Chapter 12 Reactions of Arenes: Electrophilic and Nucleophilic Aromatic Substitution

Electrophilic aromatic substitutions include:

Nitration

Sulfonation

Halogenation

Friedel-Crafts Alkylation Friedel-Crafts Acylation

Equation
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
H + $HOSO_2OH$ \xrightarrow{heat} H_2O Benzene Sulfuric acid Benzenesulfonic acid Water (100%)
Benzene Bromine Bromobenzene Hydrogen bromide
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
H + CH ₃ CH ₂ CCI AlCl ₃ + HCI Benzene Propanoyl 1-Phenyl-1- Hydrogen

12.2. Mechanistic Principles of Electrophilic Aromatic Substitution

Step 1: attack of electrophile on π -electron system of aromatic ring.

Highly endothermic.

Carbocation is allylic, but not aromatic.

Step 2: loss of a proton from the carbocation intermediate

Highly exothermic.

This step restores aromaticity of ring.

Based on this general mechanism:

➤ What remains is to identify the electrophile in nitration, sulfonation, halogenation, Friedel-Crafts alkylation, and Friedel-Crafts acylation to establish the mechanism of specific electrophilic aromatic substitutions.

12.3. Nitration of Benzene

Electrophile is nitronium ion

Step 1: attack of nitronium cation on π -electron system of aromatic ring

Step 2: loss of a proton from the carbocation intermediate

Chem 211 B. R. Kaafarani 9

Where does nitronium ion come from?

12.4. Sulfonation of Benzene

Several electrophiles present: a major one is sulfur trioxide.

Step 1: attack of sulfur trioxide on π -electron system of aromatic ring

Step 2: loss of a proton from the carbocation intermediate

Chem 211 B. R. Kaafarani 12

Step 3: protonation of benzenesulfonate ion

Benzenesulfonic acid

12.5. Halogenation of Benzene

➤ Electrophile is a Lewis acid-Lewis base. It is a complex between FeBr₃ and Br₂.

The Br₂-FeBr₃ Complex

Lewis base

Lewis acid

Complex

➤ The Br₂-FeBr₃ complex is more electrophilic than Br₂ alone.

Step 1: attack of Br_2 -Fe Br_3 complex on π -electron system of aromatic ring

Step 2: loss of a proton from the carbocation intermediate

Chem 211 B. R. Kaafarani 16

12.6. Friedel-Crafts Alkylation of Benzene

$$+(CH_3)_3CCI \longrightarrow C(CH_3)_3 + HCI$$

Electrophile is *tert*-butyl cation

$$H_3C$$
 C
 C
 C
 C
 C
 C
 C
 C

Role of AlCl₃

➤ AlCl₃ acts as a Lewis acid to promote ionization of the alkyl halide.

Step 1: attack of tert-butyl cation on π -electron system of aromatic ring

Step 2: loss of a proton from the carbocation intermediate

$$H \xrightarrow{H} C(CH_3)_3$$
 $H \xrightarrow{H} C(CH_3)_3$
 $H \xrightarrow{H} H$

Chem 211 B. R. Kaafarani 19

Rearrangements in Friedel-Crafts Alkylation

➤ Carbocations are intermediates. Therefore, rearrangements can occur!

H +
$$(CH_3)_2CHCH_2CI$$
 A $(CI_3)_3$ A $(CI_3)_3$ Isobutyl chloride tert-Butylbenzene (66%)

➤ Isobutyl chloride is the alkyl halide. But *tert*-butyl cation is the electrophile.

Rearrangements in Friedel-Crafts Alkylation

$$H_3C$$
 CH_2
 CH_3
 H_3C
 CH_2
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

B. R. Kaafarani

Reactions Related to Friedel-Crafts Alkylation

$$H_2SO_4$$

Cyclohexylbenzene (65-68%)

Cyclohexene is protonated by sulfuric acid, giving cyclohexyl cation which attacks the benzene ring.

12.7. Friedel-Crafts Acylation of Benzene

Electrophile is an acyl cation

$$CH_3CH_2C = \overset{\bullet}{O} : \longleftarrow CH_3CH_2C = \overset{\bullet}{O} :$$

Step 1: attack of the acyl cation on π -electron system of aromatic ring

Step 2: loss of a proton from the carbocation intermediate

24

Acid Anhydrides

> Acid Anhydrides can be used instead of acyl chlorides.

Acetophenone (76-83%)

12.8. Synthesis of Alkylbenzenes by Acylation-Reduction

➤ Acylation-Reduction permits primary alkyl groups to be attached to an aromatic ring.

$$\begin{array}{c|c}
 & O \\
 & H \\
\hline
 & RCCI \\
\hline
 & AICI_3
\end{array}$$

$$\begin{array}{c}
 & CH_2R \\
\hline
 & Zn(Hg), \\
 & HCI
\end{array}$$

➤ Reduction of aldehyde and ketone carbonyl groups using Zn(Hg) and HCl is called the *Clemmensen reduction*.

Chem 211 B. R. Kaafarani 26

Acylation-Reduction

➤ Acylation-Reduction permits primary alkyl groups to be attached to an aromatic ring.

➤ Reduction of aldehyde and ketone carbonyl groups by heating with H₂NNH₂ and KOH is called the *Wolff-Kishner reduction*.

Example: Prepare isobutylbenzene

No! Friedel-Crafts alkylation of benzene using isobutyl chloride fails because of rearrangement.

Recall

+
$$(CH_3)_2CHCH_2CI$$

AICI₃

AICI₃

Isobutyl chloride

 $tert$ -Butylbenzene

(66%)

Use Acylation-Reduction Instead

Chem 211

12.9 Rate and Regioselectivity in Electrophilic Aromatic Substitution

A substituent already present on the ring can affect both the *rate* and *regioselectivity* of electrophilic aromatic substitution.

Effect on Rate

- ➤ Activating substituents increase the rate of EAS compared to that of benzene.
- Deactivating substituents decrease the rate of EAS compared to benzene.

Methyl Group

Toluene undergoes nitration 20-25 times faster than benzene. A methyl group is an activating substituent.

Trifluoromethyl Group

Trifluoromethyl)benzene undergoes nitration 40,000 times more slowly than benzene. A trifluoromethyl group is a deactivating substituent.

Effect on Regioselectivity

- ➤ Ortho-para directors direct an incoming electrophile to positions ortho and/or para to themselves.
- ➤ Meta directors direct an incoming electrophile to positions meta to themselves.

Nitration of Toluene

- > o- and p-nitrotoluene together comprise 97% of the product.
- > A methyl group is an ortho-para director.

Nitration of (Trifluoromethyl)benzene

- > m-nitro(trifluoromethyl)benzene comprises 91% of the product.
- > A trifluoromethyl group is a *meta* director.

12.10. Rate and Regioselectivity in the Nitration of Toluene

Carbocation Stability Controls Regioselectivity

more stable

less stable

36

R. Kaafarani

ortho Nitration of Toluene

The rate-determining intermediate in the *ortho* nitration of toluene has tertiary carbocation character.

Chem 211 B. R. Kaafarani 37

para Nitration of Toluene

This resonance form is a tertiary carbocation

➤ The rate-determining intermediate in the *para* nitration of toluene has tertiary carbocation character.

meta Nitration of Toluene

All the resonance forms of the rate-determining intermediate in the *meta* nitration of toluene have their positive charge on a secondary carbon.

Figure 12.4: Comparative Energy Diagrams for Reaction of Nitronium Ion with Benzene and Toluene

Nitration of Toluene: Partial Rate Factors

- ➤ All of the available ring positions in toluene are more reactive than a single position of benzene.
- A methyl group activates all of the ring positions but the effect is greatest at the *ortho* and *para* positions. Steric hindrance by the methyl group makes each *ortho* position slightly less reactive than *para*.

Nitration of Toluene vs. tert-Butylbenzene

- > tert-Butyl is activating and ortho-para directing.
- > tert-Butyl crowds the ortho positions and decreases the rate of attack at those positions.

Generalization

➤ All alkyl groups are activating and *ortho-para* directing.

Theory of Directing Effects

Nitration of anisole

meta attack

$$\begin{array}{c|ccccc}
OCH_3 & OCH_3 & OCH_3 \\
+NO_2^+ & H & H \\
NO_2 & NO_2 & NO_2 & NO_2
\end{array}$$

Chem 211 B. R. Kaafarani 43

12.11. Rate and Regioselectivity in the Nitration of (Trifluoromethyl)benzene

A Key Point

$$H_3C-C+$$
 F_3C-C+

- A methyl group is electron-donating and stabilizes a carbocation.
- ➤ Because F is so electronegative, a CF₃ group destabilizes a carbocation.

Carbocation Stability Controls Regioselectivity

$$CF_3$$
 NO_2 H H H H H NO_2 gives ortho gives para

less stable

more stable

ortho Nitration of (Trifluoromethyl)benzene

➤ One of the resonance forms of the rate-determining intermediate in the *ortho* nitration of (trifluoromethyl)-benzene is strongly destabilized.

para Nitration of (Trifluoromethyl)benzene

➤ One of the resonance forms of the rate-determining intermediate in the *para* nitration of (trifluoromethyl)-benzene is strongly destabilized.

meta Nitration of (Trifluoromethyl)benzene

None of the resonance forms of the rate-determining intermediate in the *meta* nitration of (trifluoromethyl)-benzene have their positive charge on the carbon that bears the CF₃ group.

Figure 12.5: Comparative Energy Diagrams for Reaction of Nitronium Ion with Benzene and (Trifluoromethyl)benzene

Nitration of (Trifluoromethyl)benzene: Partial Rate Factors

- All of the available ring positions in (trifluoromethyl)-benzene are much less reactive than a single position of benzene.
- \triangleright A CF₃ group deactivates all of the ring positions but the degree of deactivation is greatest at the *ortho* and *para* positions.

Theory of Directing Effects

Nitration of nitrobenzene

meta attack

para attack

$$\begin{array}{c}
NO_2 \\
+NO_2^+ \\
+NO_2^+ \\
+NO_2
\end{array}$$

$$\begin{array}{c}
NO_2 \\
+NO_2 \\
+NO_2
\end{array}$$

$$\begin{array}{c}
+NO_2 \\
+NO_2
\end{array}$$
The most disfavored contributing structure

12.12 Substituent Effects in Electrophilic Aromatic Substitution: Activating Substituents

Table 12.2

Classification of Substituents in Electrophilic Aromatic Substitution Reactions

Very strongly activating

Strongly activating

Activating

Standard of comparison is H

Deactivating

Strongly deactivating

Very strongly deactivating

Generalizations

- 1. All activating substituents are *ortho-para* directors.
- 2. Halogen substituents are slightly deactivating but ortho-para directing.
- 3. Strongly deactivating substituents are *meta* directors.

Electron-Releasing Groups (ERGs)

➤ Electron-Releasing Groups (ERGs) are *ortho-para* directing and activating.

- > ERGs include —R, —Ar, and —C=C.
- > ERGs such as —OH, and —OR are strongly activating.

Nitration of Phenol

> Occurs about 1000 times faster than nitration of benzene.

Bromination of Anisole

FeBr₃ catalyst is not necessary!

Oxygen Lone Pair Stabilizes Intermediate

all atoms have octets

Electron-Releasing Groups (ERGs)

ERGs with a lone pair on the atom directly attached to the ring are *ortho-para* directing and strongly activating.

Examples

All of these are *ortho-para* directing and strongly to very strongly activating.

Lone Pair Stabilizes Intermediates for ortho and para Substitution

comparable stabilization not possible for intermediate leading to *meta* substitution.

12.13 Substituent Effects in Electrophilic Aromatic Substitution: Strongly Deactivating Substituents

Electron-withdrawing Groups (EWGs) Destabilize Intermediates for *ortho* and para Substitution

—CF₃ is a powerful EWG. It is strongly deactivating and *meta* directing.

Many EWGs Have a Carbonyl Group Attached Directly to the Ring

All of these are *meta* directing and strongly deactivating.

Nitration of Benzaldehyde

$$\begin{array}{c|c}
O_2N \\
\hline
O_2$$

Chlorination of Benzoylchloride

Chem 211 B. R. Kaafarani 65

Disulfonation of Benzene

Bromination of Nitrobenzene

Chem 211 B. R. Kaafarani 66

12.14 Substituent Effects in Electrophilic Aromatic Substitution: Halogens

F, Cl, Br, and I are *ortho-para* directing, but deactivating

Nitration of Chlorobenzene

➤ The rate of nitration of chlorobenzene is about 30 times slower than that of benzene.

Nitration of Toluene vs. Chlorobenzene

Halogens

- Thus, for the halogens, the inductive and resonance effects run counter to each other, but the former is somewhat stronger.
- ➤ The net effect is that halogens are deactivating but *ortho-para* directing.

12.15. Multiple Substituent Effects The Simplest Case

All possible EAS sites may be equivalent

Chem 211 B. R. Kaafarani 71

99%

Another Straightforward Case

$$CH_3$$
 Br_2
 Fe
 NO_2
 Br_2
 Br

Directing effects of substituents reinforce each other; substitution takes place *ortho* to the methyl group and *meta* to the nitro group.

Generalization: Regioselectivity is controlled by the most activating substituent.

The Simplest Case

All possible EAS sites may be equivalent

Chem 211 B. R. Kaafarani 73

When activating effects are similar...

$$CH_3$$
 HNO_3
 H_2SO_4
 $C(CH_3)_3$
 $C(CH_3)_3$
 $C(CH_3)_3$
 $C(CH_3)_3$
 $C(CH_3)_3$

Substitution occurs ortho to the smaller group.

Steric effects control regioselectivity when electronic effects are similar

$$CH_3$$
 HNO_3
 H_2SO_4
 CH_3
 $CH_$

Position between two substituents is last position to be substituted.

12.16 Regioselective Synthesis of Disubstituted Aromatic Compounds

Factors to Consider

Order of introduction of substituents to ensure correct orientation.

Synthesis of *m*-Bromoacetophenone

➤ If bromine is introduced first, *p*-bromoacetophenone is major product.

Synthesis of *m*-Bromoacetophenone

Factors to Consider

- Order of introduction of substituents to ensure correct orientation.
- Friedel-Crafts reactions (alkylation, acylation) cannot be carried out on strongly deactivated aromatics.
- > Sometimes electrophilic aromatic substitution must be combined with a functional group transformation.

Synthesis of *m*-Nitroacetophenone

➤ If NO₂ is introduced first, the next step (Friedel-Crafts acylation) fails.

Synthesis of *m*-Nitroacetophenone

$$\begin{array}{c|c}
O_2N & O \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& &$$

Synthesis of *p*-Nitrobenzoic Acid from Toluene

Chem 211 B. R. Kaafarani 82

Synthesis of *p*-Nitrobenzoic Acid from Toluene

Chem 211 B. R. Kaafarani 83

12.17. Substitution in Naphthalene

$$H$$
 H
 H
 H
 H
 H

- Two sites possible for electrophilic aromatic substitution.
- ➤ All other sites at which substitution can occur are equivalent to 1 and 2.

EAS in Naphthalene

This is faster at C-1 than at C-2.

EAS in Naphthalene

When attack is at C-1, carbocation is stabilized by allylic resonance; benzenoid character of other ring is maintained.

EAS in Naphthalene

➤ When attack is at C-2, in order for carbocation to be stabilized by allylic resonance, the benzenoid character of the other ring is sacrificed.

12.18. Substitution in Heterocyclic Aromatic Compounds

Generalization

- > There is none.
- There are so many different kinds of heterocyclic aromatic compounds that no generalization is possible.
- > Some heterocyclic aromatic compounds are very reactive toward electrophilic aromatic substitution, others are very unreactive.

Pyridine

- Pyridine is very unreactive; it resembles nitrobenzene in its reactivity.
- Presence of electronegative atom (N) in ring causes π electrons to be held more strongly than in benzene.

Pyridine

$$\begin{array}{c|c} & SO_3, H_2SO_4 \\ \hline & HgSO_4, 230^{\circ}C \end{array}$$

- > Pyridine can be sulfonated at high temperature.
- > EAS takes place at C-3.

Pyrrole, Furan, and Thiophene

- \triangleright Have 1 less ring atom than benzene or pyridine to hold same number of π electrons (6).
- $\triangleright \pi$ electrons are held less strongly.
- These compounds are relatively reactive toward EAS.

Example: Furan

Undergoes EAS readily; C-2 is most reactive position.

12.19. Nucleophilic Aromatic Substitution

- Aryl halides are halides in which the halogen is attached directly to an aromatic ring.
- Carbon-halogen bonds in aryl halides are shorter and stronger than carbon-halogen bonds in alkyl halides.
- Because the carbon-halogen bond is stronger, aryl halides react more slowly than alkyl halides when carbon-halogen bond breaking is rate determining.

12.20. Nucleophilic Substitution in Nitro-Substituted Aryl Halides

1. NaOH,
$$H_2O$$
,
370°C OH

2. H⁺ (97%)

Reasons for Low Reactivity

- \triangleright S_N1 not reasonable because:
 - 1) C—CI bond is strong; therefore, ionization to a carbocation is a high-energy process.
 - 2) Aryl cations are less stable than alkyl cations.

Reasons for Low Reactivity

(a) Hydroxide ion + chloromethane

Alkyl halide:

 $ightharpoonup S_N 2$ possible: Attack of the nucleophile at carbon from the side opposite the bond to the leaving group.

(b) Hydroxide ion + chlorobenzene

Aryl halide:

> S_N2 **not** reasonable because ring blocks attack of nucleophile from side opposite bond to leaving group.

But...

➤ Nitro-substituted aryl halides <u>DO</u> undergo nucleophilic aromatic substitution readily.

Effect of nitro group is cumulative

Especially when nitro group is *ortho* and/or *para* to leaving group.

Kinetics

Follows second-order rate law:
rate = k[aryl halide][nucleophile]

> Inference:

Both the aryl halide and the nucleophile are involved in rate-determining step.

Effect of leaving group

Unusual order: F > CI > Br > I

X	X	Relative Rate*
	F	312
	CI	1.0
	Br	0.8
NO_2	1	0.4

*NaOCH₃, CH₃OH, 50°C

Chem 211 B. R. Kaafarani 100

General Conclusions About Mechanism

➤ Bimolecular rate-determining step in which nucleophile attacks aryl halide.

> Rate-determining step precedes carbon-halogen bond cleavage.

➤ Rate-determining transition state is stabilized by electron-withdrawing groups (such as NO₂).

12.21 The Addition-Elimination Mechanism of Nucleophilic Aromatic Substitution

Addition-Elimination Mechanism

> Two step mechanism:

Step 1. Nucleophile attacks aryl halide and bonds to the carbon that bears the halogen.

(slow: aromaticity of ring lost in this step)

Step 2. intermediate formed in first step loses halide.

(fast: aromaticity of ring restored in this step)

Reaction

F + NaOCH₃
$$\xrightarrow{\text{CH}_3\text{OH}}$$
 + NaF NO₂ + NaF (93%)

Mechanism

Step 1

- > Bimolecular.
- Consistent with secondorder kinetics; first order in aryl halide, first order in nucleophile.

Mechanism

Step 1

Mechanism

- Intermediate is negatively charged.
- Formed faster when ring bears electron-withdrawing groups such as NO₂.

Stabilization of Rate-Determining Intermediate by Nitro Group

Mechanism

Step 2

Leaving Group Effects

F > CI > Br > I is unusual, but consistent with mechanism.

- Carbon-halogen bond breaking does not occur until after the rate-determining step.
- ➤ Electronegative F stabilizes negatively charged intermediate.

Contrasting Effect: Always check what reaction you are evaluating!

➤ In <u>electrophilic aromatic substitutions</u>, the nitro group acts as a deactivator.

Nitrobenzene and an electrophile

Cyclohexadienyl cation intermediate; nitro group is destabilizing

Product of electrophilic aromatic substitution

➤ In <u>nucleophilic aromatic substitutions</u>, the nitro group acts as an activator.

12.22 Related Nucleophilic Aromatic Substitution Reactions

Example: Hexafluorobenzene

F F NaOCH₃ F F
$$65^{\circ}$$
C F (72%)

➤ Six fluorine substituents stabilize negatively charged intermediate formed in rate-determining step and increase rate of nucleophilic aromatic substitution.

Example: 2-Chloropyridine

$$\begin{array}{c|c} & & \\ \hline \\ N & \\ CI & \\ \hline \\ CH_3OH & \\ \hline \\ 50^{\circ}C & \\ \end{array}$$

➤ 2-Chloropyridine reacts 230,000,000 times faster than chlorobenzene under these conditions.

Example: 2-Chloropyridine

Nitrogen is more electronegative than carbon, stabilizes the anionic intermediate, and increases the rate at which it is formed.

The Elimination-Addition Mechanism of Nucleophilic Aromatic Substitution: Benzyne

* Presence of a strong base!

Aryl Halides Undergo Substitution When Treated With Very Strong Bases

$$\sim$$
 CI \sim KNH₂, NH₃ \sim NH₂ \sim NH₂ (52%)

117

Regiochemistry

New substituent becomes attached to either the carbon that binds to the leaving group or to the carbon adjacent to it.

Regiochemistry

New substituent becomes attached to either the carbon that binds to the leaving group or to the carbon adjacent to it.

$$\begin{array}{c|c} CH_3 & CH_3 \\ \hline & NaNH_2, NH_3 \\ \hline & -33 \ ^{\circ}C \end{array}$$

Chem 211 B. R. Kaafarani 120

Same result using ¹⁴C label

Mechanism

Step 1

> Compound formed in this step is called benzyne.

122

Benzyne

- Benzyne has a strained triple bond.
- ➤ It cannot be isolated in this reaction, but is formed as a reactive intermediate.

Mechanism

Step 2

Angle strain is relieved. The two *sp*-hybridized ring carbons in benzyne become *sp*² hybridized in the resulting anion.

Mechanism

Step 3

Hydrolysis of Chlorobenzene

▶ ¹⁴C labeling indicates
 that the high-temperature
 reaction of
 chlorobenzene with
 NaOH goes via benzyne.

Diels-Alder Reactions of Benzyne

Other Routes to Benzyne

- ➤ Benzyne can be prepared as a reactive intermediate by methods other than treatment of chlorobenzene with strong bases.
- ➤ Another method involves loss of fluoride ion from the Grignard reagent of 1-bromo-2-fluorobenzene.

Other Routes to Benzyne

Benzyne as a Dienophile

➤ Benzyne is a fairly reactive dienophile, and gives Diels-Alder adducts when generated in the presence of conjugated dienes.

Chem 211 B. R. Kaafarani 129

m-Benzyne and *p*-Benzyne

➤ Benzynes are highly reactive. 1,2-Dehydrobenzene is the most stable in the series compared to 1,3- and 1,4dehydrobenzene.

(*o*-Benzyne)

1,3-Dehydrobenzene (*m*-Benzyne)

1,4-Dehydrobenzene (*p*-Benzyne)

Dehydrobenzene Intermediate

Bergman Cyclization

1,6-Dideuterio isomer

3,4-Dideuterio isomer

Enediyne antibiotics

Chem 211 B. R. Kaafarani 131