Chapter 11: SIMPLE LINEAR
REGRESSION (SLR)
AND CORRELATION

Part 3: Hypothesis tests for 5y and (4
Coefficient of Determination, R?

Sections 11-4 & 11-7.2

e For SLR, a common hypothesis test is the
test for a linear relationship between X and Y.

Hy:51=0 (no linear relationship)
Hy: 01 #0

e Under the assumption ¢; u N (0,02), we
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e Test of interest
Hy: 061 =0 (no linear relationship)

Hy: 061 #0
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e Since we will be estimating o“, we will use a

t-statistic:
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Under Hy true, Ty ~ t,,—o.

51—0
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From our observed test statistic ¢y, we can
compute a p-value and make decison on the
hypothesis test.



Example: The chloride concentration data
(revisited)

Testing for a linear relationship between chlo-
ride concentration (Y) and % of watershed in
roadways (X)

Hy:61=0
Hy:pB1#0

Estimates:

By = 20.567

<B ) 130810092 2 1417

Test statistic:

B1—0  20.567
se(By) 21417

t) = = 9.603

Under Hy true, Ty ~ tig
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P-value:
2 x P(Ty > 9.603) = 4.81 x 107°
{very small}

Reject Hy.

There IS statistically significant evidence that
the slope is not 0, so there is evidence of a
linear relationship between chloride concen-
tration and % of watershed in roadways.

chiorige concentrauon (mgy/iuter)
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e Similarly, we can run a hypothesis test that
the intercept equals 0...

Hy: =0
Hy: Gy #0

The test statistic:
Bo—0 _ Bo

se(f) %;2 (3+ 5 2—)

Under Hy true, Ty ~ t,,_o.

1y =

e Example: The chloride concentration data
(revisited)

Testing if the intercept is zero.

Hy: 6p=0
Hy: By #0



Estimates:

By = 0.4705

Test statistic:

3 — 0  0.4705
_ Y 0.9431

to

Under Hy true, Ty ~ tig

P-value:
2 x P(Tp > 0.2431) = 0.8110

Fail to reject Hy. We do not have evidence to
suggest the intercept is anything other than
7€10. (So, a watershed with no roadways essentially

has a chloride concentration of 0 mg/liter.)



MINITAB OUTPUT:

Regression Analysis: y versus X

The regression equation 1is
y = 0.47 + 20.6 x

Predictor Coef SE Coef
Constant 0.470 1.936
X 20.567 2.142

S = 3.71607

T P
0.24 0.811
9.60 0.000



Correlation
Section 11-8

e [arlier we discussed the correlation coeffi-
cient between Y and X, denoted as p, where
cov(X,Y)  oxy

P VIXVY)  oxoy

e For example, in the bivariate normal:

View from above (topo map)

p=0.95

e p is a parameter of interest to be estimated
from the data.



e The sample correlation coefficient r
(denoted R in our book) measures the
strength of a linear relationship
in the observed data.

e 1 has a number of different formulas...

(X — X)(Y; - V)
Jz XS (Y, = V)2

_Sx
Xﬂl

e The sample correlation coefficient r estimates
the population correlation coeflicient p



e Possible values for r:

Sample Correlation Coefficient (r)

-1.0 0.0 1.0
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Strong Negative Strong Positive
Linear Linear
Relationship Very Weak Relationship
Linear
Relationship

Correlation Example: Cigarette data
> correlation(Tar,Nic) 0.9766076

2.0

NIC
0

0 5 10 15 20 25 30
Tar

With r near +1, this shows a very strong
positive linear association.
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® ...

—is a unitless measure, and —1 <r <1

—mnear -1 or +1 shows a strong linear rela-
tionship

—near 0 suggests no relationship

— a positive r is associated with an estimated
positive slope

—a negative r is associated with an esti-
mated negative slope

—r is NOT used to measure strength of a
curved line

— In simple linear regression, 7 is the Coeffi-
cient of Determination R? discussed next.
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Simple Linear Regression

Total corrected sum of squares (SST)
Secton 11-4.2

e We use the total corrected sum of squares of
Y, or SS7 , to quantify the total variabil-
ity in the response.

SSr =311y — )

e Total sum of squares quantifies the overall
squared distance of the Y-values from the
overall mean of the responses Y

We can look at this graphically...
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e For regression, we can ‘decompose’ the dis-
tance of an observation y; from the overall
mean y and write:
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distance from
observation to
fitted line

distance from
fitted line to

overall mean
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e Which leads to the equation:

n n n
i . 0
> wi—9)7=> wi— 5+ (5 — )
i=1 i=1 i=1
or

SST =55+ 5S5p
where S.Sp is the regression sum of squares

e Total variability has been decomposed into
“explained” variability (SSpk) and “unexplained”
variability (SSg)

e In general, when the proportion of total vari-
ability that is explained is high, we have a
cood fitting model
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e The proportion of total variability that is ex-
plained by the model is called the Coefli-
cient of Determination (denoted R?):

D2 SSR

R _S—ST
o ) SSE
—0< R?< 1

— R? near 1 suggests a good fit to the data

—if B2 =1, ALL points fall ezactly on the
line

— Different disciplines have different views
on what is a high R?, in other words what
is a good model...
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x social scientists may get excited about
an R? near 0.30

x a researcher with a designed experiment
may want to see an R? near 0.80 or
higher

NOTE: Coefficient of Determination is dis-
cussed 1n section 11-7.2
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Example: The chloride concentration data
(revisited)

MINITAB OUTPUT:

Regression Analysis: y versus X

The regression equation 1is
y = 0.47 + 20.6 x

Predictor Coef SE Coef T P
Constant 0.470 1.936 0.24 0.811
X 20.567 2.142 9.60 0.000
S = 3.71607 R-Sq = 85.22J

Coefficient of Determination: R? = g—gf; — (.8522

R? interpretation:

85.22% of the total variability in chloride con-
centration is explained by the model (or by the
percentage of roadway area in watershed, since
this is the only predictor in the model).
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