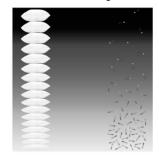


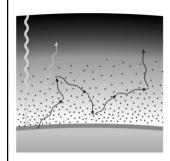
Atmospheric Pressure



Adding air molecules increases the pressure in a balloon.

Heating the air also increases the pressure.

Atmospheric Pressure



- Pressure and density decrease with altitude because the weight of overlying layers is less
- Earth's pressure at sea level is 1 bar (15 lbs per sq. inch)

Planetary Temperature

- Determined by balance between the energy of sunlight it absorbs and the energy of outgoing thermal radiation
- · Hotter when closer to the Sun
- A planet's *albedo* is the fraction of incoming sunlight it reflects
- Planets with low albedo absorb more sunlight, leading to hotter temperatures
- · Clouds tend to increase albedo

Greenhouse Effect

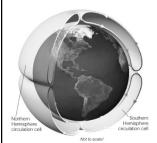
- Visible light passes through atmosphere and warms planet's surface
- Atmosphere absorbs infrared light from surface, trapping heat

Thought Question

If Earth didn't have an atmosphere, what would happen to its temperature?

- a) It would go up a little.
- b) It would go up a lot.
- c) It would go down a little.
- d) It would go down a lot.
- e) It would not change.

Thought Question


If Earth didn't have an atmosphere, what would happen to its temperature?

- a) It would go up a little.
- b) It would go up a lot.
- c) It would go down a little.
- d) It would go down a lot.
- e) It would not change.

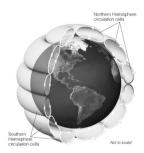
Effects of Atmospheres

- Create pressure that determines whether liquid water can exist on surface
- · Absorb and scatter light
- Interact with solar wind to create a protective magnetosphere
- Can make planetary surfaces warmer through greenhouse effect
- Create wind, weather (fast), climate (slow)

Circulation Cells: No Rotation

- Heated air rises at equator
- Cooler air descends at poles
- Without rotation, these motions would produce two large circulation cells

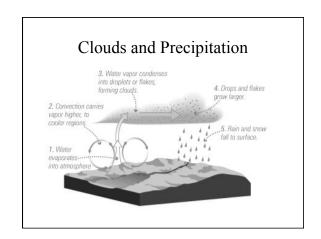
Coriolis Effect

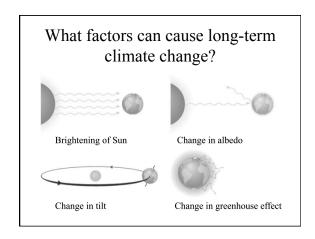

 Conservation of angular momentum causes a ball's apparent path on a spinning platform to change direction

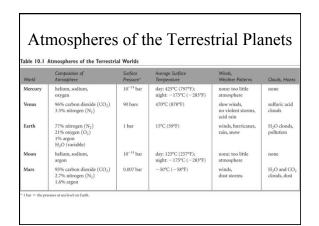
Coriolis Effect on Earth

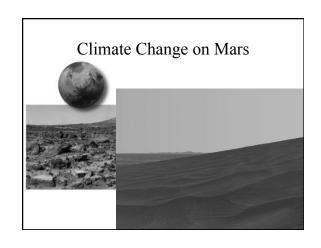
- Air moving from pole to equator is going farther from axis and begins to lag Earth's rotation
- Air moving from equator to pole goes closer to axis and moves ahead of Earth's rotation

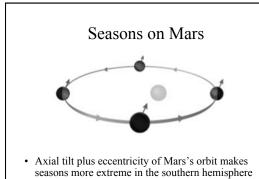
Circulation Cells with Rotation

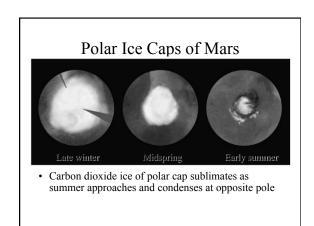

- Coriolis effect deflects north-south winds into east-west winds
- Deflection breaks each of the two large "no-rotation" cells breaks into three smaller cells

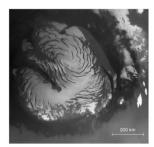

Prevailing Winds

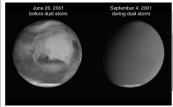


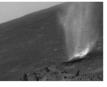



 Prevailing surface winds at mid-latitudes blow from W to E because Coriolis effect deflects S to N surface flow of mid-latitude circulation cell








Polar Ice Caps of Mars

 Residual ice of polar cap during summer is primarily water ice

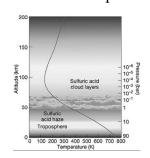
Dust Storms on Mars


- · Seasonal winds can drive dust storms on Mars
- Dust in the atmosphere sometimes making the sky look brownish-pink

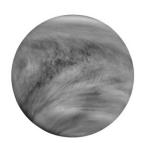
Changing Axis Tilt

- Mars's axis tilt ranges from 0° to 60° over long time periods
- Variations cause dramatic climate changes
- Produce alternating layers of ice and dust in polar caps

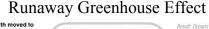
Climate Change on Mars: Wet to dry

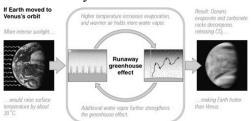

- Mars has not had widespread surface water for 3 billion years
- Greenhouse effect probably kept surface warmer before that
- Somehow Mars lost most of its atmosphere

Atmosphere of Venus


- Venus has a very thick carbon dioxide atmosphere with a surface pressure 90 times Earth's
- 880 F at surface
- Slow rotation produces very weak Coriolis effect and little weather

Atmosphere of Venus




- Reflective clouds contain droplets of sulfuric acid
- Upper atmosphere has fast winds that remain unexplained

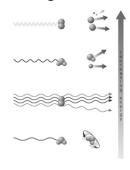
Greenhouse Effect on Venus

- Thick carbon dioxide atmosphere produces an extremely strong greenhouse effect
- Earth escapes this fate because most of its carbon and water is in rocks and oceans

 Runaway greenhouse effect would account for why Venus has so little water

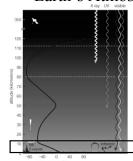
Thought Question

What is the main reason why Venus is hotter than Earth?


- a) Venus is closer to the Sun than Earth.
- b) Venus is more reflective than Earth.
- c) Venus is less reflective than Earth.
- d) Greenhouse effect is much stronger on Venus than on Earth.
- e) Human activity has led to declining temperatures on Earth.

Thought Question

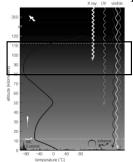
What is the main reason why Venus is hotter than Earth?


- a) Venus is closer to the Sun than Earth.
- b) Venus is more reflective than Earth.
- c) Venus is less reflective than Earth.
- d) Greenhouse effect is much stronger on Venus than on Earth.
- e) Human activity has led to declining temperatures on Earth.

Light's Effects on Atmosphere

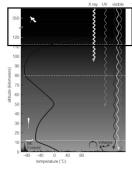
- **Ionization:** Removal of an electron
- **Dissociation:**Destruction of a molecule
- **Scattering:** Change in photon's direction
- **Absorption:** Photon's energy is absorbed

Earth's Atmospheric Structure



- Troposphere: lowest layer of Earth's atmosphere
- Temperature drops with altitude
- Warmed by infrared light from surface and convection

Earth's Atmospheric Structure Stratosphere: Layer


- above the troposphere
- Temperature rises with altitude in lower part, drops with altitude in upper part
- Warmed by absorption of ultraviolet sunlight

Earth's Atmospheric Structure

- Thermosphere: Layer at about 100 km altitude
- Temperature rises with altitude
- X rays and ultraviolet light from the Sun heat and ionize gases

Earth's Atmospheric Structure

- Exosphere: Highest layer in which atmosphere gradually fades into space
- Temperature rises with altitude: atoms can escape into space
- Warmed by X rays and UV light

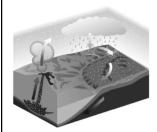
Four Important Questions

- · Why did Earth retain most of its outgassed water?
- Why does Earth have so little atmospheric carbon dioxide, unlike Venus?
- · Why does Earth's atmosphere consist mostly of nitrogen and oxygen?
- · Why does Earth have a UV-absorbing stratosphere?

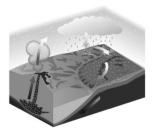
Earth's Water and CO₂

- Earth's temperature remained cool enough for liquid oceans to form
- Oceans dissolve atmospheric CO₂, enabling carbon to be trapped in rocks

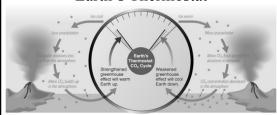
Nitrogen and Oxygen


- Most of Earth's carbon and oxygen is in rocks, leaving a mostly nitrogen atmosphere
- Plants release some oxygen from CO₂ into atmosphere
- If all life ceased, oxygen would be gone in 10,000 years

Ozone and the Stratosphere


- Ultraviolet light can break up O₂ molecules, allowing ozone (O₃) to form
- Without plants to release O₂, there would be no ozone in stratosphere to absorb UV light (protects life)

Carbon Dioxide Cycle


- 1. Atmospheric CO₂ dissolves in rainwater
- Rain erodes minerals which flow into ocean
- 3. Minerals combine with carbon to make rocks on ocean floor

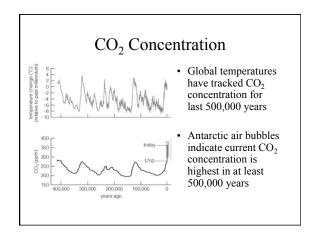
Carbon Dioxide Cycle

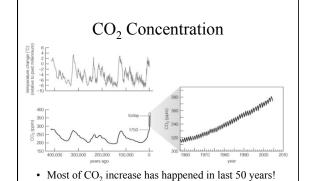
- 4. Subduction carries carbonate rocks down into mantle
- Rock melts in the mantle and outgas CO₂ back into atmosphere through volcanoes

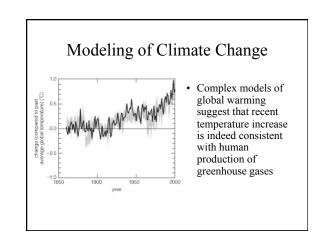
Earth's Thermostat

- Cooling allows CO₂ to build up in atmosphere
- Heating causes rain to reduce CO₂ in atmosphere

Long-Term Climate Change


- Changes in Earth's axis tilt might lead to ice ages
- Widespread ice tends to lower global temperatures by increasing Earth's reflectivity
- CO₂ from outgassing will build up if oceans are frozen, ultimately raising global temperatures again


Dangers of Human Activity


- Human-made CFCs in atmosphere destroy ozone, reducing protection from UV radiation
- Human activity is driving many other species to extinction
- Human use of fossil fuels produces greenhouse gases that can cause global warming

Global Warming

- Earth's average temperature has increased by 0.5°C in past 50 years
- Concentration of CO₂ is rising rapidly
- An unchecked rise in greenhouse gases will eventually lead to global warming

Consequences of Global Warming

- · Storms more numerous and intense
- Rising ocean levels; melting glaciers
- Uncertain effects on food production, availability of fresh water
- · Potential for social unrest

Next time:

• Chapter 11: Jovian Planets please read pages 309 – 334 in text.