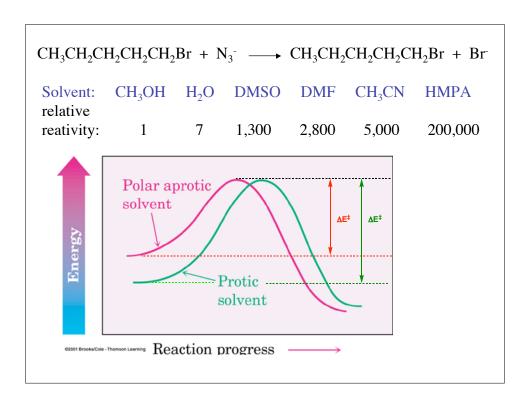
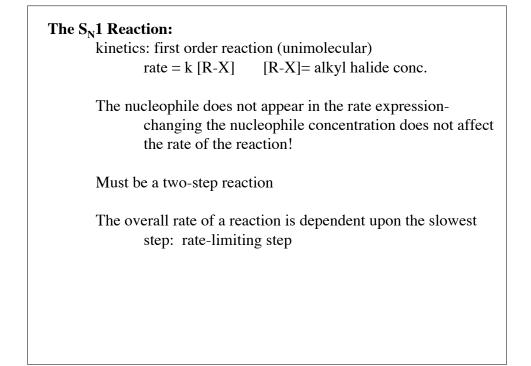
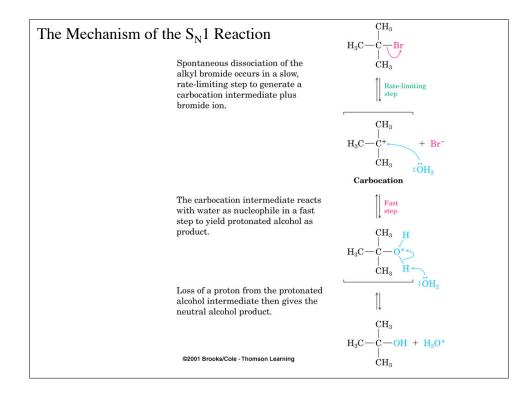
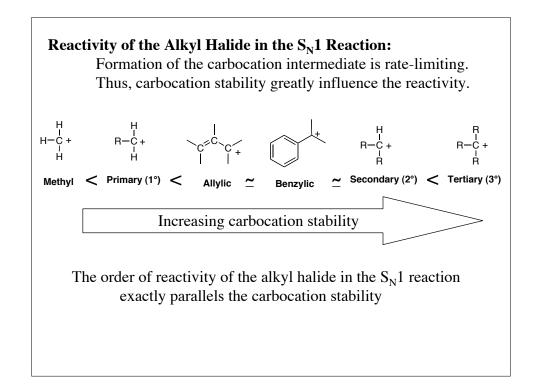


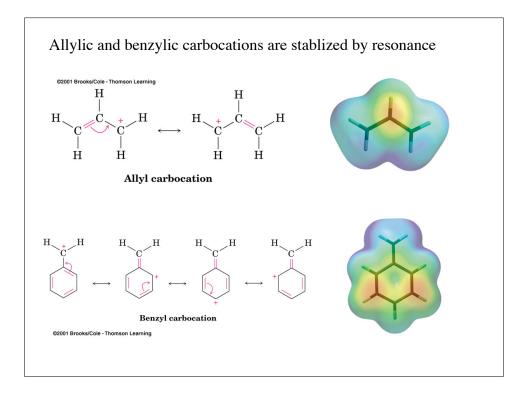

	of the nucleophile in the S _N 2 Read measure of <i>nucleophilicity</i> is impred			
Anionic	Nu: [–] + R-X ──► Nu-R ·	+ X: -		
Neutral	Nu: + R-X Nu-R -	+ X: -		
Nu	+ $H_3C-Br \longrightarrow Nu-CH_3 +$	Br -		
$Nu = H_2C$	relative reactivity=	1		
-	₃ CO ₂	500		
NH		700		
Cl-	5	1,000		
НО	- 1	16,000		
CH	₃ O ⁻ 2	25,000		
I-	5	100,000		
N≡	C- 12	125,000		
HS		125,000		

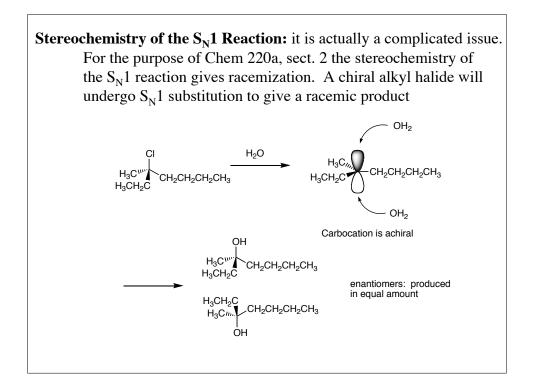








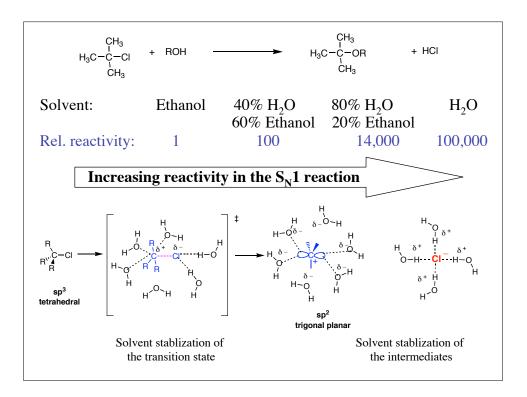


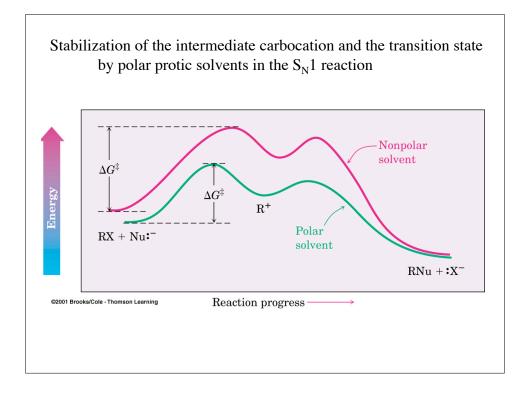


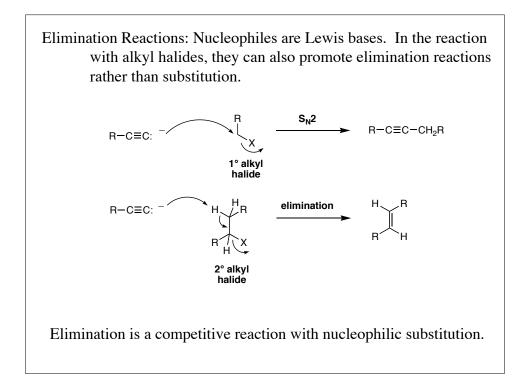
The role of the leaving group in $S_{\rm N}{\rm 1}$ reactions:

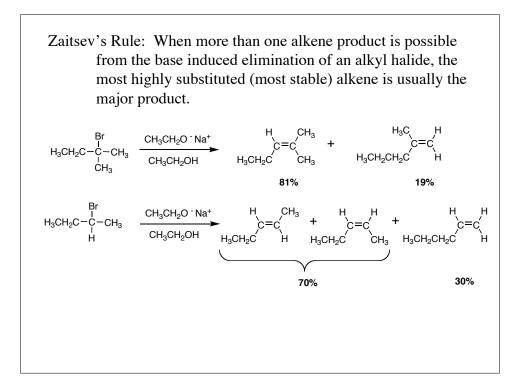
same as for the S_N^2 reaction

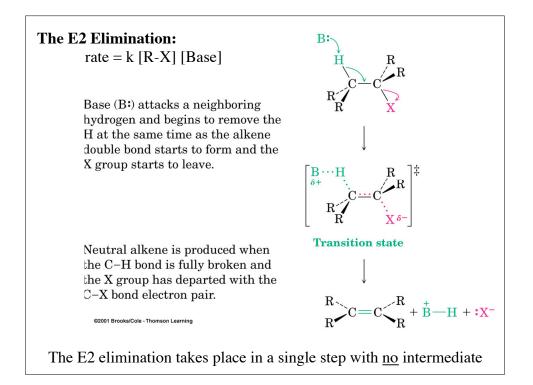
 $TosO^- > I^- > Br^- > Cl^- \simeq H_2O$

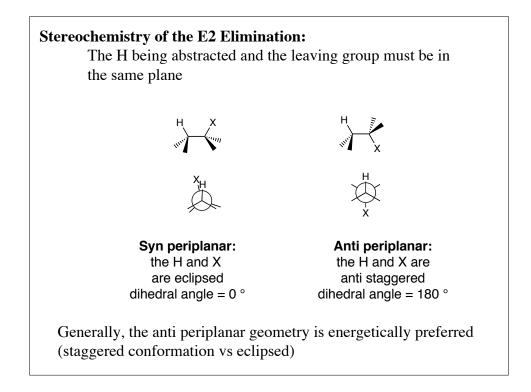

Charged Leaving Groups: conversion of a poor leaving group to a good one

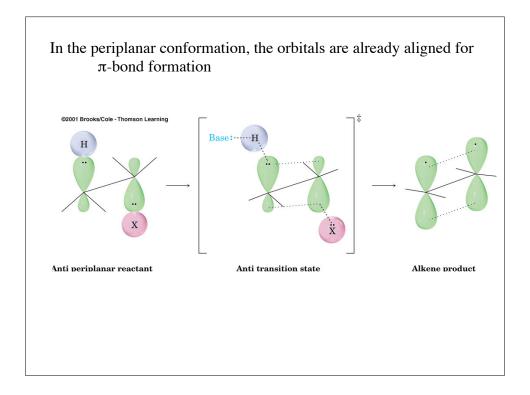

$$\begin{array}{c} \mathsf{R} & \mathsf{H}^{+} & \mathsf{R} & \mathsf{H}^{+} \\ \mathsf{R}^{-}_{R} & \mathsf{H} & \mathsf{R}^{-}_{R} & \mathsf{H} & \mathsf{H}^{+} \\ \mathsf{R}^{-}_{R} & \mathsf{H} & \mathsf{H}^{-}_{R} & \mathsf{R}^{+}_{R} & \mathsf{R}^{+}_{R} & \mathsf{Nu} \\ \end{array} \xrightarrow{\mathsf{R}} \begin{array}{c} \mathsf{R} & \mathsf{R} \\ \mathsf{R}^{-}_{R} & \mathsf{R} \\ \mathsf{R}^{-}_{R} & \mathsf{R} \end{array} \xrightarrow{\mathsf{R}} \begin{array}{c} \mathsf{R} \\ \mathsf{R}^{-}_{R} & \mathsf{R} \\ \mathsf{R}^{-}_{R} & \mathsf{R} \end{array} \xrightarrow{\mathsf{R}} \begin{array}{c} \mathsf{R} \\ \mathsf{R}^{-}_{R} & \mathsf{R} \\ \mathsf{R}^{-}_{R} & \mathsf{R} \end{array} \xrightarrow{\mathsf{R}} \begin{array}{c} \mathsf{R} \\ \mathsf{R}^{-}_{R} & \mathsf{R} \\ \mathsf{R}^{-}_{R} & \mathsf{R} \end{array} \xrightarrow{\mathsf{R}} \begin{array}{c} \mathsf{R} \\ \mathsf{R}^{-}_{R} & \mathsf{R} \\ \mathsf{R} \end{array} \xrightarrow{\mathsf{R}} \begin{array}{c} \mathsf{R} \\ \mathsf{R}^{-}_{R} & \mathsf{R} \end{array} \xrightarrow{\mathsf{R}} \begin{array}{c} \mathsf{R} \\ \mathsf{R}^{-}_{R} & \mathsf{R} \\ \mathsf{R} \end{array} \xrightarrow{\mathsf{R}} \begin{array}{c} \mathsf{R} \\ \mathsf{R}^{-}_{R} & \mathsf{R} \end{array} \xrightarrow{\mathsf{R}} \begin{array}{c} \mathsf{R} \\ \mathsf{R} \end{array} \xrightarrow{\mathsf{R}} \begin{array}{c} \mathsf{R} \\ \mathsf{R} \end{array} \xrightarrow{\mathsf{R}} \end{array} \xrightarrow{\mathsf{R}} \begin{array}{c} \mathsf{R} \\ \mathsf{R} \end{array} \xrightarrow{\mathsf{R}} \begin{array}{c} \mathsf{R} \\ \mathsf{R} \end{array} \xrightarrow{\mathsf{R}} \end{array} \xrightarrow{\mathsf{R}} \begin{array}{c} \mathsf{R} \end{array} \xrightarrow{\mathsf{R}} \end{array} \xrightarrow{\mathsf{R}} \begin{array}{c} \mathsf{R} \\ \mathsf{R} \end{array} \xrightarrow{\mathsf{R}} \end{array} \xrightarrow{\mathsf{R}} \end{array} \xrightarrow{\mathsf{R}} \end{array} \xrightarrow{\mathsf{R}} \begin{array}{c} \mathsf{R} \\ \mathsf{R} \end{array} \xrightarrow{\mathsf{R}} \end{array} \xrightarrow{\mathsf{R}} \end{array} \xrightarrow{\mathsf{R}} \end{array} \xrightarrow{\mathsf{R}} \begin{array}{c} \mathsf{R} \end{array} \xrightarrow{\mathsf{R}} \end{array} \xrightarrow{\mathsf{R}} \end{array} \xrightarrow{\mathsf{R}} \end{array} \xrightarrow{\mathsf{R}} \end{array} \xrightarrow{\mathsf{R}} \xrightarrow{\mathsf{R}} \end{array} \xrightarrow{\mathsf{R}} \end{array} \xrightarrow{\mathsf{R}} \begin{array}{c} \mathsf{R} \end{array} \xrightarrow{\mathsf{R}} \end{array} \xrightarrow{\mathsf{R}} \end{array} \xrightarrow{\mathsf{R}} \end{array} \xrightarrow{\mathsf{R}} \end{array} \xrightarrow{\mathsf{R}} \xrightarrow{\mathsf{R}} \xrightarrow{\mathsf{R}} \xrightarrow{\mathsf{R}} \end{array} \xrightarrow{\mathsf{R}} \xrightarrow{\mathsf$$

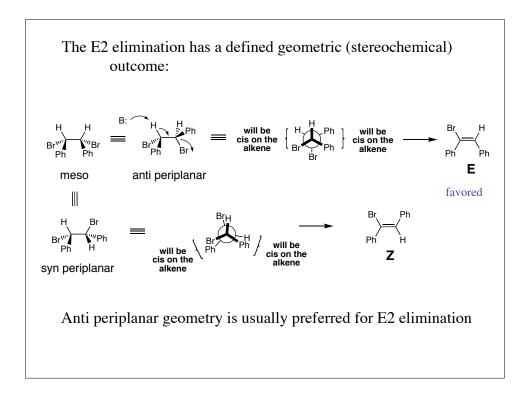

The role of the nucleophile in S_N1 reactions: None

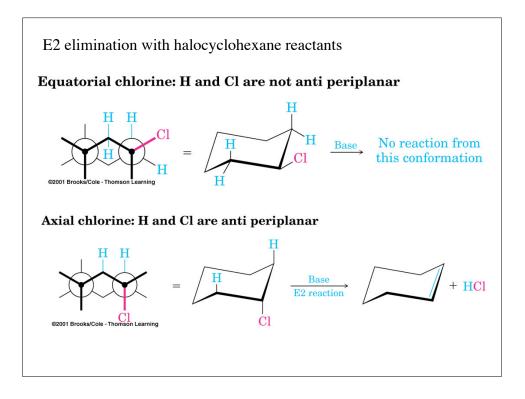

Involvement of the nucleophile in the S_N^1 reaction is *after* the rate-limiting step. Thus, the nucleophile *does not* appear in the rate expression. The nature of the nucleophile plays <u>**no**</u> role in the rate of the S_N^1 reaction.

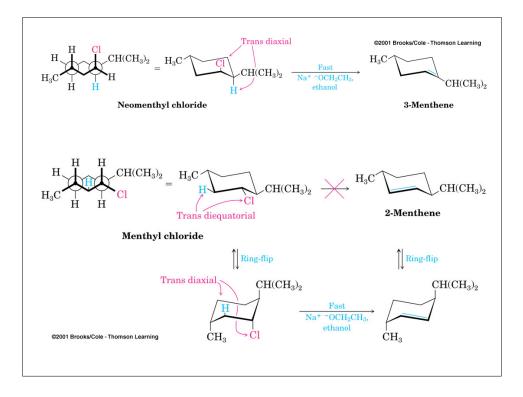

protic solvents a	are favored ov	ver aprotic for	the S _N 1 reaction
Solvent polarity is mea	sured by diele	ectric constant	t (ε)
Hexane	$\epsilon = 1.9$		1
$(CH_3CH_2)_2O$	$ \begin{bmatrix} \varepsilon = & 1.9 \\ 4.3 \end{bmatrix} \text{ nonpolar } $		
HMPA	30)	aprotic
DMF	38		
DMSO	48)	
CH ₃ CH ₂ OH	24	polar	
CH ₃ OH	34		protic
H ₂ O	80		

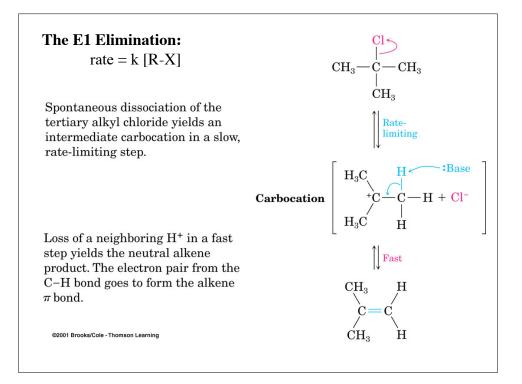


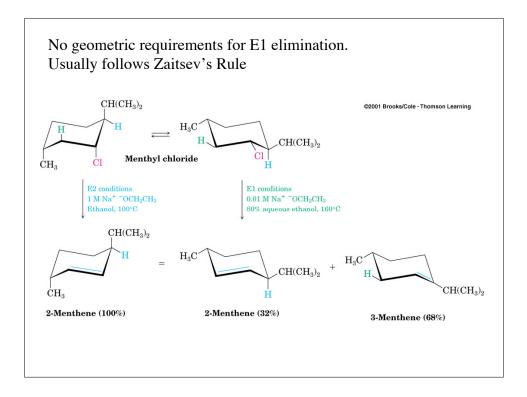


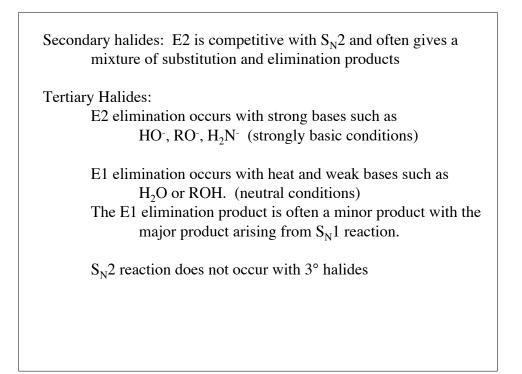












S_N2 vs E2

For primary alkyl halides $S_N 2$ is favored with most nucleophiles E2 is favored with "bulky" bases (t-butoxide) $H_3 c - \stackrel{CH_3}{-c - 0} - c + 0$ t-butoxide is too bulky to undergo $S_N 2$ $H_3 c - \stackrel{CH_3}{-c + 0} - c + 0$ t-butoxide is too bulky to undergo $S_N 2$ $H_3 c - \stackrel{CH_3}{-c + 0} + H_H - c + 0$ $H_3 c - \stackrel{CH_3}{-c + 0} + H_H + 0$ $H_3 c - \stackrel{CH_3}{-c + 0} + H_H + 0$ H_3

