

Chapter 11: Chemical Reactions

By Jennie Borders

Section 11.1 - Describing Chemical Reactions

- The reactants are written on the left and the products on the right.
- The arrow that separates them is called yield.
coefficients
Reactants \rightarrow Products

Symbols in Equations

	Symbol	Meaning
	\rightarrow	yields
	\leftrightarrows	reversible reaction
	(s)	solid
	(I)	liquid
	(g)	gas
	(aq)	aqueous
	$\xrightarrow{\text { P }}$	catalyst
	$\stackrel{ }{\triangle}$	heat

Catalyst

- A catalyst is a substance that speeds up a reaction but is not used up in the reaction.

Word Equations

Ex: chemical equation

$$
2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

Ex: word equation
Hydrogen gas and oxygen gas react to form liquid water.

Sample Problem \#1

- Write a sentence that describes this chemical reaction:

$$
\mathrm{Na}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{NaOH}_{(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}
$$

Practice Problem \# 1

- Write a sentence that describes this reaction:

$$
\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}+\mathrm{BaCl}_{2(\mathrm{aq})} \rightarrow \mathrm{BaSO}_{4(\mathrm{~s})}+\mathrm{HCl}_{(\mathrm{aq})}
$$

Practice Problem \#2

- Write the chemical equation for the following reaction:
Solid iron(III)hydroxide is heated to form solid iron(III) oxide and water
Δ

Balancing Chemical Equations $2 \mathrm{H}_{2(g)}+\mathrm{O}_{2(g)} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(l)}$

- Coefficients are the numbers in front of a chemical formula.
- Subscripts are numbers that show the number of atoms in a compound.
- When balancing reactions, you can only change the coefficients, not the subscripts.

Balancing Chemical Equations

- To balance a chemical equation, you add coefficients to the substances so that both sides of the equation contain equal numbers and types of atoms.
- Equation follows the law of conservation of mass.

Rules for Balancing Equations

- Balance hydrogen and oxygen last.
- Count a polyatomic ion as a single unit if it appears unchanged on both sides of the equation.
- If you end up with an odd number, you can double all of the coefficients.
- Make sure to reduce the coefficients to the lowest whole-number ratio.
- A coefficient of one is understood and does not need to be written.

$$
\begin{array}{ccc}
\mathrm{CH}_{4}+2 \mathrm{O}_{2} & \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
\mathbf{C}=\mathbf{1} \\
\mathbf{H}=\mathbf{4} & = & \mathbf{C}=\mathbf{1} \\
\mathbf{O}=\mathbf{4} & & \mathbf{H}=\mathbf{4} \\
\mathbf{O}=\mathbf{4}
\end{array}
$$

Sample Problems

Balance the following equations:

1. $\ldots \mathrm{H}_{2}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{H}_{2} \mathrm{O}$
$\underline{2} \mathrm{H}_{2}+\ldots \mathrm{O}_{2} \rightarrow \underline{2} \mathrm{H}_{2} \mathrm{O}$
2. $\ldots \mathrm{AgNO}_{3}+\ldots \mathrm{H}_{2} \mathrm{~S} \rightarrow \ldots \mathrm{Ag}_{2} \mathrm{~S}+\ldots \mathrm{HNO}_{3}$ $\underline{2} \mathrm{AgNO}_{3}+\ldots \mathrm{H}_{2} \mathrm{~S} \rightarrow \ldots \mathrm{Ag}_{2} \mathrm{~S}+\underline{2} \mathrm{HNO}_{3}$
3. \quad _ $\mathrm{Zn}(\mathrm{OH})_{2}+\ldots \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \ldots \mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$ $\underline{3} \mathrm{Zn}(\mathrm{OH})_{2}+\underline{2} \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \underline{Z n n_{3}}\left(\mathrm{PO}_{4}\right)_{2}+\underline{6} \mathrm{H}_{2} \mathrm{O}$

Practice Problems

1. ___ $\mathrm{FeCl}_{3}+\ldots \mathrm{NaOH} \rightarrow$ __ $\mathrm{Fe}(\mathrm{OH})_{3}+\ldots \mathrm{NaCl}$
$\ldots \mathrm{FeCl}_{3}+\underline{3} \mathrm{NaOH} \rightarrow \ldots \mathrm{Fe}(\mathrm{OH})_{3}+\underline{3} \mathrm{NaCl}$
2. $\ldots \mathrm{CS}_{2}+\ldots \mathrm{Cl}_{2} \rightarrow \ldots \mathrm{CCl}_{4}+\ldots \mathrm{S}_{2} \mathrm{Cl}_{2}$
$\ldots \mathrm{CS}_{2}+\underline{3} \mathrm{Cl}_{2} \rightarrow \ldots \mathrm{CCl}_{4}+\ldots \mathrm{S}_{2} \mathrm{Cl}_{2}$
3. $__{2} \mathrm{C}_{2} \mathrm{H}_{6}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}{ }^{+} \ldots \mathrm{H}_{2} \mathrm{O}$
$\underline{2} \mathrm{C}_{2} \mathrm{H}_{6}+\underline{7} \mathrm{O}_{2} \rightarrow \underline{4} \mathrm{CO}_{2}+\underline{6} \mathrm{H}_{2} \mathrm{O}$

Section 11.1 Assessment

3. Balance the following equations:

$$
\text { a. } \quad 2 \mathrm{SO}_{2}+\ldots \mathrm{O}_{2} \rightarrow \underline{2} \mathrm{SO}_{3}
$$

b. $\ldots \mathrm{Fe}_{2} \mathrm{O}_{3}+\underline{3} \mathrm{H}_{2} \rightarrow \underline{2} \mathrm{Fe}+\underline{3} \mathrm{H}_{2} \mathrm{O}$
c. $\underline{4} \mathrm{P}+\underline{5} \mathrm{O}_{2} \rightarrow \underline{\mathrm{P}_{4} \mathrm{O}_{10}}$
d. $2 \underline{2} \mathrm{Al}+\ldots \mathrm{N}_{2} \rightarrow \underline{2} \mathrm{AIN}$

Section 11.2 - Types of Chemical Reactions

- The five general types of reactions are synthesis, decomposition, single displacement, double displacement, and combustion.
(A) + B
(A) (B)
(A) ${ }^{3}$
(A) +
B
A- ${ }^{(B)}+$ C
(A) (C) +
B
(A) (B) + (C)-(B)
(A)-C + (B)-(

Synthesis Reactions

- In a synthesis reaction, two or more substances react to form one product.
- Generic Reaction:

$$
A+B \rightarrow A B
$$

- Demo: Magnesium Strip

Predicting Products

- Predict the products for the following reactions:

1. $\mathrm{Cu}+\mathrm{S} \rightarrow$

$$
2 \mathrm{Cu}+\mathrm{S} \rightarrow \mathrm{Cu}_{2} \mathrm{~S}
$$

2. $\mathrm{Be}+\mathrm{O}_{2} \rightarrow$

$$
2 \mathrm{Be}+\mathrm{O}_{2} \rightarrow 2 \mathrm{BeO}
$$

3. $\mathrm{Fe}+\mathrm{S} \rightarrow$

$$
2 \mathrm{Fe}+3 \mathrm{~S} \rightarrow \mathrm{Fe}_{2} \mathrm{~S}_{3}
$$

(Hint: copper is +1)

Decomposition Reactions

- A decomposition reaction occurs when a single reactant breaks down into two or more products.
- Generic Reaction:

$$
A B \rightarrow A+B
$$

- Demo: Hydrogen peroxide

Predicting Products

- Predict the products for the following reactions:

1. $\mathrm{H}_{2} \mathrm{O} \rightarrow$

$$
2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}
$$

2. $\mathrm{HI} \rightarrow$

$$
2 \mathrm{HI} \rightarrow \mathrm{H}_{2}+\mathrm{I}_{2}
$$

3. $\mathrm{NH}_{3} \rightarrow$

$$
2 \mathrm{NH}_{3} \rightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2}
$$

Single Displacement Reactions

- A single displacement reaction occurs when one element replaces a second element in a compound.
- Generic Reaction:

$$
A+B C \rightarrow B+A C
$$

- Demo: Silver Nitrate and Copper

Predicting Products

- Predict the products for the following reactions:

1. $\mathrm{Br}_{2}+\mathrm{Nal} \rightarrow$

$$
\mathrm{Br}_{2}+2 \mathrm{Nal} \rightarrow 2 \mathrm{NaBr}+\mathrm{I}_{2}
$$

2. $\mathrm{Fe}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow$
(Hint: iron is +3)

$$
\begin{gathered}
2 \mathrm{Fe}+3 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2 \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{~Pb} \\
\text { 3. } \mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \quad \text { (Hint: zinc is }+2 \text {) } \\
\mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{H}_{2}
\end{gathered}
$$

Double Displacement Reactions

- A double displacement reaction involves the exchange of two positive ions between two compounds.
- Generic Reaction:

$$
A B+C D \rightarrow A D+C B
$$

- Actual Example:

$$
2 \mathrm{NaCN}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{HCN}+\mathrm{Na}_{2} \mathrm{SO}_{4}
$$

Predicting Products

- Predict the products for the following reactions:

1. $\mathrm{CaBr}_{2}+\mathrm{AgNO}_{3} \rightarrow$
$\mathrm{CaBr}_{2}+2 \mathrm{AgNO}_{3} \rightarrow 2 \mathrm{AgBr}+\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
2. $\mathrm{FeS}+\mathrm{HCl} \rightarrow$

$$
\mathrm{FeS}+2 \mathrm{HCl} \rightarrow \mathrm{FeCl}_{2}+\mathrm{H}_{2} \mathrm{~S}
$$

3. $\mathrm{NaOH}+\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \rightarrow$
$3 \mathrm{NaOH}+\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}+3 \mathrm{NaNO}_{3}$

Relationships and Reactions

Chemical Reactions
Synthesis:

$$
1 \rightarrow+1 \rightarrow 1 / 1
$$

Decomposition:

Single Displacement:

Double Displacement:

Combustion Reactions

- A combustion reaction occurs when a substance burns in oxygen and produces a lot of heat and light.
- Generic Reaction:

$$
\mathrm{C}_{x} \mathrm{H}_{y}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

- Actual Example:

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2} \rightarrow 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}
$$

Predicting Products

- Predict the products for the following reactions:

1. $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow$

$$
2 \mathrm{C}_{6} \mathrm{H}_{6}+15 \mathrm{O}_{2} \rightarrow 12 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

2. $\mathrm{C}_{7} \mathrm{H}_{16}+\mathrm{O}_{2} \rightarrow$

$$
\mathrm{C}_{7} \mathrm{H}_{16}+11 \mathrm{O}_{2} \rightarrow 7 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}
$$

3. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2} \rightarrow$

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

