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Kinetics of Particles 

 

We must analyze all of the forces acting on the 

racecar in order to design a good track  

 

 

 

 

As a centrifuge reaches high velocities, the arm will 

experience very large forces that must be 

considered in design.  

 

 

   

 



Introduction 

 

      

 

12.1 Newton’s Second Law of Motion 

• If the resultant force acting on a particle is not zero, the particle will have 

an acceleration proportional to the magnitude of resultant and in the 

direction of the resultant. 

 

• Must be expressed with respect to a Newtonian (or inertial) frame of 

reference, i.e., one that is not accelerating or rotating. 
 

 

• This form of the equation is for a constant mass system  

mΣ =F a



 

12.1 B Linear Momentum of a Particle 

 

• Replacing the acceleration by the derivative of the velocity yields 

 

 

 

 

 

 

 

• Linear Momentum Conservation Principle:   

If the resultant force on a particle is zero, the linear momentum of the 

particle remains constant in both magnitude and direction. 
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12.1C Systems of Units 

• Of the units for the four primary dimensions (force, mass, length, 

and time), three may be chosen arbitrarily.  The fourth must be 

compatible with Newton’s 2nd Law. 

International System of Units (SI Units):  base units are the units of 

length (m), mass (kg), and time (second).  The unit of force is derived, 

 

 

 

 

• U.S. Customary Units:  base units are the units of force (lb), length (m), 

and time (second).  The unit of mass is derived, 
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12.1 D Equations of Motion 

 

• Newton’s second law    

 

 

                  Free-body diagram  ~  Kinetic diagram 

 

 

• Can use scalar component equations, e.g., for rectangular components, 

 Rectangular components 

 

 

 

 

 Tangential and normal components, Radial and transverse components 
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Free Body Diagrams and Kinetic Diagrams 

The free body diagram is the same as you have done in statics; we will add the 

kinetic diagram in our dynamic analysis. 

 

 

1.  Isolate the body of interest (free body)  

2.  Draw your axis system (e.g., Cartesian, polar, path)  

3.  Add in applied forces (e.g., weight) 

4.  Replace supports with forces (e.g., reactions :normal force)  

5.  Draw appropriate dimensions (usually angles for particles)  



 
Put the inertial terms for the body of interest on the kinetic diagram. 

1.  Isolate the body of interest (free body)  

2.  Draw in the mass times acceleration of the particle; if unknown, do this in 

the positive direction according to your chosen axes 

 

x y 225 N 

Ff N mg 

25o
 



 
 

 

 

Draw the FBD and KD for block A (note that the massless, frictionless pulleys are 

attached to block A and should be included in the system).   
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Draw the FBD and KD for the collar B.  Assume there is friction acting between 

the rod and collar, motion is in the vertical plane, and q is increasing  

 
 

 

 



1. Isolate body     

2. Axes 

3. Applied forces     

4. Replace supports with forces 

5.  Dimensions    

 6.  Kinetic diagram 
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Sample Problem 12.1 

A 80-kg block rests on a horizontal plane.  

Find the magnitude of the force P required 

to give the block an acceleration of 2.5 

m/s2 to the right.  The coefficient of kinetic 

friction between the block and plane is mk 

= 0.25. 

 

STRATEGY: 

• Resolve the equation of motion for the block into two rectangular component 

equations. 

• Unknowns consist of the applied force P and the normal reaction N from the plane.  

The two equations may be solved for these unknowns. 

 



 

 

MODELING and ANALYSIS: 

• Resolve the equation of motion for the block into 

two rectangular component equations. 

 

    
 

 

 

 Unknowns consist of the applied force P and the normal reaction N from the plane.  

The two equations may be solved for these unknowns. 
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REFLECT and THINK 

When you begin pushing on an object, you first have to overcome the static 

friction force (F = μsN) before the object will move.  

Also note that the downward component of force P increases the normal force 

N, which in turn increases the friction force F that you must overcome. 
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Sample Problem 12.3 

The two blocks shown start from rest.  The 

horizontal plane and the pulley are 

frictionless, and the pulley is assumed to be 

of negligible mass.  Determine the 

acceleration of each block and the tension in 

the cord. 

 

 

STRATEGY: 

• Write the kinematic relationships for the dependent motions and accelerations of the 

blocks. 

• Write the equations of motion for the blocks and pulley. 

• Combine the kinematic relationships with the equations of motion to solve for the 

accelerations and cord tension. 



MODELING and ANALYSIS: 

• Write the kinematic relationships for the dependent 

motions and accelerations of the blocks. 

 
Write equations of motion for blocks and pulley. 
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Combine kinematic relationships with equations of motion 

to solve for accelerations and cord tension. 
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REFLECT and THINK  

• Note that the value obtained for T2 is not equal to the weight of block B. 

Rather than choosing B and the pulley as separate systems, you could have 

chosen the system to be B and the pulley. In this case, T2 would have been 

an internal force.  

 

 



Sample Problem 12.5 

The 6-kg block B starts from rest and slides 

on the 15-kg wedge A, which is supported by 

a horizontal surface.   

Neglecting friction, determine (a) the 

acceleration of the wedge, and (b) the 

acceleration of the block relative to the wedge. 

 

 

STRATEGY:  

• The block is constrained to slide down the wedge.  Therefore, their motions are 

dependent.  Express the acceleration of block as the acceleration of wedge plus the 

acceleration of the block relative to the wedge. 

• Write the equations of motion for the wedge and block. 

• Solve for the accelerations. 



 

 

 

MODELING and ANALYSIS:  

• The block is constrained to slide down the wedge.  Therefore, 

their motions are dependent. 

 
• Write equations of motion for wedge A and block B. 

A:  
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B  
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  (2) 

Solve for the accelerations. 
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a. Acceleration of Wedge A 

 Substitute for N1  from (1) into (3) 
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                   Solve for Aa  and substitute the numerical data 
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

  

 
b. Acceleration of Block B Relative to A 

 

      Substitute Aa into (2)->  
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REFLECT and THINK  

Many students are tempted to draw the acceleration of block B down the incline 

in the kinetic diagram. It is important to recognize that this is the direction of 

the relative acceleration. Rather than the kinetic diagram you used for block B, 

you could have simply put unknown accelerations in the x and y directions and 

then used your relative motion equation to obtain more scalar equations.  

 

 



For tangential and normal components, 
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Sample Problem 12.6 

 

The bob of a 2-m pendulum describes an arc of a circle in a vertical 

plane.  If the tension in the cord is 2.5 times the weight of the 

bob for the position shown, find the velocity and acceleration of 

the bob in that position. 

 

 

 

STRATEGY:  

• Resolve the equation of motion for the bob into tangential and normal components. 

• Solve the component equations for the normal and tangential accelerations. 

•  Solve for the velocity in terms of the normal acceleration. 

 

 



MODELING and ANALYSIS:  

• Resolve the equation of motion for the bob into 

tangential and normal components. 

• Solve the component equations for the normal and 

tangential accelerations. 

  

 

 

 

 

• Solve for velocity in terms of normal acceleration. 
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REFLECT and THINK:  

• If you look at these equations for an angle of zero instead of 30o, you will 

see that when the bob is straight below point O, the tangential acceleration 

is zero, and the velocity is a maximum.  

 

The normal acceleration is not zero because the bob has a velocity at this 

point. 

 



Sample Problem 12.7 

Determine the rated speed of a highway curve of 

radius r = 120 m banked through an angle q = 18o.  

The rated speed of a banked highway curve is the 

speed at which a car should travel if no lateral 

friction force is to be exerted at its wheels. 

 

 

STRATEGY:  

• The car travels in a horizontal circular path with a normal component of acceleration 

directed toward the center of the path. The forces acting on the car are its weight 

and a normal reaction from the road surface. 

• Resolve the equation of motion for the car into vertical and normal components. 

• Solve for the vehicle speed. 

 



 

 

 

 

 

 

 

 

SOLUTION: 

MODELING and ANALYSIS: 

• The car travels in a horizontal circular path with a normal component of 

acceleration directed toward the center of the path. The forces acting on 

the car are its weight and a normal reaction from the road surface. 

 



• Resolve the equation of motion for the car into vertical and normal 

components. 

   
 

 

 

• Solve for the vehicle speed. 
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REFLECT and THINK:  

• For a highway curve, this seems like a reasonable speed for avoiding a spin-

out. If the roadway were banked at a larger angle, would the rated speed 

be larger or smaller than this calculated value?  

• For this problem, the tangential direction is into the page; since you were 

not asked about forces or accelerations in this direction, you did not need 

to analyze motion in the tangential direction.  

 



Kinetics:  Radial and Transverse Coordinates 

 

Hydraulic actuators, extending robotic arms, and centrifuges as shown below 

are often analyzed using radial and transverse coordinates.  

 



Eqs of Motion in Radial & Transverse Components 

 

• Consider particle in polar coordinates, 
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Sample Problem 12.10 
A block B of mass m can slide freely on a frictionless arm OA which 

rotates in a horizontal plane at a constant rate 

Knowing that B is released at a distance r0 from O, express as a 

function of r  

a) the component vr of the velocity of B along OA, and  

b) the magnitude of the horizontal force exerted on B by the 

arm OA. 

STRATEGY:  

• Write the radial and transverse equations of motion for the block. 

• Integrate the radial equation to find an expression for the radial velocity. 

• Substitute known information into the transverse equation to find an expression for 

the force on the block. 

 

 

 



MODELING and ANALYSIS:  

• Write the radial and transverse equations of 

motion for the block. 

 
• Integrate the radial equation to find an expression for the radial velocity. 

 
 

 

 

 

 

• Substitute known information into the transverse equation to find an expression for 

the force on the block.  
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12.2 Angular Momentum and Orbital Motion 

 
 

Satellite orbits are analyzed using conservation of angular momentum. 

 



Eqs of Motion in Radial & Transverse Components 

Consider particle in polar coordinates, 

 
 

 

• This result may also be derived from conservation of angular 

momentum, 
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A. Angular Momentum of a Particle 

•  moment of momentum or the 

angular momentum of the particle about O. 

•  is perpendicular to plane containing  

  
• Derivative of angular momentum with respect to time, 

 
• It follows from Newton’s second law that the sum of the 

moments about O of the forces acting on the particle is equal 

to the rate of change of the angular momentum of the  

particle about O.  
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B. Conservation of Angular Momentum 

• When only force acting on particle is directed     

toward or away from a fixed point O, the particle 

is said to be moving under a central force. 

• Since the line of action of the central force passes   

through O,    

 (12.22) 

• Position vector and motion of particle are in a plane   

perpendicular to  

*    Magnitude of angular momentum, 
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• Radius vector OP sweeps infinitesimal area 

    

 

 

• Define areal velocity 

 

 
 Recall, for a body moving under a central force, 

        
 

• When a particle moves under a central force, its areal velocity is constant. 
 

constant2 == θrh

massunit 
momentumangular 

constant

2

2

===

==

hr
m

H
mrH

O

O

θ

θ





=== θθ


2
2
12

2
1 r

dt
dr

dt
dA

θdrdA 2
2
1=



 

C Newton’s Law of Gravitation 

*Gravitational force exerted by the sun on a planet or by the   

earth on a satellite is an important example of gravitational 

force. 

*Newton’s law of universal gravitation - two particles of mass 

M and m attract each other with equal and opposite force 

directed along the line connecting the particles, 

 
• For particle of mass m on the earth’s surface, 
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Sample Problem 12.12 

A satellite is launched in a direction parallel to the 

surface of the earth with a velocity of 30,000 km/h 

from an altitude of 400 km.  Determine the velocity 

of the satellite as it reaches it maximum altitude of 

4000 km.  The radius of the earth is 6370 km.  

 

 

STRATEGY:  

• Since the satellite is moving under a central force, its angular momentum is constant.  

Equate the angular momentum at A and B and solve for the velocity at B. 

 

 

 



 

MODELING and ANALYSIS:  

• Since the satellite is moving under a central 

force, its angular momentum is constant.  

Equate the angular momentum at A and B and 

solve for the velocity at B. 
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REFLECT and THINK:  

• Note that in order to increase velocity, a spacecraft often applies thrusters to push it 

closer to the earth. This central force means the spacecraft’s angular momentum 

remains constant, its radial distance r decreases, and its velocity v increases. 

 

 

 

 

 

 

 

 

 



 

*12.3 APPLICATIONS OF CENTRAL FORCE MOTION 

Trajectory of a Particle Under a Central Force 

• For particle moving under central force directed towards force center, 

 
 

• Second expression is equivalent to from which, 

 
 

• After substituting into the radial equation of motion and simplifying, 

 
• If F is a known function of r or u, then particle trajectory may be found by integrating 

for u = f(θ ), with constants of integration determined from initial conditions. 
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Application to Space Mechanics 

*Consider earth satellites subjected to only gravitational  pull of the 

earth, 

 
• Solution is equation of conic section,(12.37) 

 

 

• Origin, located at earth’s center, is a focus of the conic section. 

• Trajectory may be ellipse, parabola, or hyperbola depending on value of eccentricity. 
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• Trajectory of earth satellite is defined by 

(12.37) 

 
*Hyperbola, e > 1 or C > GM/h2. The radius vector becomes infinite for  

 
*Parabola, e = 1 or C = GM/h2.  The radius vector becomes 

infinite for   

 

*Ellipse, e < 1 or C < GM/h2.  The radius vector is finite for θ      

and is constant, i.e., a circle, for e = 0. 
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Integration constant C is determined by conditions at 

beginning of free flight, θ =0, r = r0 ,  

 

 

 

 

• Satellite escapes earth orbit for  

 
• Trajectory is elliptic for v0 < vesc and becomes 

circular for e = 0 or C = 0, 
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• Recall that for a particle moving under a central force, the 

areal velocity is constant, i.e., 

 

 

• Periodic time or time required for a satellite to complete 

an orbit is equal to area within the orbit divided by areal 

velocity, 
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Sample Problem 12.14 

A satellite is launched in a direction parallel to the 

surface of the earth with a velocity of 36,900 km/h at an 

altitude of 500 km.  

Determine: a) the maximum altitude reached by the  

 satellite, and b) the periodic time of the satellite. 

STRATEGY:  

• Trajectory of the satellite is described by 

 

  

 Evaluate C using the initial conditions at θ = 0. 

a)Determine the maximum altitude by finding r  at θ = 180o.  

θcos1
2 C

h
GM

r
+=



• With the altitudes at the perigee and apogee known, the periodic time can be evaluated. 

 

MODELING and ANALYSIS:  

• Trajectory of the satellite is described by 

 

 

Evaluate C using the initial conditions at θ = 0. 
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Determine the maximum altitude by finding r1 at θ = 

180o.  

 

 

 

 

 
b) With the altitudes at the perigee and apogee known,   

the periodic time can be evaluated. 
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( )max altitude  66,700-6370 km 60,300 km= =

min31h 19s103.70 3 =×=τ



 

 
REFLECT and THINK:  

• The satellite takes less than one day to travel over 60,000 km from the earth and back. In 

this problem, you started with Eq. 12.37, but it is important to remember that this formula 

was the solution to a differential equation that was derived using Newton’s second law. 

 

 

 

 



 

Kepler’s Laws of Planetary Motion 

• Results obtained for trajectories of satellites around earth may also be applied to 

trajectories of planets around the sun. 

• Properties of planetary orbits around the sun were determined astronomical 

observations by Johann Kepler (1571-1630) before Newton had developed his 

fundamental theory. 

• Each planet describes an ellipse, with the sun located at one of its foci. 

• The radius vector drawn from the sun to a planet sweeps equal areas in equal 

times. 

• The squares of the periodic times of the planets are proportional to the cubes 

of the semimajor axes of their orbits. 

 

 


