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CHAPTER 12 

EXAMPLES: MONTE CARLO 

SIMULATION STUDIES 
 

Monte Carlo simulation studies are often used for methodological 

investigations of the performance of statistical estimators under various 

conditions.  They can also be used to decide on the sample size needed 

for a study and to determine power (Muthén & Muthén, 2002).  Monte 

Carlo studies are sometimes referred to as simulation studies.  

 

Mplus has extensive Monte Carlo simulation facilities for both data 

generation and data analysis.  Several types of data can be generated:  

simple random samples, clustered (multilevel) data, missing data, and 

data from populations that are observed (multiple groups) or unobserved 

(latent classes). Data generation models can include random effects, 

interactions between continuous latent variables, interactions between 

continuous latent variables and observed variables, and between 

categorical latent variables.  Dependent variables can be continuous, 

censored, binary, ordered categorical (ordinal), unordered categorical 

(nominal), counts, or combinations of these variable types.  In addition, 

two-part (semicontinuous) variables and time-to-event variables can be 

generated.  Independent variables can be binary or continuous.  All or 

some of the Monte Carlo generated data sets can be saved. 

 

The analysis model can be different from the data generation model.  For 

example, variables can be generated as categorical and analyzed as 

continuous or data can be generated as a three-class model and analyzed 

as a two-class model.  In some situations, a special external Monte Carlo 

feature is needed to generate data by one model and analyze it by a 

different model.  For example, variables can be generated using a 

clustered design and analyzed ignoring the clustering.  Data generated 

outside of Mplus can also be analyzed using this special Monte Carlo 

feature.   

 

Other special features that can be used with Monte Carlo simulation 

studies include saving parameter estimates from the analysis of real data 

to be used as population parameter and/or coverage values for data 

generation in a Monte Carlo simulation study.  In addition, analysis 

results from each replication of a Monte Carlo simulation study can be 
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saved in an external file for further investigation.  Chapter 19 discusses 

the options of the MONTECARLO command.  

 

Monte Carlo data generation can include the following special features: 

 

 Single or multiple group analysis for non-mixture models 

 Missing data 

 Complex survey data 

 Latent variable interactions and non-linear factor analysis using 

maximum likelihood 

 Random slopes 

 Individually-varying times of observations 

 Linear and non-linear parameter constraints 

 Indirect effects including specific paths 

 Maximum likelihood estimation for all outcome types 

 Wald chi-square test of parameter equalities 

 Analysis with between-level categorical latent variables 

 

Multiple group data generation is specified by using the NGROUPS 

option of the MONTECARLO command and the MODEL 

POPULATION-label command.  Missing data generation is specified by 

using the PATMISS and PATPROBS options of the MONTECARLO 

command or the MISSING option of the MONTECARLO command in 

conjunction with the MODEL MISSING command.  Complex survey 

data are generated by using the TYPE=TWOLEVEL option of the 

ANALYSIS command in conjunction with the NCSIZES and CSIZES 

options of the MONTECARLO command.  Latent variable interactions 

are generated by using the | symbol of the MODEL POPULATION 

command in conjunction with the XWITH option of the MODEL 

POPULATION command.   Random slopes are generated by using the | 

symbol of the MODEL POPULATION command in conjunction with 

the ON option of the MODEL POPULATION command.  Individually-

varying times of observations are generated by using the | symbol of the 

MODEL POPULATION command in conjunction with the AT option of 

the MODEL POPULATION command and the TSCORES option of the 

MONTECARLO command. Linear and non-linear parameter constraints 

are specified by using the MODEL CONSTRAINT command.  Indirect 

effects are specified by using the MODEL INDIRECT command. 

Maximum likelihood estimation is specified by using the ESTIMATOR 

option of the ANALYSIS command.  The MODEL TEST command is 

used to test linear restrictions on the parameters in the MODEL and 
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MODEL CONSTRAINT commands using the Wald chi-square test.  

Between-level categorical latent variables are generated using the 

GENCLASSES option and specified using the CLASSES and 

BETWEEN options.   

 

Besides the examples in this chapter, Monte Carlo versions of most of 

the examples in the previous example chapters are included on the CD 

that contains the Mplus program and at www.statmodel.com.  Following 

is the set of Monte Carlo examples included in this chapter: 

 

 12.1:  Monte Carlo simulation study for a CFA with covariates 

(MIMIC) with continuous factor indicators and patterns of missing 

data 

 12.2:  Monte Carlo simulation study for a linear growth model for a 

continuous outcome with missing data where attrition is predicted by 

time-invariant covariates (MAR) 

 12.3:  Monte Carlo simulation study for a growth mixture model 

with two classes and a misspecified model 

 12.4:  Monte Carlo simulation study for a two-level growth model 

for a continuous outcome (three-level analysis) 

 12.5:  Monte Carlo simulation study for an exploratory factor 

analysis with continuous factor indicators  

 12.6 Step 1: Monte Carlo simulation study where clustered data for a 

two-level growth model for a continuous outcome (three-level 

analysis) are generated, analyzed, and saved  

 12.6 Step 2:  External Monte Carlo analysis of clustered data 

generated for a two-level growth model for a continuous outcome 

using TYPE=COMPLEX for a single-level growth model 

 12.7 Step 1: Real data analysis of a CFA with covariates (MIMIC) 

for continuous factor indicators where the parameter estimates are 

saved for use in a Monte Carlo simulation study 

 12.7 Step 2: Monte Carlo simulation study where parameter 

estimates saved from a real data analysis are used for population 

parameter values for data generation and coverage 

 12.8:  Monte Carlo simulation study for discrete-time survival 

analysis*   

 12.9:  Monte Carlo simulation study for a two-part (semicontinuous) 

growth model for a continuous outcome* 

 12.10: Monte Carlo simulation study for a two-level continuous-time 

survival analysis using Cox regression with a random intercept and a 

frailty* 
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 12.11:  Monte Carlo simulation study for a two-level mediation 

model with random slopes 

 12.12  Monte Carlo simulation study for a multiple group EFA with 

continuous factor indicators with measurement invariance of 

intercepts and factor loadings 

 

*  Example uses numerical integration in the estimation of the model.  

This can be computationally demanding depending on the size of the 

problem. 

 

MONTE CARLO DATA GENERATION  
 

Data are generated according to the following steps.  First, multivariate 

normal data are generated for the independent variables in the model.  

Second, the independent variables are categorized if requested.  The 

third step varies depending on the dependent variable type and the model 

used.  Data for continuous dependent variables are generated according 

to a distribution that is multivariate normal conditional on the 

independent variables.  For categorical dependent variables under the 

probit model using weighted least squares estimation, data for 

continuous dependent variables are generated according to a distribution 

that is multivariate normal conditional on the independent variables.  

These dependent variables are then categorized using the thresholds 

provided in the MODEL POPULATION command or the 

POPULATION option of the MONTECARLO command. For 

categorical dependent variables under the probit model using maximum 

likelihood estimation, the dependent variables are generated according to 

the probit model using the values of the thresholds and slopes from the 

MODEL POPULATION command or the POPULATION option of the 

MONTECARLO command.  For categorical dependent variables under 

the logistic model using maximum likelihood estimation, the dependent 

variables are generated according to the logistic model using the values 

of the thresholds and slopes from the MODEL POPULATION command 

or the POPULATION option of the MONTECARLO command.  For 

censored dependent variables, the dependent variables are generated 

according to the censored normal model using the values of the 

intercepts and slopes from the MODEL POPULATION command or the 

POPULATION option of the MONTECARLO command.  For 

unordered categorical (nominal) dependent variables, the dependent 

variables are generated according to the multinomial logistic model 

using the values of the intercepts and slopes from the MODEL 
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POPULATION command or the POPULATION option of the 

MONTECARLO command.  For count dependent variables, the 

dependent variables are generated according to the log rate model using 

the values of the intercepts and slopes from the MODEL POPULATION 

command or the POPULATION option of the MONTECARLO 

command.  For time-to-event variables in continuous-time survival 

analysis, the dependent variables are generated according to the loglinear 

model using the values of the intercepts and slopes from the MODEL 

POPULATION command or the POPULATION option of the 

MONTECARLO command.   

 

To save the generated data for subsequent analysis without analyzing 

them, use the TYPE=BASIC option of the ANALYSIS command in 

conjunction with the REPSAVE and SAVE options of the 

MONTECARLO command.    

 

MONTE CARLO DATA ANALYSIS 
 

There are two ways to carry out a Monte Carlo simulation study in 

Mplus: an internal Monte Carlo simulation study or an external Monte 

Carlo simulation study.  In an internal Monte Carlo simulation study, 

data are generated and analyzed in one step using the MONTECARLO 

command.  In an external Monte Carlo simulation study, multiple data 

sets are generated in a first step using either Mplus or another computer 

program.  These data are analyzed and the results summarized in a 

second step using regular Mplus analysis facilities in conjunction with 

the TYPE=MONTECARLO option of the DATA command.   

 

Internal Monte Carlo can be used whenever the analysis type and scales 

of the dependent variables remain the same for both data generation and 

analysis.  Internal Monte Carlo can also be used with TYPE=GENERAL 

when dependent variables are generated as categorical and analyzed as 

continuous.  Internal Monte Carlo can also be used when data are 

generated and analyzed for a different number of latent classes.  In all 

other cases, data from all replications can be saved and subsequently 

analyzed using external Monte Carlo.    
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MONTE CARLO OUTPUT 
 

The default output for the MONTECARLO command includes a listing 

of the input setup, a summary of the analysis specifications, sample 

statistics from the first replication, the analysis results summarized over 

replications, and TECH1 which shows the free parameters in the model 

and the starting values.  Following is an example of the output for tests 

of model fit for the chi-square test statistic.  The same format is used 

with other fit statistics. 

 
Chi-Square Test of Model Fit 

 

        Degrees of freedom                       5 

 

        Mean                                 5.253 

        Std Dev                              3.325 

        Number of successful computations      500 

 

             Proportions                   Percentiles 

        Expected    Observed         Expected       Observed 

           0.990       0.988            0.554          0.372 

           0.980       0.976            0.752          0.727 

           0.950       0.958            1.145          1.193 

           0.900       0.894            1.610          1.539 

           0.800       0.804            2.343          2.367 

           0.700       0.710            3.000          3.090 

           0.500       0.532            4.351          4.555 

           0.300       0.330            6.064          6.480 

           0.200       0.242            7.289          7.870 

           0.100       0.136            9.236          9.950 

           0.050       0.062           11.070         11.576 

           0.020       0.022           13.388         13.394 

           0.010       0.014           15.086         15.146 

 

The mean and standard deviation of the chi-square test statistic over the 

replications of the Monte Carlo analysis are given.  The column labeled 

Proportions Expected (column 1) should be understood in conjunction 

with the column labeled Percentiles Expected (column 3).  Each value in 

column 1 gives the probability of observing a chi-square value greater 

than the corresponding value in column 3.  The column 3 percentile 

values are determined from a chi-square distribution with the degrees of 

freedom given by the model, in this case 5.  In this output, the column 1 

value of 0.05 gives the probability that the chi-square value exceeds the 

column 3 percentile value (the critical value of the chi-square 

distribution) of 11.070.   Columns 2 and 4 give the corresponding values 

observed in the Monte Carlo replications.  Column 2 gives the 

proportion of replications for which the critical value is exceeded, which 
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in this example is 0.062, close to the expected value 0.05 which 

indicates that the chi-square distribution is well approximated in this 

case. The column 4 value of 11.576 is the chi-square value at this 

percentile from the Monte Carlo analysis that has 5% of the values in the 

replications above it.  The fact that it deviates little from the theoretical 

value of 11.070 is again an indication that the chi-square distribution is 

well approximated in this case.  For the other fit statistics, the normal 

distribution is used to obtain the critical values of the test statistic. 

 

The summary of the analysis results includes the population value for 

each parameter, the average of the parameter estimates across 

replications, the standard deviation of the parameter estimates across 

replications, the average of the estimated standard errors across 

replications, the mean square error for each parameter (M.S.E.), 95 

percent coverage, and the proportion of replications for which the null 

hypothesis that a parameter is equal to zero is rejected at the .05 level.   

 
MODEL RESULTS 

 

                           ESTIMATES              S. E.     M. S. E.  95%  % Sig 

              Population   Average   Std. Dev.   Average             Cover Coeff 

 I        | 

  Y1               1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000 

  Y2               1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000 

  Y3               1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000 

  Y4               1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000 

 

 S        | 

  Y1               0.000     0.0000     0.0000     0.0000     0.0000 1.000 0.000 

  Y2               1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000 

  Y3               2.000     2.0000     0.0000     0.0000     0.0000 1.000 0.000 

  Y4               3.000     3.0000     0.0000     0.0000     0.0000 1.000 0.000 

 

 I        WITH 

  S                0.000     0.0006     0.0301     0.0306     0.0009 0.958 0.042 

 

 Means 

  I                0.000    -0.0006     0.0473     0.0460     0.0022 0.950 0.050 

  S                0.200     0.2015     0.0278     0.0274     0.0008 0.946 1.000 

 

Variances 

  I                0.500     0.4969     0.0704     0.0685     0.0050 0.936 1.000 

  S                0.200     0.1997     0.0250     0.0237     0.0006 0.930 1.000 

 

 Residual Variances 

  Y1               0.500     0.5016     0.0683     0.0657     0.0047 0.934 1.000 

  Y2               0.500     0.5018     0.0460     0.0451     0.0021 0.958 1.000 

  Y3               0.500     0.5025     0.0515     0.0532     0.0027 0.956 1.000 

  Y4               0.500     0.4991     0.0932     0.0918     0.0087 0.946 1.000 
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The column labeled Population gives the population parameter values 

that are given in the MODEL command, the MODEL COVERAGE 

command, or using the COVERAGE option of the MONTECARLO 

command.  The column labeled Average gives the average of the 

parameter estimates across the replications of the Monte Carlo 

simulation study.  These two values are used to evaluate parameter bias.  

To determine the percentage of parameter bias, subtract the population 

parameter value from the average parameter value, divide this number by 

the population parameter value, and multiply by 100.  The parameter 

bias for the variance of i would be 

 

100 (.4969 - .5000) / .5000 =  -0.62. 

 

This results in a bias of -0.62 percent. 

 

The column labeled Std. Dev. gives the standard deviation of the 

parameter estimates across the replications of the Monte Carlo 

simulation study.  When the number of replications is large, this is 

considered to be the population standard error.  The column labeled S.E. 

Average gives the average of the estimated standard errors across 

replications of the Monte Carlo simulation study.  To determine standard 

error bias, subtract the population standard error value from the average 

standard error value, divide this number by the population standard error 

value, and multiply by 100. 

 

The column labeled M.S.E. gives the mean square error for each 

parameter.  M.S.E. is equal to the variance of the estimates across the 

replications plus the square of the bias. For example, the M.S.E. for the 

variance of i is equal to 0.0704 squared plus (0.4969 - 0.5) squared 

which is equal to 0.00497 or 0.0050.  The column labeled 95% Cover 

gives the proportion of replications for which the 95% confidence 

interval contains the population parameter value.  This gives the 

coverage which indicates how well the parameters and their standard 

errors are estimated.  In this output, all coverage values are close to the 

correct value of 0.95.     

 

The column labeled % Sig Coeff gives the proportion of replications for 

which the null hypothesis that a parameter is equal to zero is rejected at 

the .05 level (two-tailed test with a critical value of 1.96).  The statistical 

test is the ratio of the parameter estimate to its standard error, an 

approximately normally distributed quantity (z-score) in large samples.  
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For parameters with population values different from zero, this value is 

an estimate of power with respect to a single parameter, that is, the 

probability of rejecting the null hypothesis when it is false.  For 

parameters with population values equal to zero, this value is an estimate 

of Type I error, that is, the probability of rejecting the null hypothesis 

when it is true.  In this output, the power to reject that the slope growth 

factor mean is zero is estimated as 1.000, that is, exceeding the standard 

of 0.8 power.   

      

MONTE CARLO EXAMPLES 
 

Following is the set of Monte Carlo simulation study examples.  Besides 

the examples in this chapter, Monte Carlo versions of most of the 

examples in the previous example chapters are included on the CD that 

contains the Mplus program and at www.statmodel.com.   
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EXAMPLE 12.1: MONTE CARLO SIMULATION STUDY FOR 

A CFA WITH COVARIATES (MIMIC) WITH CONTINUOUS 

FACTOR INDICATORS AND PATTERNS OF MISSING DATA 
 

 
TITLE: this is an example of a Monte Carlo 

simulation study for a CFA with covariates 

(MIMIC) with continuous factor indicators 

and patterns of missing data  

MONTECARLO: 

 NAMES ARE y1-y4 x1 x2; 

 NOBSERVATIONS = 500; 

 NREPS = 500; 

 SEED = 4533; 

 CUTPOINTS = x2(1);  

 PATMISS = y1(.1) y2(.2) y3(.3) y4(1) | 

           y1(1) y2(.1) y3(.2) y4(.3); 

 PATPROBS = .4 | .6; 

MODEL POPULATION: 

 [x1-x2@0];  

 x1-x2@1; 

 f BY y1@1 y2-y4*1; 

 f*.5; 

 y1-y4*.5; 

 f ON x1*1 x2*.3; 

MODEL: f BY y1@1 y2-y4*1; 

 f*.5; 

 y1-y4*.5; 

 f ON x1*1 x2*.3; 

OUTPUT: TECH9; 

 

In this example, data are generated and analyzed according to the CFA 

with covariates (MIMIC) model described in Example 5.8.  Two factors 

are regressed on two covariates and data are generated with patterns of 

missing data. 

 
TITLE: this is an example of a Monte Carlo 

simulation study for a CFA with covariates 

(MIMIC) with continuous factor indicators 

and patterns of missing data  

 

The TITLE command is used to provide a title for the output.  The title 

is printed in the output just before the Summary of Analysis. 
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MONTECARLO: 

 NAMES ARE y1-y4 x1 x2; 

 NOBSERVATIONS = 500; 

 NREPS = 500; 

 SEED = 4533; 

 CUTPOINTS = x2(1);  

 PATMISS = y1(.1) y2(.2) y3(.3) y4(1) | 

           y1(1) y2(.1) y3(.2) y4(.3); 

 PATPROBS = .4 | .6; 

 

The MONTECARLO command is used to describe the details of a 

Monte Carlo simulation study.  The NAMES option is used to assign 

names to the variables in the generated data sets.  The data sets in this 

example each have six variables: y1, y2, y3, y4, x1, and x2.  Note that a 

hyphen can be used as a convenience feature in order to generate a list of 

names.  The NOBSERVATIONS option is used to specify the sample 

size to be used for data generation and for analysis.  In this example, the 

sample size is 500.  The NREPS option is used to specify the number of 

replications, that is, the number of samples to draw from a specified 

population.  In this example, 500 samples will be drawn.  The SEED 

option is used to specify the seed to be used for the random draws.  The 

seed 4533 is used here.  The default seed value is zero. 

 

The GENERATE option is used to specify the scale of the dependent 

variables for data generation.  In this example, the dependent variables 

are continuous which is the default for the GENERATE option.  

Therefore, the GENERATE option is not necessary and is not used here.  

The CUTPOINTS option is used to create binary variables from the 

multivariate normal independent variables generated by the program.  In 

this example, the variable x2 is cut at the value of one which is one 

standard deviation above the mean because the mean and variance used 

for data generation are zero and one.  This implies that after the cut x2 is 

a 0/1 binary variable where 16 percent of the population have the value 

of 1.  The mean and variance of x2 for data generation are specified in 

the MODEL POPULATION command.   

 

The PATMISS and PATPROBS options are used together to describe 

the patterns of missing data to be used in data generation.  The 

PATMISS option is used to specify the missing data patterns and the 

proportion missing for each variable.  The patterns are separated using 

the | symbol.  The PATPROBS option is used to specify the proportion 

of individuals for each missing data pattern.  In this example, there are 

two missing value patterns.  In the first pattern, y1 has 10 percent 



CHAPTER 12 

476 

missing, y2 has 20 percent missing, y3 has 30 percent missing, and y4 

has 100 percent missing.  In the second pattern, y1 has 100 percent 

missing, y2 has 10 percent missing, y3 has 20 percent missing, and y4 

has 30 percent missing.  As specified in the PATPROBS option, 40 

percent of the individuals in the generated data have missing data pattern 

1 and 60 percent have missing data pattern 2.  This may correspond to a 

situation of planned missingness where a measurement instrument is 

administered in two different versions given to randomly chosen parts of 

the population.  In this example, some individuals answer items y1, y2, 

and y3, while others answer y2, y3, and y4.    

 
MODEL POPULATION: 

 [x1-x2@0];  

 x1-x2@1; 

 f BY y1@1 y2-y4*1; 

 f*.5; 

 y1-y4*.5; 

 f ON x1*1 x2*.3; 

 

The MODEL POPULATION command is used to provide the 

population parameter values to be used in data generation.  Each 

parameter in the model must be specified followed by the @ symbol or 

the asterisk (*) and the population parameter value.  Any model 

parameter not given a population parameter value will be assigned the 

value of zero as the population parameter value.  The first two lines in 

the MODEL POPULATION command refer to the means and variances 

of the independent variables x1 and x2.  The covariances between the 

independent variables can also be specified.  Variances of the 

independent variables in the model must be specified.  Means and 

covariances of the independent variables do not need to be specified if 

their values are zero.   

 
MODEL: f BY y1@1 y2-y4*1; 

 f*.5; 

 y1-y4*.5; 

 f ON x1*1 x2*.3; 

 

The MODEL command is used to describe the analysis model as in 

regular analyses.  In Monte Carlo simulation studies, the MODEL 

command is also used to provide values for each parameter that are used 

as population parameter values for computing coverage and mean square 

error and starting values in the estimation of the model.  They are printed 

in the first column of the output labeled Population.  Population 
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parameter values for the analysis model can also be provided using the 

MODEL COVERAGE command or the COVERAGE option of the 

MONTECARLO command.  Alternate starting values can be provided 

using the STARTING option of the MONTECARLO command.  Note 

that the population parameter values for coverage given in the analysis 

model are different from the population parameter values used for data 

generation if the analysis model is misspecified.   

 
OUTPUT: TECH9; 

 

The OUTPUT command is used to request additional output not 

included as the default.  The TECH9 option is used to request error 

messages related to convergence for each replication of the Monte Carlo 

simulation study. 

 

EXAMPLE 12.2: MONTE CARLO SIMULATION STUDY FOR 

A LINEAR GROWTH MODEL FOR A CONTINUOUS 

OUTCOME WITH MISSING DATA WHERE ATTRITION IS 

PREDICTED BY TIME-INVARIANT COVARIATES (MAR) 
 

 
TITLE: this is an example of a Monte Carlo  

 simulation study for a linear growth model  

 for a continuous outcome with missing data  

 where attrition is predicted by time- 

 invariant covariates (MAR) 

MONTECARLO: 

 NAMES ARE y1-y4 x1 x2; 

 NOBSERVATIONS = 500; 

 NREPS = 500; 

 SEED = 4533; 

 CUTPOINTS = x2(1);  

 MISSING = y1-y4; 

MODEL POPULATION: 

 x1-x2@1; 

 [x1-x2@0];  

 i s | y1@0 y2@1 y3@2 y4@3; 

 [i*1 s*2]; 

 i*1; s*.2; i WITH s*.1; 

 y1-y4*.5; 

 i ON x1*1 x2*.5; 

 s ON x1*.4 x2*.25; 
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MODEL MISSING: 

 [y1-y4@-1]; 

 y1 ON x1*.4 x2*.2; 

 y2 ON x1*.8 x2*.4; 

 y3 ON x1*1.6 x2*.8; 

 y4 ON x1*3.2 x2*1.6; 

MODEL: i s | y1@0 y2@1 y3@2 y4@3; 

 [i*1 s*2]; 

 i*1; s*.2; i WITH s*.1; 

 y1-y4*.5; 

 i ON x1*1 x2*.5; 

 s ON x1*.4 x2*.25; 

OUTPUT: TECH9; 

 

In this example, missing data are generated to illustrate both random 

missingness and attrition predicted by time-invariant covariates (MAR).  

This Monte Carlo simulation study can be used to estimate the power to 

detect that the binary covariate x2 has a significant effect on the growth 

slope factor s.  The binary covariate x2 may correspond to a treatment 

variable or a gender variable.   

 

The MISSING option in the MONTECARLO command is used to 

identify the dependent variables in the data generation model for which 

missing data will be generated.  The MODEL MISSING command is 

used to provide information about the population parameter values for 

the missing data model to be used in the generation of data.  The 

MODEL MISSING command specifies a logistic regression model for a 

set of binary dependent variables that represent not missing (scored as 0) 

and missing (scored as 1) for the dependent variables in the data 

generation model.  The first statement in the MODEL MISSING 

command defines the intercepts in the logistic regressions for each of the 

binary dependent variables.  If the covariates predicting missingness all 

have values of zero, the logistic regression intercept value of -1 

corresponds to a probability of 0.27 of having missing data on the 

dependent variables.    This would reflect missing completely at random.  

The four ON statements specify the logistic regression of the four binary 

dependent variables on the two covariates x1 and x2 to reflect attrition 

predicted by the covariates.  Because the values of the logistic regression 

slopes increase over time as seen in the increase of the slopes from y1 to 

y4, attrition also increases over time and becomes more selective over 

time. An explanation of the other commands can be found in Example 

12.1. 

 



Examples: Monte Carlo Simulation Studies 

 

                                                                                                               479 

EXAMPLE 12.3: MONTE CARLO SIMULATION STUDY FOR 

A GROWTH MIXTURE MODEL WITH TWO CLASSES AND A 

MISSPECIFIED MODEL 
 

 
TITLE: this is an example of a Monte Carlo 

simulation study for a growth mixture 

model with two classes and a misspecified 

model 

MONTECARLO: 

 NAMES ARE u y1-y4 x; 

 NOBSERVATIONS = 500; 

 NREPS = 10; 

 SEED = 53487; 

 GENERATE = u (1); 

 CATEGORICAL = u; 

 GENCLASSES = c (2); 

 CLASSES = c (1); 

MODEL POPULATION: 

 %OVERALL% 

 [x@0]; 

 x@1; 

 i s | y1@0 y2@1 y3@2 y4@3; 

 i*.25 s*.04; 

 i WITH s*0; 

 y1*.4 y2*.35 y3*.3 y4*.25; 

 i ON x*.5; 

 s ON x*.1; 

 c#1 ON x*.2; 

 [c#1*0]; 

 %c#1% 

 [u$1*1 i*3 s*.5]; 

 %c#2% 

 [u$1*-1 i*1 s*0]; 
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ANALYSIS: TYPE = MIXTURE; 

MODEL: 

 %OVERALL%  

 i s | y1@0 y2@1 y3@2 y4@3; 

 i*.25 s*.04; 

 i WITH s*0; 

 y1*.4 y2*.35 y3*.3 y4*.25; 

 i ON x*.5; 

 s ON x*.1; 

! c#1 ON x*.2; 

! [c#1*0]; 

 u ON x; 

 %c#1% 

 [u$1*1 i*3 s*.5]; 

! %c#2% 

! [u$1*-1 i*1 s*0]; 

OUTPUT: TECH9; 

 

In this example, data are generated according the two class model 

described in Example 8.1 and analyzed as a one class model.  This 

results in a misspecified model.  Differences between the parameter 

values that generated the data and the estimated parameters can be 

studied to determine the extent of the distortion.   

 

The GENERATE option is used to specify the scale of the dependent 

variables for data generation.  In this example, the dependent variable u 

is binary because it has one threshold.  For binary variables, this is 

specified by placing the number one in parenthesis following the 

variable name.  The CATEGORICAL option is used to specify which 

dependent variables are treated as binary or ordered categorical (ordinal) 

variables in the model and its estimation.  In the example above, the 

variable u is generated and analyzed as a binary variable.  The 

GENCLASSES option is used to assign names to the categorical latent 

variables in the data generation model and to specify the number of 

latent classes to be used for data generation.  In the example above, there 

is one categorical latent variable c that has two latent classes for data 

generation.  The CLASSES option is used to assign names to the 

categorical latent variables in the analysis model and to specify the 

number of latent classes to be used for analysis.  In the example above, 

there is one categorical latent variable c that has one latent class for 

analysis.  The ANALYSIS command is used to describe the technical 

details of the analysis.  The TYPE option is used to describe the type of 

analysis that is to be performed.  By selecting MIXTURE, a mixture 

model will be estimated.  
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The commented out lines in the MODEL command show how the 

MODEL command is changed from a two class model to a one class 

model.   An explanation of the other commands can be found in 

Examples 12.1 and 8.1. 

 

EXAMPLE 12.4: MONTE CARLO SIMULATION STUDY FOR 

A TWO-LEVEL GROWTH MODEL FOR A CONTINUOUS 

OUTCOME (THREE-LEVEL ANALYSIS) 
 

 
TITLE: this is an example of a Monte Carlo 

simulation study for a two-level growth  

 model for a continuous outcome (three- 

 level analysis) 

MONTECARLO: 

 NAMES ARE y1-y4 x w; 

 NOBSERVATIONS = 1000; 

 NREPS = 500; 

 SEED = 58459; 

 CUTPOINTS = x (1) w (0); 

 MISSING = y1-y4; 

 NCSIZES = 3; 

 CSIZES = 40 (5) 50 (10) 20 (15); 

 WITHIN = x; 

 BETWEEN = w; 

MODEL POPULATION: 

 %WITHIN% 

 x@1; 

 iw sw | y1@0 y2@1 y3@2 y4@3; 

 y1-y4*.5; 

 iw ON x*1; 

 sw ON x*.25; 

 iw*1; sw*.2; 

 %BETWEEN% 

 w@1; 

 ib sb | y1@0 y2@1 y3@2 y4@3; 

 y1-y4@0; 

 ib ON w*.5; 

 sb ON w*.25; 

 [ib*1 sb*.5]; 

 ib*.2; sb*.1; 
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MODEL MISSING: 

 [y1-y4@-1]; 

 y1 ON x*.4; 

 y2 ON x*.8; 

 y3 ON x*1.6; 

 y4 ON x*3.2; 

ANALYSIS: TYPE IS TWOLEVEL; 

MODEL: 

 %WITHIN% 

 iw sw | y1@0 y2@1 y3@2 y4@3; 

 y1-y4*.5; 

 iw ON x*1; 

 sw ON x*.25; 

 iw*1; sw*.2; 

 %BETWEEN% 

 ib sb | y1@0 y2@1 y3@2 y4@3; 

 y1-y4@0; 

 ib ON w*.5; 

 sb ON w*.25; 

 [ib*1 sb*.5]; 

 ib*.2; sb*.1; 

OUTPUT: TECH9 NOCHISQUARE; 

 

In this example, data for the two-level growth model for a continuous 

outcome (three-level analysis) described in Example 9.12 are generated 

and analyzed.  This Monte Carlo simulation study can be used to 

estimate the power to detect that the binary cluster-level covariate w has 

a significant effect on the growth slope factor sb.   

 

The NCSIZES option is used to specify the number of unique cluster 

sizes to be used in data generation.  In the example above, there are three 

unique cluster sizes.  The CSIZES option is used to specify the number 

of clusters and the sizes of the clusters to be used in data generation.  

The CSIZES option specifies that 40 clusters of size 5, 50 clusters of 

size 10, and 20 clusters of size 15 will be generated.  The WITHIN 

option is used to identify the variables in the data set that are measured 

on the individual level and modeled only on the within level.  They are 

specified to have no variance in the between part of the model.  The 

variable x is an individual-level variable.  The BETWEEN option is used 

to identify the variables in the data set that are measured on the cluster 

level and modeled only on the between level.  The variable w is a 

cluster-level variable.  Variables not mentioned on the WITHIN or the 

BETWEEN statements are measured on the individual level and can be 

modeled on both the within and between levels.  The NOCHISQUARE 

option of the OUTPUT command is used to request that the chi-square 
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fit statistic not be computed.  This reduces computational time.  An 

explanation of the other commands can be found in Examples 12.1 and 

12.2 and Example 9.12. 

 

EXAMPLE 12.5: MONTE CARLO SIMULATION STUDY FOR 

AN EXPLORATORY FACTOR ANALYSIS WITH 

CONTINUOUS FACTOR INDICATORS  
 

 
TITLE: this is an example of a Monte Carlo 

 simulation study for an exploratory factor 

 analysis with continuous factor indicators 

MONTECARLO: 

 NAMES ARE y1-y10; 

 NOBSERVATIONS = 500; 

 NREPS = 500; 

MODEL POPULATION: 

 f1 BY y1-y7*.5; 

 f2 BY y4-y5*.25 y6-y10*.8; 

 f1-f2@1; 

 f1 WITH f2*.5; 

 y1-y10*.36; 

MODEL: f1 BY y1-y7*.5 y8-y10*0 (*1); 

 f2 BY y1-y3*.0 y4-y5*.25 y6-y10*.8 (*1); 

 f1 WITH f2*.5; 

 y1-y10*.36; 

OUTPUT: TECH9; 

 

In this example, data are generated according to a two-factor CFA model 

with continuous outcomes and analyzed as an exploratory factor analysis 

using exploratory structural equation modeling (ESEM; Asparouhov & 

Muthén, 2009a).   

 

In the MODEL command, the BY statements specify that the factors f1 

and f2 are measured by the continuous factor indicators y1 through y10.  

The label 1 following an asterisk (*) in parentheses following the BY 

statements is used to indicate that f1 and f2 are a set of EFA factors.  

When no rotation is specified using the ROTATION option of the 

ANALYSIS command, the default oblique GEOMIN rotation is used to 

obtain factor loadings and factor correlations.  The intercepts and 

residual variances of the factor indicators are estimated and the residuals 

are not correlated as the default.  The variances of the factors are fixed at 
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one as the default.  The factors are correlated under the default oblique 

GEOMIN rotation.  

  

The default estimator for this type of analysis is maximum likelihood.  

The ESTIMATOR option of the ANALYSIS command can be used to 

select a different estimator.  An explanation of the other commands can 

be found in Examples 12.1 and 12.2. 

 

EXAMPLE 12.6 STEP 1: MONTE CARLO SIMULATION 

STUDY WHERE CLUSTERED DATA FOR A TWO-LEVEL 

GROWTH MODEL FOR A CONTINUOUS OUTCOME 

(THREE-LEVEL ANALYSIS) ARE GENERATED, ANALYZED, 

AND SAVED  
 

 
TITLE: this is an example of a Monte Carlo 

simulation study where clustered data for 

a two-level growth model for a continuous 

outcome (three-level) analysis are 

generated and analyzed  

MONTECARLO: 

 NAMES ARE y1-y4 x w; 

 NOBSERVATIONS = 1000; 

 NREPS = 100; 

 SEED = 58459; 

 CUTPOINTS = x(1) w(0); 

 MISSING = y1-y4; 

 NCSIZES = 3; 

 CSIZES = 40 (5) 50 (10) 20 (15); 

 WITHIN = x; BETWEEN = w; 

 REPSAVE = ALL; 

 SAVE = ex12.6rep*.dat; 

MODEL POPULATION: 

 %WITHIN% 

 x@1; 

 iw sw | y1@0 y2@1 y3@2 y4@3; 

 y1-y4*.5; 

 iw ON x*1; 

 sw ON x*.25; 

 iw*1; sw*.2; 

 %BETWEEN% 

 w@1; 

 ib sb | y1@0 y2@1 y3@2 y4@3; 

 y1-y4@0; 

 ib ON w*.5; 
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 sb ON w*.25; 

 [ib*1 sb*.5]; 

 ib*.2; sb*.1; 

MODEL MISSING: 

 [y1-y4@-1]; 

 y1 ON x*.4; 

 y2 ON x*.8; 

 y3 ON x*1.6; 

 y4 ON x*3.2; 

ANALYSIS: TYPE = TWOLEVEL; 

MODEL: 

 %WITHIN% 

 iw sw | y1@0 y2@1 y3@2 y4@3; 

 y1-y4*.5; 

 iw ON x*1; 

 sw ON x*.25; 

 iw*1; sw*.2; 

 %BETWEEN% 

 ib sb | y1@0 y2@1 y3@2 y4@3; 

 y1-y4@0; 

 ib ON w*.5; 

 sb ON w*.25; 

 [ib*1 sb*.5]; 

 ib*.2; sb*.1; 

OUTPUT: TECH8 TECH9; 

 

In this example, clustered data are generated and analyzed for the two-

level growth model for a continuous outcome (three-level) analysis 

described in Example 9.12.  The data are saved for a subsequent external 

Monte Carlo simulation study.  The REPSAVE and SAVE options of the 

MONTECARLO command are used  to save some or all of the data sets 

generated in a Monte Carlo simulation study.  The REPSAVE option 

specifies the numbers of the replications for which the data will be 

saved.  In the example above, the keyword ALL specifies that all of the 

data sets will be saved.  The SAVE option is used to name the files to 

which the data sets will be written.  The asterisk (*) is replaced by the 

replication number.  For example, data from the first replication will be 

saved in the file named ex12.6rep1.dat.   A file is also produced where 

the asterisk (*) is replaced by the word list.  The file, in this case 

ex12.6replist.dat, contains the names of the generated data sets.  The 

ANALYSIS command is used to describe the technical details of the 

analysis.  By selecting TYPE=TWOLEVEL, a multilevel model is 

estimated. An explanation of the other commands can be found in 

Examples 12.1, 12.2, 12.4 and Example 9.12. 
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EXAMPLE 12.6 STEP 2:  EXTERNAL MONTE CARLO 

ANALYSIS OF CLUSTERED DATA GENERATED FOR A 

TWO-LEVEL GROWTH MODEL FOR A CONTINUOUS 

OUTCOME USING TYPE=COMPLEX FOR A SINGLE-LEVEL 

GROWTH MODEL  
 

 
TITLE: this is an example of an external Monte 

Carlo analysis of clustered data generated 

for a two-level growth model for a 

continuous outcome using TYPE=COMPLEX for 

a single-level growth model 

DATA: FILE = ex12.6replist.dat; 

 TYPE = MONTECARLO; 

VARIABLE: NAMES = y1-y4 x w clus; 

 USEVARIABLES = y1-w; 

 MISSING = ALL (999); 

 CLUSTER = clus; 

ANALYSIS: TYPE = COMPLEX; 

MODEL: i s | y1@0 y2@1 y3@2 y4@3; 

 y1-y4*.5; 

 i ON x*1 w*.5; 

 s ON x*.25 w*.25; 

 i*1.2; s*.3; 

 [i*1 s*.5]; 

OUTPUT: TECH9; 

 

In this example, an external Monte Carlo simulation study of clustered 

data generated for a two-level growth model for a continuous outcome is 

carried out using TYPE=COMPLEX for a single-level growth model.  

The DATA command is used to provide information about the data sets 

to be analyzed.  The MONTECARLO setting of the TYPE option is used 

when the data sets being analyzed have been generated and saved using 

either the REPSAVE option of the MONTECARLO command or by 

another computer program.  The file named using the FILE option of the 

DATA command contains a list of the names of the data sets to be 

analyzed and summarized as in a Monte Carlo simulation study.  This 

file is created when the SAVE and REPSAVE options of the 

MONTECARLO command are used to save Monte Carlo generated data 

sets.  The CLUSTER option of the VARIABLE command is used when 

data have been collected under a complex survey data design to identify 

the variable that contains cluster information.  In the example above, the 

variable clus contains cluster information.  By selecting 
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TYPE=COMPLEX, an analysis is carried out that takes non-

independence of observations into account. 

 

In external Monte Carlo simulation studies, the MODEL command is 

also used to provide values for each parameter.  These are used as the 

population parameter values for the analysis model and are printed in the 

first column of the output labeled Population.   They are used for 

computing coverage and as starting values in the estimation of the 

model. 

 

EXAMPLE 12.7 STEP 1: REAL DATA ANALYSIS OF A CFA 

WITH COVARIATES (MIMIC) FOR CONTINUOUS FACTOR 

INDICATORS WHERE THE PARAMETER ESTIMATES ARE 

SAVED FOR USE IN A MONTE CARLO SIMULATION STUDY 
 

 
TITLE: this is an example of a real data analysis 

of a CFA with covariates (MIMIC) for 

continuous factor indicators where the 

parameter estimates are saved for use in a 

Monte Carlo simulation study  

DATA: FILE = ex12.7real.dat; 

VARIABLE: NAMES = y1-y10 x1 x2; 

MODEL: f1 BY y1@1 y2-y5*1; 

 f2 BY y6@1 y7-y10*1; 

 f1-f2*.5; 

 f1 WITH f2*.25; 

 y1-y5*.5; 

 [y1-y5*1]; 

 y6-y10*.75; 

 [y6-y10*2]; 

 f1 ON x1*.3 x2*.5; 

 f2 ON x1*.5 x2*.3; 

OUTPUT: TECH1; 

SAVEDATA: ESTIMATES = ex12.7estimates.dat; 

 

In this example, parameter estimates from a real data analysis of a CFA 

with covariates (MIMIC) for continuous factor indicators are saved for 

use as population parameter values for use in data generation and 

coverage in a subsequent internal Monte Carlo simulation study.  The 

ESTIMATES option of the SAVEDATA command is used to specify the 

name of the file in which the parameter estimates of the analysis will be 

saved.  
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EXAMPLE 12.7 STEP 2: MONTE CARLO SIMULATION 

STUDY WHERE PARAMETER ESTIMATES SAVED FROM A 

REAL DATA ANALYSIS ARE USED FOR POPULATION 

PARAMETER VALUES FOR DATA GENERATION AND 

COVERAGE 
 

 
TITLE: this is an example of a Monte Carlo 

simulation study where parameter estimates 

saved from a real data analysis are used 

for population parameter values for data 

generation and coverage 

MONTECARLO: 

 NAMES ARE y1-y10 x1 x2; 

 NOBSERVATIONS = 500; 

 NREPS = 500; 

 SEED = 45335; 

 POPULATION = ex12.7estimates.dat; 

 COVERAGE = ex12.7estimates.dat; 

MODEL POPULATION: 

 f1 BY y1-y5; 

 f2 BY y6-y10; 

 f1 ON x1 x2; 

 f2 ON x1 x2; 

MODEL: f1 BY y1-y5; 

 f2 BY y6-y10; 

 f1 ON x1 x2; 

 f2 ON x1 x2; 

OUTPUT: TECH9; 

 

In this example, parameter estimates saved from a real data analysis are 

used for population parameter values for data generation and coverage 

using the POPULATION and COVERAGE options of the 

MONTECARLO command.  The POPULATION option is used to name 

the data set that contains the population parameter values to be used in 

data generation.  The COVERAGE option is used to name the data set 

that contains the parameter values to be used for computing coverage 

and are printed in the first column of the output labeled Population.  An 

explanation of the other commands can be found in Example 12.1. 
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EXAMPLE 12.8:  MONTE CARLO SIMULATION STUDY FOR 

DISCRETE-TIME SURVIVAL ANALYSIS  
 

 
TITLE: this is an example of a Monte Carlo 

simulation study for discrete-time 

survival analysis 

MONTECARLO: 

 NAMES = u1-u4 x; 

 NOBSERVATIONS = 1000; 

 NREPS = 100; 

 GENERATE = u1-u4(1); 

 MISSING = u2-u4; 

 CATEGORICAL = u1-u4; 

MODEL POPULATION: 

 [x@0]; x@1; 

 [u1$1*2 u2$1*1.5 u3$1*1 u4$1*1]; 

 f BY u1-u4@1; 

 f ON x*.5; 

 f@0;  

MODEL MISSING:  

 [u2-u4@-15]; 

 u2 ON u1@30; 

 u3 ON u1-u2@30; 

 u4 ON u1-u3@30; 

ANALYSIS: ESTIMATOR = MLR; 

MODEL: [u1$1*2 u2$1*1.5 u3$1*1 u4$1*1]; 

 f BY u1-u4@1; 

 f ON x*.5; 

 f@0; 

OUTPUT: TECH8 TECH9; 

 

In this example, data are generated and analyzed for a discrete-time 

survival model like the one shown in Example 6.19.  Maximum 

likelihood estimation with discrete-time survival analysis for a non-

repeatable event requires that the event history indicators for an 

individual are scored as missing after an event has occurred (Muthén & 

Masyn, 2005).  This is accomplished using the MODEL MISSING 

command.  

 

The MISSING option in the MONTECARLO command is used to 

identify the dependent variables in the data generation model for which 

missing data will be generated.  The MODEL MISSING command is 

used to provide information about the population parameter values for 

the missing data model to be used in the generation of data.  The 
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MODEL MISSING command specifies a logistic regression model for a 

set of binary dependent variables that represent not missing (scored as 0) 

and missing (scored as 1) for the dependent variables in the data 

generation model.  The binary missing data indicators have the same 

names as the dependent variables in the data generation model.  The first 

statement in the MODEL MISSING command defines the intercepts in 

the logistic regressions for the binary dependent variables u2, u3, and u4.  

If the covariates predicting missingness all have values of zero, the 

logistic regression intercept value of -15 corresponds to a probability of 

zero of having missing data on the dependent variables.  The variable u1 

has no missing values.  The first ON statement describes the regression 

of the missing value indicator u2 on the event-history variable u1 where 

the logistic regression coefficient is fixed at 30 indicating that 

observations with the value one on the event-history variable u1 result in 

a logit value 15 for the missing value indicator u2 indicating that the 

probability that the event-history variable u2 is missing is one.  The 

second ON statement describes the regression of the missing value 

indicator u3 on the event-history variables u1 and u2 where the logistic 

regression coefficients are fixed at 30 indicating that observations with 

the value one on either or both of the event-history variables u1 and u2 

result in a logit value of at least 15 for the missing value indicator u3 

indicating that the probability that the event-history variable u3 is 

missing is one.  The third ON statement describes the regression of the 

missing value indicator u4 on the event-history variables u1, u2, and u3 

where the logistic regression coefficients are fixed at 30 indicating that 

observations with the value one on one or more of the event-history 

variables u1, u2, and u3 result in a logit value of at least 15 for the 

missing value indicator u4 indicating that the probability that the event-

history variable u4 is missing is one.  An explanation of the other 

commands can be found in Examples 12.1 and 12.3. 
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EXAMPLE 12.9:  MONTE CARLO SIMULATION STUDY FOR 

A TWO-PART (SEMICONTINUOUS) GROWTH MODEL FOR 

A CONTINUOUS OUTCOME  
 

 
TITLE: this is an example of a Monte Carlo 

simulation study for a two-part 

(semicontinuous) growth model for a 

continuous outcome 

MONTECARLO: 

 NAMES = u1-u4 y1-y4; 

 NOBSERVATIONS = 500; 

 NREPS = 100; 

 GENERATE = u1-u4(1); 

 MISSING = y1-y4; 

 CATEGORICAL = u1-u4; 

MODEL POPULATION: 

 iu su | u1@0 u2@1 u3@2 u4@3; 

 [u1$1-u4$1*-.5] (1);  

 [iu@0 su*.85]; 

 iu*1.45;   

 iy sy | y1@0 y2@1 y3@2 y4@3; 

 [y1-y4@0];  

 y1-y4*.5; 

 [iy*.5 sy*1]; 

 iy*1;  

 sy*.2;  

 iy WITH sy*.1; 

 iu WITH iy*0.9; 

MODEL MISSING: 

 [y1-y4@15]; 

 y1 ON u1@-30;  

 y2 ON u2@-30; 

 y3 ON u3@-30; 

 y4 ON u4@-30; 

ANALYSIS: ESTIMATOR = MLR; 
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MODEL: iu su | u1@0 u2@1 u3@2 u4@3; 

 [u1$1-u4$1*-.5] (1);  

 [iu@0 su*.85]; 

 iu*1.45;   

 su@0; 

 iy sy | y1@0 y2@1 y3@2 y4@3; 

 [y1-y4@0];  

 y1-y4*.5; 

 [iy*.5 sy*1]; 

 iy*1;  

 sy*.2;  

 iy WITH sy*.1; 

 iu WITH iy*0.9;  

 iu WITH sy@0;    

OUTPUT: TECH8; 

 

In this example, data are generated and analyzed for a two-part 

(semicontinuous) growth model for a continuous outcome like the one 

shown in Example 6.16.  If these data are saved for subsequent two-part 

analysis using the DATA TWOPART command, an adjustment to the 

saved data must be made using the DEFINE command as part of the 

analysis.  If the values of the continuous outcomes y are not 999 which is 

the value used as the missing data flag in the saved data, the exponential 

function must be applied to the continuous variables.  After that 

transformation, the value 999 must be changed to zero for the continuous 

variables.  This represents the floor of the scale.     

 

The MISSING option in the MONTECARLO command is used to 

identify the dependent variables in the data generation model for which 

missing data will be generated.  The MODEL MISSING command is 

used to provide information about the population parameter values for 

the missing data model to be used in the generation of data.  The 

MODEL MISSING command specifies a logistic regression model for a 

set of binary dependent variables that represent not missing (scored as 0) 

and missing (scored as 1) for the dependent variables in the data 

generation model.  The binary missing data indicators have the same 

names as the dependent variables in the data generation model.  The first 

statement in the MODEL MISSING command defines the intercepts in 

the logistic regressions for the binary dependent variables y1, y2, y3, and 

y4.  If the covariates predicting missingness all have values of zero, the 

logistic regression intercept value of 15 corresponds to a probability of 

one of having missing data on the dependent variables.  The four ON 

statements describe the regressions of the missing value indicators y1, 

y2, y3, and y4 on the binary outcomes u1, u2, u3, and u4 where the 
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logistic regression coefficient is fixed at -30.  This results in 

observations with the value one on u1, u2, u3, and u4 giving logit values 

-15 for the binary missing data indicators.  A logit value -15 implies that 

the probability that the continuous outcomes y are missing is zero.  An 

explanation of the other commands can be found in Examples 12.1 and 

12.3. 
 

EXAMPLE 12.10:  MONTE CARLO SIMULATION STUDY FOR 

A TWO-LEVEL CONTINUOUS-TIME SURVIVAL ANALYSIS 

USING COX REGRESSION WITH A RANDOM INTERCEPT 

AND A FRAILTY 
 

 
TITLE: this is an example of a Monte Carlo 

simulation study for a two-level 

continuous-time survival analysis using 

Cox regression with a random intercept and 

a frailty 

MONTECARLO: 

 NAMES = t x w; 

 NOBSERVATIONS = 1000; 

 NREPS = 100; 

 GENERATE = t(s 20*1); 

 NCSIZES = 3; 

 CSIZES = 40 (5) 50 (10) 20 (15); 

 HAZARDC = t (.5); 

 SURVIVAL = t (ALL);   

 WITHIN = x; 

 BETWEEN = w; 

MODEL POPULATION: 

 %WITHIN% 

 x@1; 

 t ON x*.5; 

 %BETWEEN% 

 w@1; 

 [t#1-t#21*1]; 

 t ON w*.2; 

 t*0.5; 

ANALYSIS: TYPE = TWOLEVEL; 

 BASEHAZARD = OFF; 

MODEL: %WITHIN% 

 t ON x*.5; 

 %BETWEEN% 

 t ON w*.2; 

 t*0.5; 
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In this example, data are generated and analyzed for the two-level 

continuous-time survival analysis using Cox regression with a random 

intercept and a frailty shown in Example 9.16.  Monte Carlo simulation 

of continuous-time survival models is described in Asparouhov et al. 

(2006).  

 

The GENERATE option is used to specify the scale of the dependent 

variables for data generation.  In this example, the dependent variable t 

is a time-to-event variable.  The numbers in parentheses specify that 

twenty time intervals of length one will be used for data generation.  The 

HAZARDC option is used to specify the hazard for the censoring 

process in continuous-time survival analysis when time-to-event 

variables are generated.  This information is used to create a censoring 

indicator variable where zero is not censored and one is right censored.  

A hazard for censoring of .5 is specified for the time-to-event variable t 

by placing the number .5 in parentheses following the variable name.  

The SURVIVAL option is used to identify the analysis variables that 

contain information about time to event and to provide information 

about the time intervals in the baseline hazard function to be used in the 

analysis.  The keyword ALL is used if the time intervals are taken from 

the data.   

 

The ANALYSIS command is used to describe the technical details of the 

analysis.  By selecting TYPE=TWOLEVEL, a multilevel model will be 

estimated.  The BASEHAZARD option is used with continuous-time 

survival analysis to specify if a non-parametric or a parametric baseline 

hazard function is used in the estimation of the model.  The default is 

OFF which uses the non-parametric baseline hazard function.  

  

The MODEL command is used to describe the analysis model as in 

regular analyses.  In the within part of the model, the ON statement 

describes the loglinear regression of the time-to-event variable t on the 

covariate x.  In the between part of the model, the ON statement 

describes the linear regression of the random intercept of the time-to-

event variable t on the covariate w.  The residual variance of t is 

estimated and represents a frailty parameter.  A detailed explanation of 

the MODEL command can be found in Examples 12.1 and 12.4. 
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EXAMPLE 12.11:  MONTE CARLO SIMULATION STUDY FOR 

A TWO-LEVEL MEDIATION MODEL WITH RANDOM 

SLOPES  
 

 
TITLE: this is an example of a Monte Carlo 

simulation study for a two-level mediation 

model with random slopes 

MONTECARLO:         

 NAMES ARE y m x; 

 WITHIN = x; 

 NOBSERVATIONS = 1000; 

 NCSIZES = 1; 

 CSIZES = 100 (10); 

 NREP = 100; 

ANALYSIS: TYPE = TWOLEVEL RANDOM; 

MODEL POPULATION: 

 %WITHIN% 

 x@1; 

 c | y ON x; 

 b | y ON m; 

 a | m ON x; 

 m*1; y*1; 

 %BETWEEN% 

 y WITH m*0.1 b*0.1 a*0.1 c*0.1; 

 m WITH b*0.1 a*0.1 c*0.1; 

 a WITH b*0.1 (cab); 

 a WITH c*0.1; 

 b WITH c*0.1; 

 y*1 m*1 a*1 b*1 c*1; 

 [a*0.4] (ma); 

 [b*0.5] (mb); 

 [c*0.6]; 
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MODEL: 

 %WITHIN% 

 c | y ON x; 

 b | y ON m; 

 a | m ON x; 

 m*1; y*1; 

 %BETWEEN% 

 y WITH m*0.1 b*0.1 a*0.1 c*0.1; 

 m WITH b*0.1 a*0.1 c*0.1; 

 a WITH b*0.1 (cab); 

 a WITH c*0.1; 

 b WITH c*0.1; 

 y*1 m*1 a*1 b*1 c*1; 

 [a*0.4] (ma); 

 [b*0.5] (mb); 

 [c*0.6]; 

MODEL CONSTRAINT: 

 NEW(m*0.3); 

 m=ma*mb+cab; 

 

In this example, data for a two-level mediation model with a random 

slope are generated and analyzed.  For related modeling see Bauer et al. 

(2006). 

 

The TYPE option is used to describe the type of analysis that is to be 

performed.  By selecting TWOLEVEL RANDOM, a multilevel model 

with random intercepts and random slopes will be estimated.  In the 

MODEL command, the | statement is used to name and define the 

random slopes c, b, and a.  The random intercept uses the name of the 

dependent variables c, b, and a.  The ON statements on the right-hand 

side of the | statements describe the linear regressions that have a 

random slope.   

 

The label cab is assigned to the covariance between the random slopes a 

and b.  The labels ma and mb are assigned to the means of the random 

slopes a and b.  These labels are used in the MODEL CONSTRAINT 

command.  The MODEL CONSTRAINT command is used to define 

linear and non-linear constraints on the parameters in the model.  In the 

MODEL CONSTRAINT command, the NEW option is used to 

introduce a new parameter that is not part of the MODEL command.  

The new parameter m is the indirect effect of the covariate x on the 

outcome y.  The two outcomes y and m can also be categorical.  For a 

discussion of indirect effects when the outcome y is categorical, see 

MacKinnon et al. (2007). 
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The default estimator for this type of analysis is maximum likelihood 

with robust standard errors.  An explanation of the other commands can 

be found in Examples 12.1 and 12.4. 

 

EXAMPLE 12.12:  MONTE CARLO SIMULATION STUDY FOR 

A MULTIPLE GROUP EFA WITH CONTINUOUS FACTOR 

INDICATORS WITH MEASUREMENT INVARIANCE OF 

INTERCEPTS AND FACTOR LOADINGS  
 

 
TITLE: this is an example of a Monte Carlo 

simulation study for a multiple group EFA 

with continuous factor indicators with 

measurement invariance of intercepts and 

factor loadings 

MONTECARLO: 

 NAMES ARE y1-y10; 

 NOBSERVATIONS = 500 500; 

 NREPS = 1; 

 NGROUPS = 2; 

MODEL POPULATION: 

 f1 BY y1-y5*.8 y6-y10*0; 

 f2 BY y1-y5*0 y6-y10*.8; 

 f1-f2@1; 

 f1 WITH f2*.5; 

 y1-y10*1; 

 [y1-y10*1]; 

 [f1-f2@0]; 

MODEL POPULATION-g2: 

 f1*1.5 f2*2; 

 f1 WITH f2*1; 

 y1-y10*2; 

 [f1*.5 f2*.8]; 

MODEL: f1 BY y1-y5*.8 y6-y10*0 (*1); 

 f2 BY y1-y5*0 y6-y10*.8 (*1); 

 f1-f2@1; 

 f1 WITH f2*.5; 

 y1-y10*1; 

 [y1-y10*1]; [f1-f2@0]; 

MODEL g2: f1*1.5 f2*2; 

 f1 WITH f2*1; 

 y1-y10*2; [f1*.5 f2*.8]; 

OUTPUT: TECH9; 

 

In this example, data are generated and analyzed according to a multiple 

group EFA model with continuous factor indicators with measurement 
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invariance across groups of intercepts and factor loadings. This model is 

described in Example 5.27.  The NOBSERVATIONS option specifies 

the number of observations for each group.  The NGROUPS option 

specifies the number of groups.  In this study data for two groups of 500 

observations are generated and analyzed.  One difference between the 

MODEL command when EFA factors are involved rather than CFA 

factors is that the values given using the asterisk (*) are used only for 

coverage.  Starting values are not allowed for the factor loading and 

factor covariance matrices for EFA factors.  An explanation of the other 

commands can be found in Example 12.1 and Example 5.27. 

 


