by vaporizing methanol. 

 Strategy: Use the latent heat equation to calculate the latent heat of vaporization for methanol. 

 
Solution: Calculate the latent heat of vaporization: 6

v

5100 J
1.1 10  J/kg

0.0046 kg

Q
L

m
= = = ×  

 Insight: The latent heat of vaporization for water (2.26×106 J/kg) is about twice that of methanol. However, the boiling 
point of methanol is only 65°C, making it a better choice to keep the laptop components cool. 

 
119.  Picture the Problem: Various heats will change the temperatures of different materials by differing amounts. 

 Strategy: Use the specific heat equation c Q m T= Δ  to determine the ranking of the specific heats. 

 
Solution: 1. Find cA: A

Q
c

m T
=

Δ
 2. Find cB: ( )( )B

2 2

3 3 9

Q Q
c

m T m T
= =

Δ Δ
 

 
3. Find cC: ( )C

3

3

Q Q
c

m T m T
= =

Δ Δ
 4. Find cD: ( )( )D

4 1

4 2 2

Q Q
c

m T m T
= =

Δ Δ
 

 5. By comparing the specific heats we arrive at the ranking B < D < A = C. 

 Insight: A large specific heat corresponds to a material that does not easily change its temperature, requiring a large 
amount of heat Q to change its temperature by a small amount. 

 
120.  Picture the Problem: Thermal energy is added to a container of water at a known rate, causing the temperature of the 

water to increase. 

 Strategy: Find out how much thermal energy is added to the water by multiplying the rate at which the energy is added 
by the amount of time. Then use the specific heat equation to calculate the temperature change that results from the 
addition of the thermal energy.  

 Solution: 1. Calculate the thermal 
energy gained by the water: ( )( )   55 J/s 2.5 min 60 s/min 8250 J

Q
P Q P t

t
= ⇒ = = × =  

 2. Use the specific heat equation to 
find the temperature change: 

( )[ ]  

water water

water
water

8250 J
13°C

0.150 kg 4186 J (kg C)

Q mc T

Q
T

mc

= Δ

Δ = = =
⋅°

 

 Insight: 150 g of water is about 2/3 of a cup. A microwave oven would be a much more efficient way to heat this small 
amount of water, because many microwave ovens can deliver over 1000 J/s of heating power. 

 
121.  Picture the Problem: Thermal energy is added to a container of water, causing the temperature of the water to increase.

 Strategy: Find out how much thermal energy is added to the water by using the specific heat equation. Then divide by 
the time elapsed to find the heating rate.  

 Solution: 1. Use the specific heat 
equation to find the thermal 
energy that is added: 

( )[ ]( ) 

water water

0.180 kg 4186 J (kg C) 12 °C 9042 J

Q mc T= Δ
= ⋅° =
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 2. Divide by the time elapsed 

to find the heating rate: ( )
9042 J

= 43 J/s
3.5 min 60 s/min

Q
P

t
= =

×
 

 Insight: 180 g of water is about 3/4 of a cup. A microwave oven would be a much more efficient way to heat this small 
amount of water, because many microwave ovens can deliver over 1000 J/s of heating power. 

 
 

122.  Picture the Problem: Heat is extracted from 1.5 kg of steam at 110°C to completely convert it to ice at 0.0°C.  

 Strategy: Use the specific heat and latent heat equations to calculate the thermal energy extracted from the steam  
as it cools and condenses to water and then to ice.  

 Solution: Sum the heat lost  
by the steam as it:  
i) cools to the boiling point,  
ii) condenses to water,  
iii) cools to the freezing point, and  
iv) solidifies to ice. 

( ) ( )
( ) ( )
[ ]( )

[ ]( )

steam v w f

steam v w f

5

4

110 C 100 C 100 C 0 C

10 C 100 C

2010 J (kg C) 10 C 22.6 10 J/kg
1.5 kg 4.6 MJ

4186 J (kg C) 100 C 33.5 10 J/kg

Q mc mL mc mL

m c L c L

Q

= ° − ° + + ° − ° +

= ⎡ ° + + ° + ⎤⎣ ⎦
⎧ ⎫⋅° ° + ×⎪ ⎪= =⎨ ⎬

+ ⋅° ° + ×⎪ ⎪⎩ ⎭

 

 Insight: An energy of 4.6 MJ is equivalent to 1100 nutritional Calories. 
 
 

123.  Picture the Problem: A solar-powered water heater delivers thermal energy at a known rate to some water, raising the 
temperature of the water.  

 Strategy: Multiply the area of the solar collector by the intensity of the sunlight to find the total rate at which thermal 
energy is added to the water. Use the specific heat equation to find the thermal energy required to warm up the water, 
then divide the thermal energy by the rate at which it is added in order to find the required time to heat the water.  

 Solution: 1. Find the rate at which 
thermal energy is added to the water: ( )( )2 2520 W/m 5.5 m 2860 W

Q t
I Q t I A

A

Δ Δ= ⇒ Δ Δ = = =  

 2. Calculate the required 
amount of thermal energy: 

( )[ ]( ) 
6

w 45 kg 4186 J (kg C) 12 °C 2.26 10  JQ mc T= Δ = ⋅° = ×  

 
3. Find the required time: 

62.26 10  J
790 s 13.2 min

2860 W

Q
t

Q t

×
Δ = = = =

Δ Δ  

 Insight: While you cannot rely entirely on solar energy for water heating, a solar water heating system can significantly 
reduce your heating bill and pay for itself within a few years. 

 
 

124.  Picture the Problem: Thermal energy is added to a mixture of ice and water at 0°C until all of the ice melts and the 
temperature of the water increases to 15.0°C. 

 Strategy: Use the latent heat equation to calculate the amount of thermal energy necessary to melt the ice. Then use  
the specific heat equation to calculate the amount of thermal energy necessary to raise the temperature of the water 
(both the original water and the melted ice) to 15.0°C. Add the two energies together to find the total amount of thermal 
energy that must be added to the system. 

 Solution: 1. Calculate the thermal 
energy necessary to melt the ice: 

( )( )4 4
1 f 0.130 kg 33.5 10  J/kg 4.36 10  JQ m L= = × = ×  

 2. Calculate the thermal energy necessary 
to warm the entire 1.25 kg of water: 

( )[ ]( ) 2 water

4

1.25 kg 4186 J (kg C) 15.0 C

7.85 10  J

Q mc T= Δ = ⋅° °

= ×
 

 3. Add the thermal energies: 4 4
1 2

5

4.36 10  J 7.85 10  J

1.22 10  J

Q Q Q= + = × + ×

= ×
  

 Insight: If the heat added to the system had been less than 44.36 10  J,× some (but not all) of the ice would have melted 
and the final temperature of the system would have remained 0°C.  
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125.  Picture the Problem: A steel rod is slightly smaller than the diameter of a hole in 

an aluminum plate. We must either heat or cool the rod and plate until the length of 
the rod is equal to the diameter of the hole. 

 Strategy: If the steel has a larger coefficient of thermal expansion than the 
aluminum, it will expand faster than the aluminum as the system is heated and 
touch both sides of the circle. If aluminum has the larger coefficient, the system 
should be cooled. Solve the thermal expansion equation for the length of the rod 
and the diameter of the hole as a function of temperature. Set the two lengths equal 
and solve for the temperature. 

 Solution: 1. (a) Because aluminum has a larger coefficient of thermal expansion 
than steel, the temperature of the system should be decreased. 

 2. (b) Write the lengths as a  
function of temperature:  

i steel i

i A1 i

L L L T

D D D T

α
α

= + Δ

= + Δ
 

 3. Set the length of the rod equal  
to the diameter of the hole: 

i steel i i A1 i

L D

L L T D D Tα α
=

+ Δ = + Δ  

 
4. Solve for the change in temperature:  

( )( ) ( )( )
 

i i

steel i A1 i

5 1 5 1

0.100 m 0.0999 m

1.2 10  K 0.0999 m 2.4 10  K 0.100 m

83°C

D L
T

L D

T

α α

− − − −

−
Δ =

−

−
=

× − ×

Δ = −

 Insight: If the rod were aluminum and the plate were steel, they would have to be heated by 84°C for the rod to be the 
same size as the hole. 

 
 

126.  Picture the Problem: Both a warm piece of steel and a chunk of lead are added to an isolated container of water, but 
the temperature of the water remains the same. 

 Strategy: Because the water temperature remains the same, we conclude that any thermal energy added by the warm 
steel is absorbed by the chunk of lead. Both the steel and the lead have final temperatures equal to 22°C, the same  
as the water. Set the thermal energy change of the system equal to zero and solve for the initial temperature of the lead. 

 Solution: 1. (a) Because the water temperature remains the same, we conclude that any thermal energy added by the 
warm steel is absorbed by the chunk of lead. That implies that the initial temperature of the lead was less than 22°C. 

 2. (b) Apply conservation of energy by setting the 
sum of the thermal energies to zero: 

( ) ( )  

steel lead

steel steel steel lead lead lead

steel steel i, steel lead lead i, lead

0

22 °C 22 °C

Q Q

m c T m c T

m c T m c T

+ =
Δ = − Δ

− = − −

 

 3. Rearrange and solve for i, lead :T  ( ) ( )
( ) ( )

( )[ ]( )
( )[ ]( )

( )

  

  

 

 

steel steel i, steel lead lead lead lead i, lead

steel steel i, steel lead lead

i, lead
lead lead

22 °C 22 °C

22 °C 22 °C

0.33 kg 448 J (kg C) 22 42 °C

0.51 kg 128 J (kg C) 22 °C

0.51 kg 128 J (kg

m c T m c m c T

m c T m c
T

m c

− + =

− +
=

⎡ ⋅° − ⎤
⎢ ⎥
+ ⋅°⎢ ⎥⎣ ⎦= [ ]  23°C

C)
= −

⋅°

 

 Insight: In this situation the hot steel loses 2960 J of thermal energy and the cold lead gains 2960 J, while the thermal 
energy of the water does not change at all. 
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127.  Picture the Problem: The rate at which a cricket chirps is related to the temperature of the cricket. Using the provided 

equation, we wish to calculate the temperature of the cricket from the number of chirps in one minute. 

 Strategy: Solve the given equation for the temperature in kelvins, and then convert the temperature to Celsius. 

 
Solution: 1. Find the number of chirps N in 13.0 seconds: 

185 chirps
13.0 s 40.1 chirps

60.0 s
N = × =  

 2. Isolate the exponential and take the natural  
logarithm of both sides of the equation:  10

6290 K
ln

5.63 10

N

T
⎛ ⎞ = −⎜ ⎟⎝ ⎠×

 

 
3. Solve for the temperature:  ( )10

6290 K
298.6 K

ln 40.1 5.63 10
T

−
= =

×
 

 4. Convert the temperature to Celsius:  C 273.15 298.63 273.15 25.5°CT T= − = − =  

 Insight: This corresponds to a Fahrenheit temperature of 77.9°F. If the temperature were 90°F, the cricket would chirp 
290 times in 60.0 s.  

 
 

128. Answers will vary. The milk, cream, sugar mixture condenses into solid ice cream at about -3 °C. About 4 tablespoons 
of salt and 4 cups of crushed ice will produce temperatures cold enough to make ice cream in 5 – 10 minutes. Try it 
yourself in the laboratory and enjoy the results of your efforts!  

 
 

129. When two sticks are rubbed together, friction converts the mechanical energy into thermal energy. By pressing the 
sticks tightly together, you can increase the normal force, which increases the force of friction and more rapidly 
converts the mechanical energy into thermal energy. If the rate that thermal energy is added to the sticks is sufficiently 
high, they will reach their combustion temperature and catch fire. This will not work with steel rods because steel will 
quickly conduct the thermal energy away from the rubbing point, making it impossible to reach the combustion 
temperature for the fuel you are trying to burn.  

 
 

130.  Picture the Problem: When the SR-71 Blackbird is in flight, its surface heats up significantly. This increase in 
temperature causes the plane to expand in length.  

 Strategy: Solve the thermal expansion equation for the final temperature of the plane. 

 
Solution: Solve ( )i iL L T TαΔ = −  for T. The 

calculated answer is choice C. ( )( )
 i –6 1

i

0.20 m
23 C 300 °C

22 10  K 32.74 m

L
T T

Lα −

Δ
= + = ° + =

×
 

 Insight: The final temperature is equivalent to 572°F, hotter than a household oven set to its self-cleaning temperature! 
 
 

131.  Picture the Problem: When the SR-71 Blackbird is in flight, its surface heats up significantly. This increase in 
temperature causes the plane to expand in length.  

 Strategy: Use the thermal expansion equation to find the length of the plane as a result of its change in temperature.  

 

 Solution: 1. Use the thermal 
expansion equation:  ( )( )( )–6 1

i 22 10  K 32.74 m 120 23°C 0.070 mL L Tα −Δ = Δ = × − =  

 2. Find the final length: i 32.74 0.070 m 32.81 mL L L= + Δ = + =  

 3. Convert to feet and inches: 3.281 ft
32.81 m 107.65 ft

1.000 m
12 in

0.65 ft 7.8 in 107 ft 7.8 in
ft

× =

× = ⇒
 

The calculated answer is choice C. 

 Insight: Although 120°C is nowhere near the 300°C of problem 130, it’s still plenty hot enough to boil water! 
 


