
123

Chapter 11

Inheritance and Polymorphism

Composition is one example of code reuse. We have seen how classes can be composed with other classes to
make more sophisticated classes. In this chapter we will see how classes can be reused in a different way. Using
inheritance, a programmer can make a new class out of an existing class, thereby providing a way to create objects
with enhanced behavior.

11.1 Inheritance

Recall TextTrafficLight (�10.2). TextTrafficLight objects simulate the cycling behavior of simple, real-
world traffic lights. InIntersection (�10.4) we modeled a four-way intersection synchronizing the operation of
four TextTrafficLight objects. Suppose the traffic at our intersection has grown, and it has become difficult for
vehicles to make left-hand turns because the volume of oncoming traffic is too great. The common solution is to add
a left turn arrow that allows opposing traffic to turn left without interference of oncoming traffic. Clearly we need an
enhanced traffic light that provides such a left turn arrow. We could copy the existingTrafficLightModel source
code, rename it toTurnLightModel, and then commence modifying it so that it provides the enhance functionality.
We then could copy theTextTrafficLight code and modify it so that it can display a left turn arrow. This is not
unreasonable given the size of our classes, but there are some drawbacks to this approach:

• Whenever code is copied and modified there is the possibility of introducing an error. It is always best, as far
as possible, to leave working code untouched.

• If the code is copied and a latent error is discovered and fixed in the original code, the copied code should be
repaired as well. The maintainers of the original code may not know who is using copies of their code and,
therefore, cannot notify all concerned parties of the change.

Object-oriented languages provide a mechanism that addresses both of these issues. New classes can be built
from existing classes using a technique known asinheritance, or subclassing. This technique is illustrated in
TurnLightModel (�11.1):

public class TurnLightModel extends TrafficLightModel {
// Add a new state indicating left turn
public static int LEFT_TURN = 1000;

13 March 2008 Draft © 2008 Richard L. Halterman

11.1. INHERITANCE 124

// Creates a light in the given initial state
public TurnLightModel(int intialState) {

super(intialState);
}

// Add LEFT_TURN to the set of valid states
public boolean isLegalState(int potentialState) {

return potentialState == LEFT_TURN
|| super.isLegalState(potentialState);

}

// Changes the state of the light to its next state in its normal cycle.
// Properly accounts for the turning state.
public void change() {

int currentState = getState();
if (currentState == LEFT_TURN) {

setState(GO);
} else if (currentState == STOP) {

setState(LEFT_TURN);
} else {

super.change();
}

}
}

Listing 11.1:TurnLightModel—extends theTrafficLightModel class to make a traffic light with a left turn arrow

In TurnLightModel (�11.1):

• The reserved wordextends indicates thatTurnLightModel is being derived from an existing class—
TrafficLightModel. We can say this in English various ways:

– TurnLightModel is asubclassof TrafficLightModel, andTrafficLightModel is thesuperclassof
TurnLightModel.

– TurnLightModel is aderived classof TrafficLightModel, andTrafficLightModel is thebase class
of TurnLightModel.

– TurnLightModel is achild classof TrafficLightModel, andTrafficLightModel is theparent class
of TurnLightModel.

• By virtue of being a subclass,TurnLightModel inherits all the characteristics of theTrafficLightModel
class. This has several key consequences:

– While you do not see astate instance variable defined within theTurnLightModel class, all
TurnLightModel objects have such an instance variable. Thestate variable is inherited from the su-
perclass. Just because allTurnLightModel objects have astate variable does not mean the code within
their class can access it directly—state is still private to the superclassTrafficLightModel. Fortu-
nately, code withinTurnLightModel can seestate via the inheritedgetState() method and change
state via setState().

13 March 2008 Draft © 2008 Richard L. Halterman

11.1. INHERITANCE 125

– While you see neithergetState() norsetState() methods defined in theTurnLightModel class, all
TurnLightModel objects have these methods at their disposal since they are inherited fromTraffic-
LightModel.

• TurnLightModel inherits the state constantsOFF, STOP, CAUTION, andGO and adds a new one,LEFT_TURN.
LEFT_TURN’s value is defined so as to not coincide with the previously defined state constants. We can see the
values ofOFF, STOP, CAUTION, andGO because they are publicly visible, so here we chose 1,000 because it is
different from all of the inherited constants.

• The constructor appears to be calling an instance method namedsuper:

super(initialState);

In fact, super is a reserved word, and when it is used in this context it means call the superclass’s
constructor. Here,TurnLightModel’s constructor ensures the same initialization activity performed by
TrafficLightModel’s constructor will take place forTurnLightModel objects. In general, a subclass con-
structor can include additional statements following the call tosuper(). If a subclass constructor provides
any statements of its own besides the call tosuper(), they must follow the call ofsuper()

• TurnLightModel provides a revisedisLegalState() method definition. When a subclass redefines a super-
class method, we say itoverridesthe method. This version ofisLegalState() expands the set of integer
values that map to a valid state.isLegalState() returns true if the supplied integer is equal toLEFT_TURN
or is approved by the superclass version ofisLegalState(). The expression:

super.isLegalState(potentialState)

looks like we are callingisLegalState() with an object reference namedsuper. The reserved wordsuper
in this context means execute the superclass version ofisLegalState() on behalf of the current object.
Thus,TurnLightModel’s isLegalState() adds some original code (checking forLEFT_TURN) and reuses
the functionality of the superclass. It in essence does what its superclass does plus a little extra.

Recall thatsetState() callsisLegalState() to ensure that the client does not place a traffic light object
into an illegal state.TurnLightModel does not overridesetState()—it is inherited as is from the superclass.
WhensetState() is called on a pureTrafficLightModel object, it calls theTrafficLightModel class’s
version ofisLegalState(). By contrast, whensetState() is called on behalf of aTurnLightModel object,
it calls theTurnLightModel class’sisLegalState() method. This ability to “do the right thing” with an
object of a given type is calledpolymorphismand will be addressed in § 11.4.

• Thechange() method inserts the turn arrow state into its proper place in the sequence of signals:

– red becomes left turn arrow,

– left turn arrow becomes green, and

– all other transitions remain the same (the superclass version works fine)

Like isLegalState(), it also reuses the functionality of the superclass via thesuper reference.

Another interesting result of inheritance is that aTurnLightModel object will work fine in any context that
expects aTrafficLightModel object. For example, a method defined as

13 March 2008 Draft © 2008 Richard L. Halterman

11.1. INHERITANCE 126

public static void doTheChange(TrafficLightModel tlm) {
System.out.println("The light changes!");
tlm.change();

}

obviously accepts aTrafficLightModel reference as an actual parameter, because its formal parameter is de-
clared to be of typeTrafficLightModel. What may not be so obvious is that the method will also accept a
TurnLightModel reference. Why is this possible? A subclass inherits all the capabilities of its superclass and
usually adds some more. This means anything that can be done with a superclass object can be done with a sub-
class object (and the subclass object can probably do more). Since anyTurnLightModel object can do at least
as much as aTrafficLightModel, the tlm parameter can be assigned toTurnLightModel just as easily as to
a TrafficLightModel. The doTheChange() method callschange() on the parametertlm. tlm can be an in-
stance ofTrafficLightModel or any subclassof TrafficLightModel. We say anis a relationship exists from
the TurnLightModel class to theTrafficLightModel class. This is because anyTurnLightModel object is a
TrafficLightModel object.

In order to see how our new turn light model works, we need to visualize it. Again, we will use inheritance and
derive a new class from an existing class,TextTrafficLight. TextTurnLight (�11.2) provides a text visualization
of our new turn light model:

public class TextTurnLight extends TextTrafficLight {
// Note: constructor requires a turn light model
public TextTurnLight(TurnLightModel lt) {

super(lt); // Calls the superclass constructor
}

// Renders each lamp
public String drawLamps () {

// Draw non-turn lamps
String result = super.drawLamps();
// Draw the turn lamp properly
if (getState () == TurnLightModel.LEFT_TURN) {

result += " (<)";
} else {

result += " ()";
}
return result;

}
}

Listing 11.2:TextTurnLight—extends theTextTrafficLight class to make a traffic light with a left turn arrow

TextTurnLight (�11.2) is a fairly simple class. It is derived fromTextTrafficLight (�10.2), so it inherits all of
TextTrafficLight’s functionality, but the differences are minimal:

• The constructor expects aTurnLightModel object and passes it to the constructor of its superclass. The
superclass constructor expects aTrafficLightModel reference as an actual parameter. ATurnLightModel
reference is acceptable, though, because aTurnLightModel is aTrafficLightModel.

13 March 2008 Draft © 2008 Richard L. Halterman

11.1. INHERITANCE 127

• In drawLamps(), aTextTurnLight object must display four lamps instead of only three. This method renders
all four lamps. The method calls the superclass version ofdrawLamps() to render the first three lamps:

super.drawLamps();

and so the method needs only draw the last (turn) lamp.

Notice that thedraw() method, which callsdrawLamps(), is not overridden. The subclass inherits and uses
draw() as is, because it does not need to change how the “frame” is drawn.

The constructor requires clients to createTextTurnLight objects with onlyTurnLightModel objects. A client
may not create aTextTurnLight with a simpleTrafficLightModel:

// This is illegal
TextTurnLight lt

= new TextTurnLight(new TrafficLightModel
(TrafficLightModel.RED));

The following interaction sequences demonstrates some of the above concepts. First, we will test the light’s
cycle:

Interactions

Welcome to DrJava. Working directory is /Users/rick/java
> TextTurnLight lt = new TextTurnLight

(new TurnLightModel
(TrafficLightModel.STOP));

> System.out.println(lt.show());
[(R) () () ()]
> lt.change(); System.out.println(lt.show());
[() () () (<)]
> lt.change(); System.out.println(lt.show());
[() () (G) ()]
> lt.change(); System.out.println(lt.show());
[() (Y) () ()]
> lt.change(); System.out.println(lt.show());
[(R) () () ()]
> lt.change(); System.out.println(lt.show());
[() () () (<)]
> lt.change(); System.out.println(lt.show());
[() () (G) ()]
> lt.change(); System.out.println(lt.show());
[() (Y) () ()]
> lt.change(); System.out.println(lt.show());
[(R) () () ()]

All seems to work fine here. Next, let us experiment with thisis aconcept. Reset the Interactions pane and enter:

Interactions

Welcome to DrJava. Working directory is /Users/rick/java
> TextTrafficLight lt = new TextTurnLight

13 March 2008 Draft © 2008 Richard L. Halterman

11.1. INHERITANCE 128

(new TurnLightModel
(TrafficLightModel.STOP));

> System.out.println(lt.show());
[(R) () () ()]
> lt.change(); System.out.println(lt.show());
[() () () (<)]
> lt.change(); System.out.println(lt.show());
[() () (G) ()]
> lt.change(); System.out.println(lt.show());
[() (Y) () ()]
> lt.change(); System.out.println(lt.show());
[(R) () () ()]

Notice that here the variablelt’s declared type isTextTrafficLight, not TextTurnLight as in the earlier
interactive session. No error is given because aTextTurnLight object (created by thenew expression)is a
TextTrafficLight, and so it can be assigned legally tolight. Perhaps Java is less picky about assigning ob-
jects? Try:

Interactions

Welcome to DrJava. Working directory is /Users/rick/java
> Intersection light = new TextTurnLight

(new TurnLightModel
(TrafficLightModel.STOP));

Error: Bad types in assignment

Since no superclass/subclass relationship exists betweenIntersection andTextTurnLight, there is nois a re-
lationship either, and the types are not assignment compatible. Furthermore, theis a relationship works only one
direction. Consider:

Interactions

Welcome to DrJava. Working directory is /Users/rick/java
> TextTurnLight lt2 = new TextTrafficLight

(new TrafficLightModel
(TrafficLightModel.STOP));

ClassCastException: lt2

All TurnLightModels areTrafficLightModels, but the converse is not true. As an illustration, all apples are fruit,
but it is not true that all fruit are apples.

While inheritance may appear to be only a clever programming trick to save a little code, it is actually quite
useful and is used extensively for building complex systems. To see how useful it is, we will put our new kind of
traffic lights into one of our existing intersection objects and see what happens. First, to simplify the interactive
experience, we will defineTestIntersection (�11.3), a convenience class for making either of the two kinds of
intersections:

public class TestIntersection {
public static Intersection makeSimple () {

13 March 2008 Draft © 2008 Richard L. Halterman

11.1. INHERITANCE 129

return new Intersection(
new TextTrafficLight

(new TrafficLightModel(TrafficLightModel.STOP)),
new TextTrafficLight

(new TrafficLightModel(TrafficLightModel.STOP)),
new TextTrafficLight

(new TrafficLightModel(TrafficLightModel.GO)),
new TextTrafficLight

(new TrafficLightModel(TrafficLightModel.GO)));
}
public static Intersection makeTurn() {

return new Intersection(
new TextTurnLight

(new TurnLightModel(TrafficLightModel.STOP)),
new TextTurnLight

(new TurnLightModel(TrafficLightModel.STOP)),
new TextTurnLight

(new TurnLightModel(TrafficLightModel.GO)),
new TextTurnLight

(new TurnLightModel(TrafficLightModel.GO)));
}

}

Listing 11.3:TestIntersection—provides some convenience methods for creating two kinds of intersections

Both methods are class (static) methods, so we need not explicitly create aTestIntersection object to use the
methods. The following interactive session creates two different kinds of intersections:

Interactions

Welcome to DrJava. Working directory is /Users/rick/java
> simple = TestIntersection.makeSimple();
> simple.show();

[(R) () ()]

[() () (G)] [() () (G)]

[(R) () ()]
> simple.change(); simple.show();

[(R) () ()]

[() (Y) ()] [() (Y) ()]

[(R) () ()]
> simple.change(); simple.show();

[() () (G)]

[(R) () ()] [(R) () ()]

[() () (G)]

13 March 2008 Draft © 2008 Richard L. Halterman

11.1. INHERITANCE 130

> simple.change(); simple.show();
[() (Y) ()]

[(R) () ()] [(R) () ()]

[() (Y) ()]
> simple.change(); simple.show();

[(R) () ()]

[() () (G)] [() () (G)]

[(R) () ()]
> simple.change(); simple.show();

[(R) () ()]

[() (Y) ()] [() (Y) ()]

[(R) () ()]
> turn = TestIntersection.makeTurn();
> turn.show();

[(R) () () ()]

[() () (G) ()] [() () (G) ()]

[(R) () () ()]
> turn.change(); turn.show();

[(R) () () ()]

[() (Y) () ()] [() (Y) () ()]

[(R) () () ()]
> turn.change(); turn.show();

[() () () (<)]

[(R) () () ()] [(R) () () ()]

[() () () (<)]
> turn.change(); turn.show();

[() () (G) ()]

[(R) () () ()] [(R) () () ()]

[() () (G) ()]
> turn.change(); turn.show();

[() (Y) () ()]

[(R) () () ()] [(R) () () ()]

[() (Y) () ()]
> turn.change(); turn.show();

13 March 2008 Draft © 2008 Richard L. Halterman

11.2. PROTECTED ACCESS 131

[(R) () () ()]

[() () () (<)] [() () () (<)]

[(R) () () ()]
> turn.change(); turn.show();

[(R) () () ()]

[() () (G) ()] [() () (G) ()]

[(R) () () ()]
> turn.change(); turn.show();

[(R) () () ()]

[() (Y) () ()] [() (Y) () ()]

[(R) () () ()]
> turn.change(); turn.show();

[() () () (<)]

[(R) () () ()] [(R) () () ()]

[() () () (<)]

Notice that our originalIntersection class was not modified at all, yet it works equally as well with
TextTurnLight objects! This is another example of the “magic” of inheritance. ATextTurnLight object can be
treated exactly like aTextTrafficLight object, yet it behaves in a way that is appropriate for aTextTurnLight,
not aTextTrafficLight. A TextTrafficLight object draws three lamps when asked toshow() itself, while a
TextTurnLight draws four lamps. This is another example of polymorphism (see § 11.4).

11.2 Protected Access

We have seen how client access to the instance and class members of a class are affected by thepublic andprivate
specifiers:

• Elements declaredpublic within a class are freely available to code in any class to examine and modify.

• Elements declaredprivate are inaccessible to code in other classes. Such private elements can only be
accessed and/or influenced bypublic methods provided by the class containing the private elements.

Sometimes it is desirable to allow special privileges to methods within subclasses. Java provides a third access
specifier—protected. A protected element cannot be accessed by other classes in general, but it can be accessed
by code within a subclass. Said another way,protected is like private to non-subclasses and likepublic to
subclasses.

Class designers should be aware of the consequences of usingprotected members. Theprotected specifier
weakens encapsulation (see Section 8.7). Encapsulation ensures that the internal details of a class cannot be disturbed
by client code. Clients should be able to change the state of an object only through the public methods provided. If
these public methods are correctly written, it will be impossible for client code to put an object into an undefined

13 March 2008 Draft © 2008 Richard L. Halterman

11.3. VISUALIZING INHERITANCE 132

or illegal state. When fields are madeprotected, careless subclassers may write methods that misuse instance
variables and place an object into an illegal state. Some purists suggest thatprotected access never be used because
the potential for misuse is too great.

Another issue withprotected is that it limits how superclasses can be changed. Anythingpublic becomes
part of the class’s interface to all classes. Changing public members can break client code. Similarly, anything
protected becomes part of the class’s interface to its subclasses, so changing protected members can break code
within subclasses.

Despite the potential problems with theprotected specifier, it has its place in class design. It is often con-
venient to have some information or functionality shared only within a family (inheritance hierarchy) of classes.
For example, in the traffic light code, thesetState() method inTrafficLightModel (�10.1) might better be
madeprotected. This would allow subclasses likeTurnLightModel (�11.1) to change a light’s state, but other
code would be limited to making a traffic light with a specific initial color and then alter its color only through the
change() method. This would prevent a client from changing a green light immediately to red without the caution
state in between. The turn light code, however, needs to alter the basic sequence of signals, and so it needs special
privileges that should not be available in general.

Since encapsulation is beneficial, a good rule of thumb is to reveal as little as possible to clients and subclasses.
Make elementsprotected and/orpublic only when it would be awkward or unworkable to do otherwise.

11.3 Visualizing Inheritance

The Unified Modeling Language is a graphical, programming language-independent way of representing classes and
their associated relationships. The UML can quickly communicate the salient aspects of the class relationships in a
software system without requiring the reader to wade through the language-specific implementation details (that is,
the source code). The UML is a complex modeling language that covers many aspects of system development. We
will limit our attention to a very small subset of the UML used to represent class relationships.

In the UML, classes are represented by rectangles. Various kinds of lines can connect one class to another,
and these lines represent relationships among the classes. Three relationships that we have seen are composition,
inheritance, and dependence.

• Composition. An Intersection object is composed of fourTextTrafficLight objects. EachText-
TrafficLight object manages its ownTrafficLightModel object, and aTextTurnLight contains a
TurnLightModel. The UML diagram shown in Figure 11.1 visualizes these relationships. A solid line from
one class to another with a diamond at one end indicates composition. The end with the diamond is connected
to the container class, and the end without the diamond is connected to the contained class. In this case we
see that anIntersection object containsTextTrafficLight objects. A number at the end of the line indi-
cates how many objects are contained. (If no number is provided, the number 1 is implied.) We see that each
intersection is composed of four traffic lights, while each light has an associated model.

The composition relationship is sometimes referred to as thehas arelationship; for example, a text traffic light
has atraffic light model.

• Inheritance. TurnLightModel is a subclass ofTrafficLightModel, andTextTrafficLight is a subclass
of TextTurnLight. The inheritance relationship is represented in the UML by a solid line with a triangular
arrowhead as shown in Figure 11.2. The arrow points from the subclass to the superclass.

We have already mentioned that the inheritance relationship represents theis a relationship. The arrow points
in the direction of theis a relationship.

13 March 2008 Draft © 2008 Richard L. Halterman

11.3. VISUALIZING INHERITANCE 133

!nter&ection
!

Te+tTraf!cLight

Traf!cLight1o2elTe+tTraf!cLight

T4rnLight1o2elTe+tT4rnLight

Figure 11.1: UML diagram for the composition relationships involved in theIntersection class

Traf!cLight+o-el

T0rnLight+o-el

Te2tTraf!cLight

Te2tT0rnLight

Figure 11.2: UML diagram for the traffic light inheritance relationship

• Dependence. We have used dependence without mentioning it explicitly. Objects of one class may use
objects of another class without extending them (inheritance) or declaring them as fields (composition). Lo-
cal variables and parameters represent temporary dependencies. For example, theTestIntersection class
uses theIntersection, TrafficLightModel, TextTrafficLight, TurnLightModel, andTextTurnLight
classes within its methods (local objects), but neither inheritance nor composition are involved. We say that
TestIntersection depends on these classes, because if their interfaces change, those changes may affect
TestIntersection. For example, if the maintainers ofTextTurnLight decide that its constructor should
accept an integer state instead of aTurnLightModel, the change would breakTestIntersection. Currently
TestIntersection creates aTextTurnLight with aTurnLightModel, not an integer state.

A dashed arrow in a UML diagram illustrates dependency. The label�uses� indicates that a
TestIntersection object uses the other object is a transient way. Other kinds of dependencies are possible.
Figure 11.3 shows the dependency ofTestIntersection uponIntersection.

!nter&ectionTe&t!nter&ection
!!"#$#%%

Figure 11.3: UML diagram for the test intersection dependencies

13 March 2008 Draft © 2008 Richard L. Halterman

11.4. POLYMORPHISM 134

Figure 11.4 shows the complete diagram of participating classes.

!nter&ection
!

Te+tTraf!cLight

T1rnLight2o3el

Te+tTraf!cLight

Te+tT1rnLight
""#$%$&&

Te&t!nter&ection
""#$%$&&

""#$%$&&

""#$%$&&

""#$%$&&

Figure 11.4: the complete UML diagram for the classes used inTestIntersection

11.4 Polymorphism

How does the code withinIntersection’s show() method decide which of the following ways to draw a red light?

[(R) () ()]

or

[(R) () () ()]

Nothing withinIntersection’s show method reveals any distinction. It does not use anyif/else statements to
select between one form or another. Theshow() method does the right thing based on the exact kind of traf-
fic light that it is asked to render. Can the compiler determine what to do when it compiles the source code for
Intersection? The compiler is powerless to do so, since theIntersection class was developed and testedbefore
theTurnLightModel class was ever conceived!

The compiler generates code that at runtime decides whichshow() method to call based on the actual type of
the light. The burden is, in fact, on the object itself. The expression

northLight.show()

is a request to thenorthLight object to draw itself. ThenorthLight object draws itself based on the
show() method in its class. If it is really aTextTrafficLight object, it executes theshow() method of
the TextTrafficLight class; if it is really aTextTurnLight object, it executes theshow() method of the
TextTurnLight class.

This process of executing the proper code based on the exact type of the object when theis a relationship is
involved is calledpolymorphism. Polymorphism is what makes thesetState() methods work as well. Try to set a
plain traffic light to theLEFT_TURN state, and then try to set a turn traffic light toLEFT_TURN:

13 March 2008 Draft © 2008 Richard L. Halterman

11.5. EXTENDED RATIONAL NUMBER CLASS 135

Interactions

Welcome to DrJava. Working directory is /Users/rick/java
> plain = new TextTrafficLight(new TrafficLightModel(TrafficLightModel.STOP));
> turn = new TextTurnLight(new TurnLightModel(TrafficLightModel.STOP));
> plain.setState(TurnLightModel.LEFT_TURN);
> System.out.println(plain.show());
[(R) () ()]
> turn.setState(TurnLightModel.LEFT_TURN);
> System.out.println(turn.show());
[() () () (<)]

Remember,setState() was not overridden. The samesetState() code is executed forTurnLightModel objects
as forTrafficLightModel objects. The difference is what happens whensetState() calls theisLegalState()
method. ForTrafficLightModel objects,TrafficLightModel’s isLegalState() method is called; however, for
TurnLightModel objects,TurnLightModel’s isLegalState() method in invoked. We say thatsetState() calls
isLegalState() polymorphically. isLegalState() polymorphically “decides” whetherLEFT_TURN is a valid
state. The “decision” is easy though; call it on behalf of a pureTrafficLightModel object, and says “no,” but call
it oh behalf of aTurnLightModel object, and it says “yes.”

Polymorphism means that given the following code:

TextTrafficLight light;

// Initialize the light somehow . . .

light.show();

we cannot predict whether three lamps or four lamps will be displayed. The code between the two statements may
assignlight to aTextTrafficLight object or aTextTurnLight depending on user input (§ 8.3), a random number
(§ 13.6, time (§ 13.2), or any of hundreds of other criteria.

11.5 Extended Rational Number Class

Rational (�9.1) is a solid, but simple, class for rational number objects. Addition and multiplication is provided, but
what if we wish to subtract or divide fractions? Without subclassing clients could do all the dirty work themselves:

• Subtracting is just adding the opposite:

a
b
− c

d
=

a
b

+
(
−1× c

d

)
Interactions

Welcome to DrJava. Working directory is /Users/rick/java
> Rational f1 = new Rational(1, 2),

f2 = new Rational(1, 4);
> // f3 = f1 - f2 = f1 + (-1) * f2
> Rational f3 = f1.add(new Rational(-1, 1).multiply(f2));
> f3.show()
"1/4"
> f2 = new Rational(1, 3);

13 March 2008 Draft © 2008 Richard L. Halterman

11.5. EXTENDED RATIONAL NUMBER CLASS 136

> f3 = f1.add(new Rational(-1, 1).multiply(f2));
> f3.show()
"1/6"

Sincef1 = 1
2 andf2 = 1

4, the statement

Rational f3 = f1.add(new Rational(-1, 1).multiply(f2));

results in

f3 =
1

2
+

(
−1

1
×

1

4

)
=

2

4
−

1

4
=

1

4

and forf2 = 1
3, the statement

f3 = f1.add(new Rational(-1, 1).multiply(f2));

results in

f3 =
1

2
+

(
−1

1
×

1

3

)
=

3

6
−

2

6
=

1

6

• Dividing is multiplying by the inverse:
a
b
÷ c

d
=

a
b
× d

c
Interactions

> // 1/2 divided by 2/3 = 3/4
> f1.show()
"1/2"
> f2 = new Rational(2, 3);
> f2.show()
"2/3"
> f3 = f1.multiply(new Rational(f2.getDenominator(),

f2.getNumerator()));
> f3.show()
"3/4"

The problem with this approach is that it is messy and prone to error. It would be much nicer to simply say:

f3 = f1.subtract(f2);

and

f3 = f1.divide(f2);

but these statements are not valid iff1 is a Rational object. What we need is an extension ofRational that
supports the desired functionality.EnhancedRational (�11.4) is such a class.

13 March 2008 Draft © 2008 Richard L. Halterman

11.6. MULTIPLE SUPERCLASSES 137

public class EnhancedRational extends Rational {
// num is the numerator of the new fraction
// den is the denominator of the new fraction
// Work deferred to the superclass constructor
public EnhancedRational(int num , int den) {

super(num , den);
}
// Returns this - other reduced to lowest terms
public Rational subtract(Rational other) {

return add(new Rational(-other.getNumerator(),
other.getDenominator ()));

}
// Returns this / other reduced to lowest terms
// (a/b) / (c/d) = (a/b) * (d/c)
public Rational divide(Rational other) {

return multiply(new Rational(other.getDenominator(),
other.getNumerator ()));

}
}

Listing 11.4:EnhancedRational—extended version of theRational class

With EnhancedRational (�11.4) subtraction and division are now more convenient:
Interactions

Welcome to DrJava. Working directory is /Users/rick/java
> EnhancedRational f1 = new EnhancedRational(1, 2),

f2 = new EnhancedRational(1, 4);
> Rational f3 = f1.subtract(f2);
> f3.show()
"1/4"
> f3 = f1.divide(f2);
> f3.show()
"2/1"

11.6 Multiple Superclasses

In Java it is not possible for a class to have more than one superclass. Some languages like C++ and Smalltalk do
support multiple superclasses, a concept calledmultiple inheritance.

Even though a class may not have more than one superclass, it may have any number of subclasses, including
none.

11.7 Summary

• Inheritance allows us to derive a new class from an existing class.

13 March 2008 Draft © 2008 Richard L. Halterman

11.8. EXERCISES 138

• The original class is called the superclass, and the newly derived class is called the subclass.

• Other terminology often used instead of superclass/subclass base class/derived class, and parent class/child
class.

• The subclass inherits everything from its superclass and usually adds more capabilities.

• The reserved wordextends is used to subclass an existing class.

• Subclasses can redefine inherited methods; the process is called overriding the inherited method.

• Subclass methods can call superclass methods directly via thesuper reference.

• Constructors can invoke the superclass constructor usingsuper in its method call form.

• A subclass inherits everything from its superclass, including private members (variables and methods), but it
has no extra privileges accessing those members than any other classes.

• Subclass objects have anis a relationship with their superclass; that is, ifY is a subclass ofX, an instance ofY
is aY, and an instance ofY is aX also.

• A subclass object may be assigned to a superclass reference; for example, ifY is a subclass ofX, an instance
of Y may be assigned to a variable of typeX.

• A superclass object maynot be assigned to a subclass reference; for example, ifY is a subclass ofX, an instance
whose exact type isX may not be assigned to a variable of typeY.

• The Unified Modeling Language (UML) uses special graphical notation to represent classes, composition,
inheritance, and dependence.

• Polymorphism executes a method based on an object’s exact type, not simply its declared type.

• A class may not have more than one superclass, but it may have zero or more subclasses.

11.8 Exercises

1. Suppose the variablelt is of typeTextTrafficLight and that it has been assigned properly to an object.
What will be printed by the statement:

System.out.println(lt.show());

2. What does it mean to override a method?

3. What is polymorphsim? How is it useful?

4. If TurnLightModel (�11.1) inherits thesetState() method ofTrafficLightModel (�10.1) and uses it as
is, why and how does the method behave differently for the two types of objects?

5. May a class have multiple superclasses?

6. May a class have multiple subclasses?

13 March 2008 Draft © 2008 Richard L. Halterman

11.8. EXERCISES 139

7. Devise a new type of traffic light that hasTrafficLightModel (�10.1) as its superclass but does something
different from TurnLightModel (�11.1). One possibility is a flashing red light. Test your new class in
isolation, and then create a view for your new model. Your view should be oriented horizontally so you can
test your view with the existingIntersection (�10.4) code.

8. Derive VerticalTurnLight from VerticalTextLight (�10.3) that works likeTextTurnLight (�11.2)
but that displays its lamps vertically instead of horizontally. Will you also have to derive a new model from
TurnLightModel (�11.1) to make yourVerticalTurnLight work?

13 March 2008 Draft © 2008 Richard L. Halterman

