$\frac{\text{Chapter 11: SIMPLE LINEAR}}{\text{REGRESSION (SLR)}} \\ \frac{\text{AND CORRELATION}}{\text{AND CORRELATION}}$

Part 3: Hypothesis tests for β_0 and β_1 Coefficient of Determination, R^2 Sections 11-4 & 11-7.2

• For SLR, a common hypothesis test is the test for a linear relationship between X and Y.

$$H_0: \beta_1 = 0$$
 (no linear relationship)
 $H_1: \beta_1 \neq 0$

• Under the assumption $\epsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$, we have

$$\hat{\beta}_0 \sim N\left(\beta_0, \ \sigma^2\left(\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)\right)$$

$$\hat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)$$

• Test of interest

$$H_0: \beta_1 = 0$$
 (no linear relationship)

 $H_1: \beta_1 \neq 0$

• Since we will be estimating σ^2 , we will use a t-statistic:

$$T_0 = \frac{\hat{\beta}_1 - 0}{se(\hat{\beta}_1)} = \frac{\hat{\beta}_1}{\sqrt{\frac{\hat{\sigma}^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}}$$

Under H_0 true, $T_0 \sim t_{n-2}$.

From our observed test statistic t_0 , we can compute a p-value and make decison on the hypothesis test.

Example: The chloride concentration data (revisited)

Testing for a linear relationship between chloride concentration (Y) and % of watershed in roadways (X)

$$H_0: \beta_1 = 0$$

$$H_1: \beta_1 \neq 0$$

Estimates:

$$\hat{\beta}_1 = 20.567$$

$$se(\hat{\beta}_1) = \sqrt{\frac{13.8092}{3.0106}} = 2.1417$$

Test statistic:

$$t_0 = \frac{\hat{\beta}_1 - 0}{se(\hat{\beta}_1)} = \frac{20.567}{2.1417} = 9.603$$

Under H_0 true, $T_0 \sim t_{16}$

P-value:

$$2 \times P(T_0 > 9.603) = 4.81 \times 10^{-8}$$
 {very small}

Reject H_0 .

There <u>IS</u> statistically significant evidence that the slope is not 0, so there is evidence of a linear relationship between chloride concentration and % of watershed in roadways.

• Similarly, we can run a hypothesis test that the intercept equals 0...

$$H_0: \beta_0 = 0$$

$$H_1: \beta_0 \neq 0$$

The test statistic:

$$T_0 = \frac{\hat{\beta}_0 - 0}{se(\hat{\beta}_0)} = \frac{\hat{\beta}_0}{\sqrt{\hat{\sigma}^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)}}$$

Under H_0 true, $T_0 \sim t_{n-2}$.

• **Example**: The chloride concentration data (revisited)

Testing if the intercept is zero.

$$H_0: \beta_0 = 0$$

$$H_1: \beta_0 \neq 0$$

Estimates:

$$\hat{\beta}_0 = 0.4705$$

$$se(\hat{\beta}_0) = \sqrt{13.8092 \left(\frac{1}{18} + \frac{0.8061^2}{3.0106}\right)} = 1.9358$$

Test statistic:

$$t_0 = \frac{\hat{\beta}_0 - 0}{se(\hat{\beta}_0)} = \frac{0.4705}{1.9358} = 0.2431$$

Under H_0 true, $T_0 \sim t_{16}$

P-value:

$$2 \times P(T_0 > 0.2431) = 0.8110$$

Fail to reject H_0 . We do not have evidence to suggest the intercept is anything other than zero. (So, a watershed with no roadways essentially has a chloride concentration of 0 mg/liter.)

MINITAB OUTPUT:

Regression Analysis: y versus x

The regression equation is y = 0.47 + 20.6 x

Predictor	Coef	SE Coef	T	Р
Constant	0.470	1.936	0.24	0.811
X	20.567	2.142	9.60	0.000

S = 3.71607

Correlation

Section 11-8

• Earlier we discussed the correlation coefficient between Y and X, denoted as ρ , where

$$\rho = \frac{cov(X,Y)}{\sqrt{V(X)V(Y)}} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}.$$

• For example, in the bivariate normal:

 $\rho = 0.95$

• ρ is a parameter of interest to be estimated from the data.

- The sample correlation coefficient r (denoted R in our book) measures the **strength of a linear relationship** in the observed data.
- r has a number of different formulas...

$$r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2 \sum_{i=1}^{n} (Y_i - \bar{Y})^2}}$$

$$=\frac{S_X}{S_Y}\cdot\hat{\beta}_1$$

• The sample correlation coefficient r estimates the population correlation coefficient ρ

\bullet Possible values for r:

Sample Correlation Coefficient (r)

Correlation Example: Cigarette data

> correlation(Tar,Nic)

0.9766076

With r near +1, this shows a very strong positive linear association.

- r...
 - is a unitless measure, and $-1 \le r \le 1$
 - near -1 or +1 shows a strong linear relationship
 - near 0 suggests no relationship
 - a positive r is associated with an estimated positive slope
 - a negative r is associated with an estimated negative slope
 - -r is NOT used to measure strength of a curved line
 - In simple linear regression, r^2 is the Coefficient of Determination R^2 discussed next.

Simple Linear Regression

Total corrected sum of squares (SS_T) Secton 11-4.2

• We use the total corrected sum of squares of Y, or SS_T , to quantify the **total variability in the response**.

$$SS_T = \sum_{i=1}^n (y_i - \bar{y})^2$$

ullet Total sum of squares quantifies the overall squared distance of the Y-values from the overall mean of the responses \bar{Y}

We can look at this graphically...

• For regression, we can 'decompose' the distance of an observation y_i from the overall mean \bar{y} and write:

$$y_i - \bar{y} = (y_i - \hat{y}_i) + (\hat{y}_i - \bar{y})$$

distance from observation to fitted line distance from fitted line to overall mean

• Which leads to the equation:

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

or

$$SS_T = SS_E + SS_R$$

where SS_R is the regression sum of squares

- Total variability has been decomposed into "explained" variability (SS_R) and "unexplained" variability (SS_E)
- In general, when the proportion of total variability that is explained is high, we have a good fitting model

• The proportion of total variability that is explained by the model is called the **Coefficient of Determination** (denoted R^2):

$$-R^2 = \frac{SS_R}{SS_T}$$

$$-R^2 = 1 - \frac{SS_E}{SS_T}$$

$$-0 \le R^2 \le 1$$

- $-R^2$ near 1 suggests a good fit to the data
- $-if R^2 = 1$, ALL points fall *exactly* on the line
- Different disciplines have different views on what is a $high R^2$, in other words what is a good model...

- * social scientists may get excited about an R^2 near 0.30
- * a researcher with a designed experiment may want to see an \mathbb{R}^2 near 0.80 or higher

NOTE: Coefficient of Determination is discussed in section 11-7.2

Example: The chloride concentration data (revisited)

MINITAB OUTPUT:

Regression Analysis: y versus x

The regression equation is y = 0.47 + 20.6 x

$$S = 3.71607$$
 $R-Sq = 85.22\%$

Coefficient of Determination: $R^2 = \frac{SS_R}{SS_T} = 0.8522$

R^2 interpretation:

85.22% of the total variability in chloride concentration is explained by the model (or by the percentage of roadway area in watershed, since this is the only predictor in the model).