Chapter 11: SIMPLE LINEAR REGRESSION (SLR)
 AND CORRELATION

Part 3: Hypothesis tests for β_{0} and β_{1} Coefficient of Determination, R^{2} Sections 11-4 \& 11-7.2

- For SLR, a common hypothesis test is the test for a linear relationship between X and Y .
$H_{0}: \beta_{1}=0 \quad$ (no linear relationship) $H_{1}: \beta_{1} \neq 0$
- Under the assumption $\epsilon_{i} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)$, we have

$$
\begin{aligned}
& \hat{\beta}_{0} \sim N\left(\beta_{0}, \quad \sigma^{2}\left(\frac{1}{n}+\frac{\bar{x}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right)\right) \\
& \hat{\beta}_{1} \sim N\left(\beta_{1}, \frac{\sigma^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right)
\end{aligned}
$$

- Test of interest
$H_{0}: \beta_{1}=0$
(no linear relationship)
$H_{1}: \beta_{1} \neq 0$
- Since we will be estimating σ^{2}, we will use a t-statistic:

$$
T_{0}=\frac{\hat{\beta}_{1}-0}{\operatorname{se}\left(\hat{\beta}_{1}\right)}=\frac{\hat{\beta}_{1}}{\sqrt{\frac{\sigma^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}}
$$

Under H_{0} true, $T_{0} \sim t_{n-2}$.

From our observed test statistic t_{0}, we can compute a p-value and make decison on the hypothesis test.

Example: The chloride concentration data (revisited)

Testing for a linear relationship between chloride concentration (Y) and $\%$ of watershed in roadways (X)

$$
\begin{aligned}
& H_{0}: \beta_{1}=0 \\
& H_{1}: \beta_{1} \neq 0
\end{aligned}
$$

Estimates:

$$
\begin{aligned}
& \hat{\beta}_{1}=20.567 \\
& \operatorname{se}\left(\hat{\beta}_{1}\right)=\sqrt{\frac{13.8092}{3.0106}}=2.1417
\end{aligned}
$$

Test statistic:

$$
\begin{aligned}
& t_{0}=\frac{\hat{\beta}_{1}-0}{\operatorname{se}\left(\hat{\beta}_{1}\right)}=\frac{20.567}{2.1417}=9.603 \\
& \quad \text { Under } H_{0} \text { true, } T_{0} \sim t_{16}
\end{aligned}
$$

P-value:

$$
\begin{gathered}
2 \times P\left(T_{0}>9.603\right)=4.81 \times 10^{-8} \\
\{\text { very small\} }
\end{gathered}
$$

Reject H_{0}.
There IS statistically significant evidence that the slope is not 0 , so there is evidence of a linear relationship between chloride concentration and \% of watershed in roadways.

- Similarly, we can run a hypothesis test that the intercept equals 0 ...

$$
\begin{aligned}
& H_{0}: \beta_{0}=0 \\
& H_{1}: \beta_{0} \neq 0
\end{aligned}
$$

The test statistic:

$$
T_{0}=\frac{\hat{\beta}_{0}-0}{\operatorname{se}\left(\hat{\beta}_{0}\right)}=\frac{\hat{\beta}_{0}}{\sqrt{\hat{\sigma^{2}}\left(\frac{1}{n}+\frac{\bar{x}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right)}}
$$

Under H_{0} true, $T_{0} \sim t_{n-2}$.

- Example: The chloride concentration data (revisited)

Testing if the intercept is zero.

$$
\begin{gathered}
H_{0}: \beta_{0}=0 \\
H_{1}: \beta_{0} \neq 0
\end{gathered}
$$

Estimates:

$$
\begin{gathered}
\hat{\beta}_{0}=0.4705 \\
\operatorname{se}\left(\hat{\beta}_{0}\right)=\sqrt{13.8092\left(\frac{1}{18}+\frac{0.8061^{2}}{3.0106}\right)}=1.9358
\end{gathered}
$$

Test statistic:

$$
t_{0}=\frac{\hat{\beta}_{0}-0}{\operatorname{se}\left(\hat{\beta}_{0}\right)}=\frac{0.4705}{1.9358}=0.2431
$$

$$
\text { Under } H_{0} \text { true, } T_{0} \sim t_{16}
$$

P-value:
$2 \times P\left(T_{0}>0.2431\right)=0.8110$

Fail to reject H_{0}. We do not have evidence to suggest the intercept is anything other than zero. (So, a watershed with no roadways essentially has a chloride concentration of $0 \mathrm{mg} / \mathrm{liter}$.)

MINITAB OUTPUT:
Regression Analysis: y versus x

The regression equation is
$\mathrm{y}=0.47+20.6 \mathrm{x}$

Predictor	Coef	SE Coef	T	P
Constant	0.470	1.936	0.24	0.811
x	20.567	2.142	9.60	0.000
S $=3.71607$				

Correlation

Section 11-8

- Earlier we discussed the correlation coefficient between Y and X, denoted as ρ, where

$$
\rho=\frac{\operatorname{cov}(X, Y)}{\sqrt{V(X) V(Y)}}=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}} .
$$

- For example, in the bivariate normal:

- ρ is a parameter of interest to be estimated from the data.
- The sample correlation coefficient r (denoted R in our book) measures the strength of a linear relationship in the observed data.
- r has a number of different formulas...

$$
\begin{aligned}
r & =\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}} \\
& =\frac{S_{X}}{S_{Y}} \cdot \hat{\beta}_{1}
\end{aligned}
$$

- The sample correlation coefficient r estimates the population correlation coefficient ρ
- Possible values for r :

Sample Correlation Coefficient (r)

Correlation Example: Cigarette data
> correlation(Tar,Nic)
0.9766076

With r near +1 , this shows a very strong positive linear association.

- $r \ldots$
- is a unitless measure, and $-1 \leq r \leq 1$
- near -1 or +1 shows a strong linear relationship
- near 0 suggests no relationship
- a positive r is associated with an estimated positive slope
- a negative r is associated with an estimated negative slope
$-r$ is NOT used to measure strength of a curved line
- In simple linear regression, r^{2} is the Coefficient of Determination R^{2} discussed next.

Simple Linear Regression

Total corrected sum of squares $\left(S S_{T}\right)$
Secton 11-4.2

- We use the total corrected sum of squares of Y, or $S S_{T}$, to quantify the total variability in the response.

$$
S S_{T}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
$$

- Total sum of squares quantifies the overall squared distance of the Y-values from the overall mean of the responses \bar{Y}

We can look at this graphically...

- For regression, we can 'decompose' the distance of an observation y_{i} from the overall mean \bar{y} and write:

$$
y_{i}-\bar{y}=\underbrace{\underbrace{\left.y_{i}-\hat{y}_{i}\right)}_{\begin{array}{c}
\text { distance from } \\
\text { fitted line to } \\
\text { overall mean }
\end{array}}+\underbrace{\left(\hat{y}_{i}-\bar{y}\right)}}_{\begin{array}{l}
\text { distance from } \\
\text { observation to } \\
\text { fitted line }
\end{array}}
$$

- Which leads to the equation:

$$
\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}+\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}
$$

Or

$$
S S_{T}=S S_{E}+S S_{R}
$$

where $S S_{R}$ is the regression sum of squares

- Total variability has been decomposed into "explained" variability $\left(S S_{R}\right)$ and "unexplained" variability $\left(S S_{E}\right)$
- In general, when the proportion of total variability that is explained is high, we have a good fitting model
- The proportion of total variability that is explained by the model is called the Coefficient of Determination (denoted R^{2}):
$-R^{2}=\frac{S S_{R}}{S S_{T}}$
$-R^{2}=1-\frac{S S_{E}}{S S_{T}}$
$-0 \leq R^{2} \leq 1$
$-R^{2}$ near 1 suggests a good fit to the data
- if $R^{2}=1$, ALL points fall exactly on the line
- Different disciplines have different views on what is a high R^{2}, in other words what is a good model...
* social scientists may get excited about an R^{2} near 0.30
* a researcher with a designed experiment may want to see an R^{2} near 0.80 or higher

NOTE: Coefficient of Determination is discussed in section 11-7.2

Example: The chloride concentration data (revisited)

MINITAB OUTPUT:
Regression Analysis: y versus x
The regression equation is
$\mathrm{y}=0.47+20.6 \mathrm{x}$

Predictor	Coef	SE Coef	T	P
Constant	0.470	1.936	0.24	0.811
x	20.567	2.142	9.60	0.000

$S=3.71607 \quad R-S q=85.22 \%$

Coefficient of Determination: $R^{2}=\frac{S S_{R}}{S S_{T}}=0.8522$

$\boldsymbol{R}^{\mathbf{2}}$ interpretation:

85.22% of the total variability in chloride concentration is explained by the model (or by the percentage of roadway area in watershed, since this is the only predictor in the model).

