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Chapter 11
Angular Momentum; 

General Rotation

Presenter
Presentation Notes
This skater is doing a spin. When her arms are spread outward horizontally, she spins less fast than when her arms are held close to the axis of rotation. This is an example of the conservation of angular momentum. Angular momentum, which we study in this Chapter, is conserved only if no net torque acts on the object or system. Otherwise, the rate of change of angular momentum is proportional to the net applied torque—which, if zero, means the angular momentum is conserved. In this Chapter we also examine more complicated aspects of rotational motion.
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• Angular Momentum—Objects Rotating About a 
Fixed Axis

• Vector Cross Product; Torque as a Vector

• Angular Momentum of a Particle

• Angular Momentum and Torque for a System 
of Particles; General Motion

• Angular Momentum and Torque for a Rigid 
Object

Units of Chapter 11
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• Conservation of Angular Momentum

• The Spinning Top and Gyroscope

• Rotating Frames of Reference; Inertial Forces

• The Coriolis Effect

Units of Chapter 11
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11-1 Angular Momentum—Objects 
Rotating About a Fixed Axis

The rotational analog of linear momentum 
is angular momentum, L:

Then the rotational analog of Newton’s 
second law is:

This form of Newton’s second law is valid 
even if I

 
is not constant.
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11-1 Angular Momentum—Objects 
Rotating About a Fixed Axis

In the absence of an external torque, 
angular momentum is conserved:

More formally,
 

the total angular momentum of a 
rotating object remains constant if the 
net external torque acting on it is zero.

0 and constant.dL L I
dt

ω= = =
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11-1 Angular Momentum—Objects 
Rotating About a Fixed Axis

This means:

Therefore, if an object’s moment of inertia 
changes, its angular speed changes as well.

Presenter
Presentation Notes
Figure 11-1: A skater doing a spin on ice, illustrating conservation of angular momentum: (a) I is large and ω is small; (b) I is smaller so ω is larger.
Figure 11-2: A diver rotates faster when arms and legs are tucked in than when they are outstretched. Angular momentum is conserved.
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11-1 Angular Momentum—Objects 
Rotating About a Fixed Axis

Example 11-1: Object rotating on a string of changing 
length. 
A small mass m

 
attached to the end of a string 

revolves in a circle on a frictionless tabletop. The 
other end of the string passes through a hole in the 
table. Initially, the mass revolves with a speed v1

 

= 2.4 
m/s

 
in a circle of radius R1

 

= 0.80 m. The string is then 
pulled slowly through the hole so that the radius is 
reduced to R2

 

= 0.48 m. What is the speed, v2
 

, of the 
mass now?

Presenter
Presentation Notes
Solution: Conservation of angular momentum gives the speed as 4.0 m/s.
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11-1 Angular Momentum—Objects 
Rotating About a Fixed Axis

Example 11-2: Clutch.

A simple clutch consists of two cylindrical plates 
that can be pressed together to connect two 
sections of an axle, as needed, in a piece of 
machinery. The two plates have masses MA

 

= 6.0 
kg and MB

 

= 9.0 kg, with equal radii R0
 

= 0.60 m. 
They are initially separated. Plate MA

 

is accelerated 
from rest to an angular velocity ω1

 

= 7.2 rad/s
 

in 
time Δt

 
= 2.0 s.

 
Calculate (a) the angular 

momentum of MA

 

, and (b) the torque required to 
have accelerated MA

 

from rest to ω1
 

.
 

(c) Next, plate 
MB

 

, initially at rest but free to rotate without 
friction, is placed in firm contact with freely 
rotating plate MA

 

, and the two plates both rotate at 
a constant angular velocity ω2

 

, which is 
considerably less than ω1

 

.
 

Why does this happen, 
and what is ω2

 

?

Presenter
Presentation Notes
Solution: a. The angular momentum is 7.8 kg·m2/s.
b. The torque is the change in angular momentum divided by the time, 3.9 m·N.
c. Angular momentum is conserved (this is a rotational collision), so the new angular speed is 2.9 rad/s.
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11-1 Angular Momentum—Objects 
Rotating About a Fixed Axis

Example 11-3: Neutron star.

Astronomers detect stars that are rotating extremely 
rapidly, known as neutron stars. A neutron star is 
believed to form from the inner core of a larger star 
that collapsed, under its own gravitation, to a star of 
very small radius and very high density. Before 
collapse, suppose the core of such a star is the size of 
our Sun (r ≈

 
7 x 105

 
km)

 
with mass 2.0 times as great as 

the Sun, and is rotating at a frequency of 1.0 revolution 
every 100 days. If it were to undergo gravitational 
collapse to a neutron star of radius 10 km, what would 
its rotation frequency be? Assume the star is a uniform 
sphere at all times, and loses no mass.

Presenter
Presentation Notes
Solution: Angular momentum is conserved; the rotation rate would be about 600 rev/s.
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11-1 Angular Momentum—Objects 
Rotating About a Fixed Axis

Angular momentum is 
a vector; for a 
symmetrical object 
rotating about a 
symmetry axis it is in 
the same direction as 
the angular velocity 
vector.

Presenter
Presentation Notes
Figure 11-5. (a) A person on a circular platform, both initially at rest, begins walking along the edge at speed v. The platform, assumed to be mounted on friction-free bearings, begins rotating in the opposite direction, so that the total angular momentum remains zero, as shown in (b).
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11-1 Angular Momentum—Objects 
Rotating About a Fixed Axis

Example 11-4: Running on a circular platform.

Suppose a 60-kg person stands at the edge of 
a 6.0-m-diameter circular platform, which is 
mounted on frictionless bearings and has a 
moment of inertia of 1800 kg·m2.

 
The platform 

is at rest initially, but when the person begins 
running at a speed of 4.2 m/s

 
(with respect to 

the Earth) around its edge, the platform 
begins to rotate in the opposite direction. 
Calculate the angular velocity of the platform.

Presenter
Presentation Notes
Solution: Angular momentum is conserved, so the angular velocity is 0.42 rad/s.



Copyright © 2009 Pearson Education, Inc.

11-1 Angular Momentum—Objects 
Rotating About a Fixed Axis

Conceptual Example 11-5: 
Spinning bicycle wheel.

Your physics teacher is holding 
a spinning bicycle wheel while 
he stands on a stationary 
frictionless turntable. What will 
happen if the teacher suddenly 
flips the bicycle wheel over so 
that it is spinning in the 
opposite direction?

Presenter
Presentation Notes
Angular momentum is conserved, so the teacher will start spinning in the direction the wheel was spinning originally.
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11-2 Vector Cross Product; Torque as a 
Vector

The vector cross product is defined as:

The direction of the cross product is 
defined by a right-hand rule:

Presenter
Presentation Notes
Figure 11-7. The vector C = A x B is perpendicular to the plane containing A and B; its direction is given by the right-hand rule.
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11-2 Vector Cross Product; Torque as a 
Vector

The cross product can also be written in 
determinant form:
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11-2 Vector Cross Product; Torque as a 
Vector

Some properties of the cross product:

Presenter
Presentation Notes
Figure 11-8. The vector B x A equals –A x B.



Copyright © 2009 Pearson Education, Inc.

11-2 Vector Cross Product; Torque as a 
Vector

Torque can be defined as the vector 
product of the force and the vector from 
the point of action of the force to the axis 
of rotation:

Presenter
Presentation Notes
Figure 11-10. The torque due to the force F (in the plane of the wheel) starts the wheel rotating counterclockwise so ω and α point out of the page.



Copyright © 2009 Pearson Education, Inc.

11-2 Vector Cross Product; Torque as a 
Vector

For a particle, the torque can be defined 
around a point O:

Here,   is the position vector from the 
particle relative to O.

rr

Presenter
Presentation Notes
Figure 11-11. τ = r x F, where r is the position vector.
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Example 11-6: Torque vector.

Suppose the vector is in the xz
 

plane, and 
is given by = (1.2 m)

 
+ 1.2 m)    Calculate 

the torque vector if    = (150 N)  .

11-2 Vector Cross Product; Torque as a 
Vector

r
τ

rr

F
rrr

Presenter
Presentation Notes
Solution: This can be done by the determinant method; the answer is τ = (180 m·N)j – it is in the y-direction, as expected.
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11-3 Angular Momentum of a Particle

The angular momentum of a particle about 
a specified axis is given by:

Presenter
Presentation Notes
Figure 11-12. The angular momentum of a particle of mass m is given by L = r x p = r x mv.
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11-3 Angular Momentum of a Particle

If we take the derivative of    , we find:

Since

we have:

r
L
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11-3 Angular Momentum of a Particle
Conceptual Example 11-7: A particle’s 
angular momentum.

What is the angular momentum of a 
particle of mass m

 
moving with speed v

 
in 

a circle of radius r
 

in a counterclockwise 
direction?

Presenter
Presentation Notes
Figure 11-13. Caption: The angular momentum of a particle of mass m rotating in a circle of radius r with velocity v is L = r x mv.
Solution: Since L = r x p, L = mvr = mr2ω = Iω.
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11-4 Angular Momentum and Torque for 
a System of Particles; General Motion
The angular momentum of a system of 
particles can change only if there is an 
external torque—torques due to internal 
forces cancel.

This equation is valid in any inertial 
reference frame. It is also valid for the 
center of mass, even if it is accelerating:
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11-5 Angular Momentum and Torque for 
a Rigid Object

For a rigid object, we can show that its 
angular momentum when rotating 
around a particular axis is given by:

Presenter
Presentation Notes
Figure 11-15. Calculating Lω = Lz = ΣLiz. Note that Li is perpendicular to ri and Ri is perpendicular to the z axis, so the three angles marked φ are equal.
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11-5 Angular Momentum and Torque for 
a Rigid Object

Example 11-8: Atwood’s machine.

An Atwood machine consists of two 
masses, mA

 

and mB
 

, which are 
connected by an inelastic cord of 
negligible mass that passes over a 
pulley. If the pulley has radius R0

 

and 
moment of inertia I

 
about its axle, 

determine the acceleration of the 
masses mA

 

and mB
 

, and compare to 
the situation where the moment of 
inertia of the pulley is ignored.

Presenter
Presentation Notes
Solution: First find the angular momentum of the system, and then apply the torque law. The torque is dL/dt, and a is dv/dt; taking the derivative of L and solving for a gives the solution in the text.
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11-5 Angular Momentum and Torque for 
a Rigid Object

Conceptual Example 11-9: Bicycle 
wheel.

Suppose you are holding a bicycle 
wheel by a handle connected to its 
axle. The wheel is spinning rapidly 
so its angular momentum points 
horizontally as shown. Now you 
suddenly try to tilt the axle upward 
(so the CM

 
moves vertically). You 

expect the wheel to go up (and it 
would if it weren’t rotating), but it 
unexpectedly swerves to the right! 
Explain.

Presenter
Presentation Notes
Figure 11-17. When you try to tilt a rotating bicycle wheel vertically upward, it swerves to the side instead.
Solution: You are trying to change the angular momentum vector (in direction, not magnitude). This requires a torque that points to the right (which is created by the upward force you exert on the wheel).
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11-5 Angular Momentum and Torque for 
a Rigid Object

A system that is 
rotationally imbalanced 
will not have its angular 
momentum and angular 
velocity vectors in the 
same direction. A torque 
is required to keep an 
unbalanced system 
rotating.

Presenter
Presentation Notes
Figure 11-18. In this system L and ω are not parallel. This is an example of rotational imbalance.
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11-5 Angular Momentum and Torque for 
a Rigid Object

Example 11-10: 
Torque on unbalanced 
system.

Determine the 
magnitude of the net 
torque τnet

 

needed to 
keep the illustrated 
system turning.

Presenter
Presentation Notes
Solution: The net torque is the change in the angular momentum and equals ωL cos φ. The angular momentum is Iω/sin φ, so the torque is Iω2/tan φ.
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11-6 Conservation of Angular Momentum
If the net torque on a system is constant,

The total angular momentum of a system 
remains constant if the net external torque 
acting on the system is zero.
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11-6 Conservation of Angular Momentum
Example 11-11: Kepler’s

 
second law 

derived.

Kepler’s
 

second law states that each planet 
moves so that a line from the Sun to the 
planet sweeps out equal areas in equal 
times. Use conservation of angular 
momentum to show this.

Presenter
Presentation Notes
Figure 11-21. Kepler’s second law of planetary motion.
Solution: From the figure, dA = ½ (r) (v dt sin θ), so dA/dt = L/2m = constant if L is constant.
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11-6 Conservation of Angular Momentum

Example 11-12: Bullet strikes cylinder edge.

A bullet of mass m
 

moving with velocity v
 

strikes and 
becomes embedded at the edge of a cylinder of mass 
M

 
and radius R0

 

. The cylinder, initially at rest, begins 
to rotate about its symmetry axis, which remains fixed 
in position. Assuming no frictional torque, what is the 
angular velocity of the cylinder after this collision? Is 
kinetic energy conserved?

Presenter
Presentation Notes
Figure 11-22. Bullet strikes and becomes embedded in cylinder at its edge.
Solution: Angular momentum is conserved; kinetic energy is not. See text for detailed solution.
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11-7 The Spinning Top and Gyroscope

A spinning top will 
precess around its 
point of contact with 
a surface, due to the 
torque created by 
gravity when its axis 
of rotation is not 
vertical.
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11-7 The Spinning Top and Gyroscope
The angular velocity of the precession is 
given by:

This is also the 
angular velocity of 
precession of a toy 
gyroscope, as shown.



Copyright © 2009 Pearson Education, Inc.

11-8 Rotating Frames of Reference; 
Inertial Forces

An inertial frame of 
reference is one in 
which Newton’s laws 
hold; a rotating frame 
of reference is 
noninertial, and 
objects viewed from 
such a frame may 
move without a force 
acting on them.

Presenter
Presentation Notes
Figure 11-25. Path of a ball released on a rotating merry-go-round (a) in the reference frame of the merry-go-round, and (b) in a reference frame fixed on the ground.
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11-8 Rotating Frames of Reference; 
Inertial Forces

There is an apparent outward force on 
objects in rotating reference frames; this 
is a fictitious force, or a pseudoforce. The 
centrifugal “force”

 
is of this type; there is 

no outward force when viewed from an 
inertial reference frame.
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11-9 The Coriolis Effect
If an object is moving in 
a noninertial

 
reference 

frame, there is another 
pesudoforce

 
on it, as 

the tangential speed 
does not increase while 
the object moves 
farther from the axis of 
rotation. This results in 
a sideways drift.

Inertial reference frame

Rotating reference frame

Presenter
Presentation Notes
Figure 11-26. The origin of the Coriolis effect. Looking down on a rotating platform, (a) as seen from a nonrotating inertial reference frame, and (b) as seen from the rotating platform as frame of reference.
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11-9 The Coriolis Effect
The Coriolis effect is 
responsible for the 
rotation of air around 
low-pressure areas—

 counterclockwise in 
the Northern 
Hemisphere and 
clockwise in the 
Southern. The Coriolis 
acceleration is:

Presenter
Presentation Notes
Figure 11-27. (a) Winds (moving air masses) would flow directly toward a low-pressure area if the Earth did not rotate. (b) and (c): Because of the Earth’s rotation, the winds are deflected to the right in the Northern Hemisphere (as in Fig. 11-26) as if a fictitious (Coriolis) force were acting.
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Summary of Chapter 11
• Angular momentum of a rigid object:

• Newton’s second law:

•Angular momentum is conserved.

• Torque:
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Summary of Chapter 11
• Angular momentum of a particle:

• Net torque:

• If the net torque is zero, the vector 
angular momentum is conserved.
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