
Modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 11: Indexing and Storage

http://www.db-book.com/
http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.2CS425 – Fall 2013 – Boris Glavic

Chapter 11: Indexing and Storage

n DBMS Storage

l Memory hierarchy

l File Organization

l Buffering

n Indexing

l Basic Concepts

l B+-Trees

l Static Hashing

l Index Definition in SQL

l Multiple-Key Access

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Memory Hierarchy

http://www.db-book.com/
http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.4CS425 – Fall 2013 – Boris Glavic

DBMS Storage

n Modern Computers have different types of memory

l Cache, Main Memory, Harddisk, SSD, …

n Memory types have different characteristics in terms of

l Persistent vs. volatile

l Speed (random vs. sequential access)

l Size

l Price – this usually determines size

n Database systems are designed to be use these different memory

types effectively

l Need for persistent storage: the state of the database needs to be

written to persistent storage

 guarantee database content is not lost when the computer is

shutdown

l Moving data between different types of memory

 Want to use fast memory to speed-up operations

 Need slower memory for the size

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.5CS425 – Fall 2013 – Boris Glavic

Storage Hierarchy

cache

main memory

flash memory

magnetic disk

optical disk

magnetic tapes

S
iz

e

S
p

e
e

d

Persistent

storage

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.6CS425 – Fall 2013 – Boris Glavic

Main Memory vs. Disk

n Why do we not only use main memory

l What if database does not fit into main memory?

l Main memory is volatile

n Main memory vs. disk

l Given available main memory when do we keep which part of the

database in main memory

 Buffer manager: Component of DBMS that decides when to

move data between disk and main memory

l How do we ensure transaction property durability

 Buffer manager needs to make sure data written by committed

transactions is written to disk to ensure durability

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.7CS425 – Fall 2013 – Boris Glavic

Random vs. Sequential Access

n Transfer of data from disk has a minimal size = 1 block

l Reading 1 byte is as fast as reading one block (e.g., 4KB)

n Random Access

l Read data from anywhere on the disk

l Need to get to the right track (seek time)

l Need to wait until the right sector is under the arm (on avg ½ time

for one rotation) (rotational delay)

l Then can transfer data at ~ transfer rate

n Sequential Access

l Read data that is on the current track + sector

l can transfer data at ~ transfer rate

n Reading large number of small pieces of data randomly is very slow

compared to sequential access

l Thus, try layout data on disk in a way that enables sequential

access

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

File Organization

http://www.db-book.com/
http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.9CS425 – Fall 2013 – Boris Glavic

File Organization

n The database is stored as a collection of files. Each file stores
records (tuples from a table). A record is a sequence of fields

(the attributes of a tuple).

n Reading one record of a time from disk would be very slow

(random access)

l Organize our database files in pages (size of block or larger)

l Read/write data in units of pages

l One page will usually contain several records

n One approach:

l assume record size is fixed

l each file has records of one particular type only

l different files are used for different relations

This case is easiest to implement; will consider variable length

records later.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.10CS425 – Fall 2013 – Boris Glavic

Fixed-Length Records

n Simple approach:

l Store record i starting from byte n  (i – 1), where n is the size of

each record. Put maximal P / n records on each page.

l Record access is simple but records may cross blocks

 Modification: do not allow records to cross block boundaries

n Deletion of record i:

alternatives:

l move records i + 1, . . ., n

to i, . . . , n – 1

l move record n to i

l do not move records, but

link all free records on a
free list

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.11CS425 – Fall 2013 – Boris Glavic

Free Lists

n Store the address of the first deleted record in the file header.

n Use this first record to store the address of the second deleted record,

and so on

n Can think of these stored addresses as pointers since they “point” to

the location of a record.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.12CS425 – Fall 2013 – Boris Glavic

Variable-Length Records

n Variable-length records arise in database systems in several ways:

l Storage of multiple record types in a file.

l Record types that allow variable lengths for one or more fields such as

strings (varchar)

l Record types that allow repeating fields (used in some older data

models).

n Attributes are stored in order

n Variable length attributes represented by fixed size (offset, length), with

actual data stored after all fixed length attributes

n Null values represented by null-value bitmap

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.13CS425 – Fall 2013 – Boris Glavic

Variable-Length Records: Slotted Page Structure

n Slotted page header contains:

l number of record entries

l end of free space in the block

l location and size of each record

n Records can be moved around within a page to keep them contiguous

with no empty space between them; entry in the header must be

updated.

n Pointers should not point directly to record — instead they should

point to the entry for the record in header.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.14CS425 – Fall 2013 – Boris Glavic

Organization of Records in Files

n Heap – a record can be placed anywhere in the file where there

is space

l Deletion efficient

l Insertion efficient

l Search is expensive

 Example: Get instructor with name Glavic

– Have to search through all instructors

n Sequential – store records in sequential order, based on the

value of some search key of each record

l Deletion expensive and/or waste of space

l Insertion expensive and/or waste of space

l Search is efficient (e.g., binary search)

 As long as the search is on the search key we are

ordering on

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Buffering

http://www.db-book.com/
http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.16CS425 – Fall 2013 – Boris Glavic

Buffer Manager

n Buffer Manager

l Responsible for loading pages from disk and writing modified

pages back to disk

n Handling blocks

1. If the block is already in the buffer, the buffer manager

returns the address of the block in main memory

2. If the block is not in the buffer, the buffer manager

1. Allocates space in the buffer for the block

1. Replacing (throwing out) some other block, if required,

to make space for the new block.

2. Replaced block written back to disk only if it was

modified since the most recent time that it was written

to/fetched from the disk.

2. Reads the block from the disk to the buffer, and returns

the address of the block in main memory to requester.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.17CS425 – Fall 2013 – Boris Glavic

Buffer-Replacement Policies

n Most operating systems replace the block least recently used

(LRU strategy)

n Idea behind LRU – use past pattern of block references as a

predictor of future references

n Queries have well-defined access patterns (such as sequential

scans), and a database system can use the information in a user’s

query to predict future references

l LRU can be a bad strategy for certain access patterns involving

repeated scans of data

 For example: when computing the join of 2 relations r and s

by a nested loops
for each tuple tr of r do

for each tuple ts of s do

if the tuples tr and ts match …

l Mixed strategy with hints on replacement strategy provided

by the query optimizer is preferable

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.18CS425 – Fall 2013 – Boris Glavic

Buffer-Replacement Policies (Cont.)

n Pinned block – memory block that is not allowed to be written

back to disk. E.g., an operation still needs this block.

n Toss-immediate strategy – frees the space occupied by a block

as soon as the final tuple of that block has been processed

n Most recently used (MRU) strategy – system must pin the

block currently being processed. After the final tuple of that block

has been processed, the block is unpinned, and it becomes the

most recently used block.

n Buffer manager can use statistical information regarding the

probability that a request will reference a particular relation

l E.g., the data dictionary is frequently accessed. Heuristic:

keep data-dictionary blocks in main memory buffer

n Buffer managers also support forced output of blocks for the

purpose of recovery (more in Chapter 16 in the textbook)

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Indexing and Hashing

http://www.db-book.com/
http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.20CS425 – Fall 2013 – Boris Glavic

Basic Concepts

n Indexing mechanisms used to speed up access to desired data.

l E.g., author catalog in library

n Search Key - attribute or set of attributes used to look up records in a

file.

n An index file consists of records (called index entries) of the form

n Index files are typically much smaller than the original file

n Two basic kinds of indices:

l Ordered indices: search keys are stored in some sorted order

l Hash indices: search keys are distributed uniformly across

“buckets” using a “hash function”.

search-key pointer

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.21CS425 – Fall 2013 – Boris Glavic

Index Evaluation Metrics

n Access types supported efficiently. E.g.,

l records with a specified value in the attribute

l or records with an attribute value falling in a specified range of

values.

n Access time

n Insertion time

n Deletion time

n Space overhead

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.22CS425 – Fall 2013 – Boris Glavic

Ordered Indices

n In an ordered index, index entries are stored sorted on the search key

value. E.g., author catalog in library.

n Primary index: in a sequentially ordered file, the index whose search

key specifies the sequential order of the file.

l Also called clustering index

l The search key of a primary index is usually but not necessarily the

primary key.

n Secondary index: an index whose search key specifies an order

different from the sequential order of the file. Also called

non-clustering index.

n Index-sequential file: ordered sequential file with a primary index.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.23CS425 – Fall 2013 – Boris Glavic

Secondary Indices Example

n Index record points to a bucket that contains pointers to all the

actual records with that particular search-key value.

n Secondary indices have to be dense

Secondary index on salary field of instructor

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.24CS425 – Fall 2013 – Boris Glavic

Primary and Secondary Indices

n Indices offer substantial benefits when searching for records.

n BUT: Updating indices imposes overhead on database

modification --when a file is modified, every index on the file

must be updated,

n Sequential scan using primary index is efficient, but a

sequential scan using a secondary index is expensive

l Each record access may fetch a new block from disk

l Block fetch requires about 5 to 10 milliseconds, versus

about 100 nanoseconds for memory access

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.25CS425 – Fall 2013 – Boris Glavic

Secondary Indices

n Frequently, one wants to find all the records whose values in

a certain field (which is not the search-key of the primary

index) satisfy some condition.

l Example 1: In the instructor relation stored sequentially by

ID, we may want to find all instructors in a particular

department

l Example 2: as above, but where we want to find all

instructors with a specified salary or with salary in a

specified range of values

n We can have a secondary index with an index record for

each search-key value

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.26CS425 – Fall 2013 – Boris Glavic

B+-Tree Index

n Disadvantage of indexed-sequential files

l performance degrades as file grows, since many overflow
blocks get created.

l Periodic reorganization of entire file is required.

n Advantage of B+-tree index files:

l automatically reorganizes itself with small, local, changes,
in the face of insertions and deletions.

l Reorganization of entire file is not required to maintain
performance.

n (Minor) disadvantage of B+-trees:

l extra insertion and deletion overhead, space overhead.

n Advantages of B+-trees outweigh disadvantages

l B+-trees are used extensively

B+-tree indices are an alternative to indexed-sequential files.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.27CS425 – Fall 2013 – Boris Glavic

Example of B+-Tree

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.28CS425 – Fall 2013 – Boris Glavic

B+-Tree Index Files (Cont.)

n All paths from root to leaf are of the same length

n Each node that is not a root or a leaf has between n/2 and

n children.

n A leaf node has between (n–1)/2 and n–1 values

n Special cases:

l If the root is not a leaf, it has at least 2 children.

l If the root is a leaf (that is, there are no other nodes in
the tree), it can have between 0 and (n–1) values.

A B+-tree is a rooted tree satisfying the following properties:

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.29CS425 – Fall 2013 – Boris Glavic

B+-Tree Node Structure

n Typical node

l Ki are the search-key values

l Pi are pointers to children (for non-leaf nodes) or pointers to

records or buckets of records (for leaf nodes).

n The search-keys in a node are ordered

K1 < K2 < K3 < . . . < Kn–1

(Initially assume no duplicate keys, address duplicates later)

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.30CS425 – Fall 2013 – Boris Glavic

Leaf Nodes in B+-Trees

n For i = 1, 2, . . ., n–1, pointer Pi points to a file record with

search-key value Ki,

n If Li, Lj are leaf nodes and i < j, Li’s search-key values are less

than or equal to Lj’s search-key values

n Pn points to next leaf node in search-key order

Properties of a leaf node:

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.31CS425 – Fall 2013 – Boris Glavic

Example of B+-tree

n Leaf nodes must have between 3 and 5 values
((n–1)/2 and n –1, with n = 6).

n Non-leaf nodes other than root must have between 3
and 6 children ((n/2 and n with n =6).

n Root must have at least 2 children.

B+-tree for instructor file (n = 6)

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.32CS425 – Fall 2013 – Boris Glavic

Observations about B+-trees

n Since the inter-node connections are done by pointers,

“logically” close blocks need not be “physically” close.

n The non-leaf levels of the B+-tree form a hierarchy of sparse

indices.

n The B+-tree contains a relatively small number of levels

Level below root has at least 2* n/2 values

Next level has at least 2* n/2 * n/2 values

 .. etc.

l If there are K search-key values in the file, the tree height is

no more than  logn/2(K)

l thus searches can be conducted efficiently.

n Insertions and deletions to the main file can be handled

efficiently, as the index can be restructured in logarithmic time

(as we shall see).

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.33CS425 – Fall 2013 – Boris Glavic

Queries on B+-Trees
n Find record with search-key value V.

1. C=root

2. While C is not a leaf node {

1. Let i be least value s.t. V  Ki.

2. If no such exists, set C = last non-null pointer in C

3. Else { if (V= Ki) Set C = Pi +1 else set C = Pi}

}

3. Let i be least value s.t. Ki = V

4. If there is such a value i, follow pointer Pi to the desired record.

5. Else no record with search-key value k exists.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.34CS425 – Fall 2013 – Boris Glavic

Handling Duplicates

n With duplicate search keys

l In both leaf and internal nodes,

we cannot guarantee that K1 < K2 < K3 < . . . < Kn–1

but can guarantee K1  K2  K3  . . .  Kn–1

l Search-keys in the subtree to which Pi points

are  Ki,, but not necessarily < Ki,

To see why, suppose same search key value V is present
in two leaf node Li and Li+1. Then in parent node Ki must
be equal to V

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.35CS425 – Fall 2013 – Boris Glavic

Queries on B+-Trees (Cont.)

n If there are K search-key values in the file, the height of the tree is no

more than logn/2(K).

n A node is generally the same size as a disk block, typically 4

kilobytes

l and n is typically around 100 (40 bytes per index entry).

n With 1 million search key values and n = 100

l at most log50(1,000,000) = 4 nodes are accessed in a lookup.

n Contrast this with a balanced binary tree with 1 million search key

values — around 20 nodes are accessed in a lookup

l above difference is significant since every node access may need

a disk I/O, costing around 20 milliseconds

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.36CS425 – Fall 2013 – Boris Glavic

Updates on B+-Trees: Insertion (Cont.)

n Splitting a leaf node:

l take the n (search-key value, pointer) pairs (including the one

being inserted) in sorted order. Place the first n/2 in the original

node, and the rest in a new node.

l let the new node be p, and let k be the least key value in p. Insert

(k,p) in the parent of the node being split.

l If the parent is full, split it and propagate the split further up.

n Splitting of nodes proceeds upwards till a node that is not full is found.

l In the worst case the root node may be split increasing the height

of the tree by 1.

Result of splitting node containing Brandt, Califieri and Crick on inserting Adams

Next step: insert entry with (Califieri,pointer-to-new-node) into parent

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.37CS425 – Fall 2013 – Boris Glavic

B+-Tree Insertion

B+-Tree before and after insertion of “Adams”

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.38CS425 – Fall 2013 – Boris Glavic

B+-Tree Insertion

B+-Tree before and after insertion of “Lamport”

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.39CS425 – Fall 2013 – Boris Glavic

Examples of B+-Tree Deletion

n Deleting “Srinivasan” causes merging of under-full leaves

Before and after deleting “Srinivasan”

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.40CS425 – Fall 2013 – Boris Glavic

Examples of B+-Tree Deletion (Cont.)

Deletion of “Singh” and “Wu” from result of previous example

n Leaf containing Singh and Wu became underfull, and borrowed a value

Kim from its left sibling

n Search-key value in the parent changes as a result

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.41CS425 – Fall 2013 – Boris Glavic

Non-Unique Search Keys

n Alternatives to scheme described earlier

l Buckets on separate block (bad idea)

l List of tuple pointers with each key

Extra code to handle long lists

Deletion of a tuple can be expensive if there are many

duplicates on search key (why?)

Low space overhead, no extra cost for queries

l Make search key unique by adding a record-identifier

Extra storage overhead for keys

Simpler code for insertion/deletion

Widely used

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Hashing

http://www.db-book.com/
http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.43CS425 – Fall 2013 – Boris Glavic

Static Hashing

n A bucket is a unit of storage containing one or more records (a

bucket is typically a disk block).

n In a hash file organization we obtain the bucket of a record directly

from its search-key value using a hash function.

n Hash function h is a function from the set of all search-key values K

to the set of all bucket addresses B.

n Hash function is used to locate records for access, insertion as well

as deletion.

n Records with different search-key values may be mapped to the

same bucket; thus entire bucket has to be searched sequentially to

locate a record.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.44CS425 – Fall 2013 – Boris Glavic

Example of Hash File Organization

n There are 10 buckets,

n The binary representation of the ith character is assumed to be the

integer i.

n The hash function returns the sum of the binary representations of

the characters modulo 10

l E.g. h(Music) = 1 h(History) = 2

h(Physics) = 3 h(Elec. Eng.) = 3

Hash file organization of instructor file, using dept_name as key

(See figure in next slide.)

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.45CS425 – Fall 2013 – Boris Glavic

Example of Hash File Organization

Hash file organization of instructor file, using dept_name as key

(see previous slide for details).

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.46CS425 – Fall 2013 – Boris Glavic

Hash Functions

n Worst hash function maps all search-key values to the same bucket;

this makes access time proportional to the number of search-key

values in the file.

n An ideal hash function is uniform, i.e., each bucket is assigned the

same number of search-key values from the set of all possible values.

n Ideal hash function is random, so each bucket will have the same
number of records assigned to it irrespective of the actual distribution of

search-key values in the file.

n Typical hash functions perform computation on the internal binary

representation of the search-key.

l For example, for a string search-key, the binary representations of

all the characters in the string could be added and the sum modulo

the number of buckets could be returned. .

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.47CS425 – Fall 2013 – Boris Glavic

Handling of Bucket Overflows

n Bucket overflow can occur because of

l Insufficient buckets

l Skew in distribution of records. This can occur due to two

reasons:

 multiple records have same search-key value

 chosen hash function produces non-uniform distribution of key

values

n Although the probability of bucket overflow can be reduced, it cannot

be eliminated; it is handled by using overflow buckets.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.48CS425 – Fall 2013 – Boris Glavic

Handling of Bucket Overflows (Cont.)

n Overflow chaining – the overflow buckets of a given bucket are

chained together in a linked list.

n Above scheme is called closed hashing.

l An alternative, called open hashing, which does not use overflow

buckets, is not suitable for database applications.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.49CS425 – Fall 2013 – Boris Glavic

Hash Indices

n Hashing can be used not only for file organization, but also for index-

structure creation.

n A hash index organizes the search keys, with their associated record

pointers, into a hash file structure.

n Strictly speaking, hash indices are always secondary indices

l if the file itself is organized using hashing, a separate primary

hash index on it using the same search-key is unnecessary.

l However, we use the term hash index to refer to both secondary

index structures and hash organized files.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.50CS425 – Fall 2013 – Boris Glavic

Example of Hash Index

hash index on instructor, on attribute ID

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.51CS425 – Fall 2013 – Boris Glavic

Deficiencies of Static Hashing

n In static hashing, function h maps search-key values to a fixed set of B

of bucket addresses. Databases grow or shrink with time.

l If initial number of buckets is too small, and file grows, performance

will degrade due to too much overflows.

l If space is allocated for anticipated growth, a significant amount of

space will be wasted initially (and buckets will be underfull).

l If database shrinks, again space will be wasted.

n One solution: periodic re-organization of the file with a new hash

function

l Expensive, disrupts normal operations

n Better solution: allow the number of buckets to be modified dynamically.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan11.52CS425 – Fall 2013 – Boris Glavic

Index Definition in SQL

n Create an index

create index <index-name> on <relation-name>

(<attribute-list>)

E.g.: create index b-index on branch(branch_name)

n Use create unique index to indirectly specify and enforce the

condition that the search key is a candidate key is a candidate key.

n To drop an index

drop index <index-name>

n Most database systems allow specification of type of index, and

clustering.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter

http://www.db-book.com/
http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

