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Introduction

>F =ma

12.1 Newton’s Second Law of Motion
« If the resultant force acting on a particle is not zero, the particle will have
an acceleration proportional to the magnitude of resultant and in the

direction of the resultant.

 Must be expressed with respect to a Newtonian (or inertial) frame of

reference, i.e., one that is not accelerating or rotating.

 This form of the equation is for a constant mass system



12.1 B Linear Momentum of a Particle

* Replacing the acceleration by the derivative of the velocity yields

- dv
E=m—
2F=m
¢ )
_E(mv)_dt

L = linear momentum of the particle

« Linear Momentum Conservation Principle:
If the resultant force on a particle is zero, the linear momentum of the

particle remains constant in both magnitude and direction.



12.1C Systems of Units

a=1m/s2 «  Of the units for the four primary dimensions (force, mass, length,

::m—lkg ) F=1N_ and time), three may be chosen arbitrarily. The fourth must be

compatible with Newton’'s 2nd Law.

International System of Units (SI Units): base units are the units of

=1k
= length (m), mass (kg), and time (second). The unit of force is derived,
o W=981 N
m kg-m
IN = (1kg)(1s—2j =1 %

F=1 |

s [ )
‘J) o |[.“

F=11b
« US. Customary Units. base units are the units of force (Ib), length (m),

a=1 ft/s>

-

and time (second). The unit of mass is derived,
m =1 slug F=1lb

ST e 1l b _,Ib-s?

1lbm = 1S|Ug:—_
32.2ft/s2 1ft/s>



12.1 D Equations of Motion

« Newton's second law Z F =ma
Free-body diagram ~ Kinetic diagram

« Can use scalar component equations, e.g., for rectangular components,

Rectangular components

Z(FXTH: j+ FZIZ):m(aXT+ayT+aZIZ)
> F.=ma, > F,=ma, > F =ma,
> F =mX ZFy:my > F,=mi

Tangential and normal components, Radial and transverse components




Free Body Diagrams and Kinetic Diagrams
The free body diagram is the same as you have done in statics; we will add the

kinetic diagram in our dynamic analysis.

Isolate the body of interest (free body)
Draw your axis system (e.g., Cartesian, polar, path)
Add in applied forces (e.g., weight)

Replace supports with forces (e.g., reactions :normal force)

i WK

Draw appropriate dimensions (usually angles for particles)



225N

Put the inertial terms for the body of interest on the kinetic diagram.
1. Isolate the body of interest (free body)
2. Draw in the mass times acceleration of the particle; if unknown, do this in

the positive direction according to your chosen axes




225N

> F — ma

Draw the FBD and KD for block A (note that the massless, frictionless pulleys are
attached to block A and should be included in the system).




Draw the FBD and KD for the collar B. Assume there is friction acting between

the rod and collar, motion is in the vertical plane, and g is increasing




1. Isolate body
2. Axes
3. Applied forces

4. Replace supports with forces

5. Dimensions

6. Kinetic diagram

e ma
0 0
\/ er V ma
.
F, !(9 i



Sample Problem 12.1

E A 80-kg block rests on a horizontal plane.
3()° f Find the magnitude of the force P required
HHHHH to give the block an acceleration of 2.5
m/s? to the right. The coefficient of kinetic
80 kg - 5 .
friction between the block and plane is my
= 0.25.

STRATEGY:

* Resolve the equation of motion for the block into two rectangular component
equations.

» Unknowns consist of the applied force P and the normal reaction N from the plane.

The two equations may be solved for these unknowns.



W= (80kg)(9.81£2] -785N  MODELING and ANALYSIS:
S

« Resolve the equation of motion for the block into

0 B .. two rectangular component equations.
B Y Fy=ma:
! P cos30[1D.25N kg.5m/52|:
Z F =0: [ POON
m=80kg g
F =N N —Psin30°-785N =0
=0.25N

Unknowns consist of the applied force P and the normal reaction N from the plane.

The two equations may be solved for these unknowns.



N [ Psin30[][¥85N
P cos 30[1[9.25[ Bsin 30[1¥85 N[ [ROON

P[535N

— — — — —

80 kg

REFLECT and THINK
When you begin pushing on an object, you first have to overcome the static

friction force (F = pu;N) before the object will move.
Also note that the downward component of force P increases the normal force

N, which in turn increases the friction force F that you must overcome.



Sample Problem 12.3

A
- D
| 100 kg c, 7 >
\E 8:
- I:\J :
300 ke | B
STRATEGY:

The two blocks shown start from rest. The
horizontal plane and the pulley are
frictionless, and the pulley is assumed to be
of negligible mass. Determine the
acceleration of each block and the tension in
the cord.

* Write the kinematic relationships for the dependent motions and accelerations of the

blocks.

» Write the equations of motion for the blocks and pulley.

« Combine the kinematic relationships with the equations of motion to solve for the

accelerations and cord tension.



MODELING and ANALYSIS:
Write the kinematic relationships for the dependent

motions and accelerations of the blocks.

_1 _1
YB =35 XA ag =5anp
Write equations of motion for blocks and pulley.

- @ 2ZFc=maaa:
m=k T (100kg)a
2. Fy =mgag :

Mgg —T, =Mmgag
(300kg )(9.81 m/s? )— T, =(300kg)ag
TR T T, = 2940N - (300kg)ag

| 2. Fy=mcac =0:
= {} T, -2T; =0




Combine kinematic relationships with equations of motion

to solve for accelerations and cord tension.

_1 _1
YB =35 XA ag =5anp

T; = (100kg)a
T, = 2940N -(300kg)ag

- 2940N - (300kg)(1 )

Ay
my = 100 kg

T2 — 2T1 — 0
2940 N —(150kg)an —2(100kg)a, =0

mpg = 300 kg

mpag aA — 840 m/SZ

| a, =1a, =4.20m/s’
=0 T, =(100kg)a, =840N
T, = 2T, =1680N




300 ke | B

REFLECT and THINK
* Note that the value obtained for T, is not equal to the weight of block B.

Rather than choosing B and the pulley as separate systems, you could have
chosen the system to be B and the pulley. In this case, T, would have been

an internal force.



Sample Problem 12.5

The 6-kg block B starts from rest and slides
on the 15-kg wedge A, which is supported by

B
a horizontal surface.
Neglecting friction, determine (g) the
""""‘300 acceleration of the wedge, and (b) the

acceleration of the block relative to the wedge.

STRATEGY:

* The block is constrained to slide down the wedge. Therefore, their motions are
dependent. Express the acceleration of block as the acceleration of wedge plus the
acceleration of the block relative to the wedge.

» Write the equations of motion for the wedge and block.

« Solve for the accelerations.



1 MODELING and ANALYSIS:
* The block is constrained to slide down the wedge. Therefore,
their motions are dependent.
dg =dp +dpg/A
- Write equations of motion for wedge A and block B.
A: > F,=m,a,:
N, SIN30° =my,a,

"> 0.5N, = (my)as——@)




> F, =mga,

[T, gsin30 ﬂB[@\cosSO aB/A[
ap/ [ B, COS30LILHsin30[]

Solve for the accelerations.

(2)

Z F, =mga,
N; —Mg g c0s30°=—(mg )a,sin30°-—(3)

Substitute for N; from (1) into (3)



2mua, —Mg g 0s30°=—(mg )a, sin30°

Solve for @, and substitute the numerical data

a, =1.545m/s’

ag/a =8, C0530°+gsin30°

Substitute a,into (2)-> o/ :(1.545m/52)COS3OO+(9.81m/32)Sin 30°




30°

REFLECT and THINK
Many students are tempted to draw the acceleration of block B down the incline

in the kinetic diagram.

. Rather than the kinetic diagram you used for block 5,
you could have simply put unknown accelerations in the x and y directions and

then used your relative motion equation to obtain more scalar equations.



For tangential and normal components, Z F=ma
D> F,=ma, > F,=ma,
V2
Z F i = my Z F n— m;




Sample Problem 12.6

The bob of a 2-m pendulum describes an arc of a circle in a vertical
plane. If the tension in the cord is 2.5 times the weight of the

bob for the position shown, find the velocity and acceleration of
the bob in that position.

STRATEGY:

* Resolve the equation of motion for the bob into tangential and normal components.
* Solve the component equations for the normal and tangential accelerations.

* Solve for the velocity in terms of the normal acceleration.



MODELING and ANALYSIS:

« Resolve the equation of motion for the bob into

tangential and normal components.

» Solve the component equations for the normal and

tangential accelerations.

> F; =ma; : mgsin30° = may
a; = gsin30° a; =4.9 m/s2

_ : 2.5mg —mg cos30° =ma,
2 F=ma,: o~ a =16.03m/s’
ma, an = g (2.5—005300)
) « Solve for velocity in terms of normal acceleration.
2 \
Vv

a,=— V=.pa, = J(Z m)(16.03m/32)

Jo,

v=15.66m/s




~
e [ —_—

— e —

REFLECT and THINK:

 If you look at these equations for an angle of zero instead of 30°, you will
see that when the bob is straight below point O, the tangential acceleration

is zero, and the velocity is a maximum.

The normal acceleration is not zero because the bob has a velocity at this

point.



Sample Problem 12.7

y Determine the rated speed of a highway curve of
radius 7 = 120 m banked through an angle g = 18°.
The rated speed of a banked highway curve is the
speed at which a car should travel if no lateral

friction force is to be exerted at its wheels.

0=18°

STRATEGY:

» The car travels in a horizontal circular path with a normal component of acceleration
directed toward the center of the path. The forces acting on the car are its weight
and a normal reaction from the road surface.

» Resolve the equation of motion for the car into vertical and normal components.

* Solve for the vehicle speed.



SOLUTION:
MODELING and ANALYSIS:
* The car travels in a horizontal circular path with a normal component of
acceleration directed toward the center of the path. The forces acting on

the car are its weight and a normal reaction from the road surface.



« Resolve the equation of motion for the car into vertical and normal

components.
=0 Rcosé-W =0
> Fy=0: ’
R=——
cosé
ZFnzman: Rs,inH:ﬂan
g
2
Lsiné’:ﬂv—
cosé g p

 Solve for the vehicle speed.
v> = gptan®
=(9.81m/s”)(120m) tan18°

v=19.56m/s =70.4km/h




0=18°
REFLECT and THINK:

 For a highway curve, this seems like a reasonable speed for avoiding a spin-

out. If the roadway were banked at a larger angle, would the rated speed
be larger or smaller than this calculated value?

 For this problem, the tangential direction is into the page; since you were
not asked about forces or accelerations in this direction, you did not need

to analyze motion in the tangential direction.



Kinetics: Radial and Transverse Coordinates

Hydraulic actuators, extending robotic arms, and centrifuges as shown below

are often analyzed using radial and transverse coordinates.

Copyright © McGraw-Hill Education. Permission required for reproduction or display.
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Eqs of Motion in Radial & Transverse Components

« Consider particle in polar coordinates,

>F, =ma, = m(r—réz)
S Fy =may =m(rd +2r6)

¥ ma,




Sample Problem 12.10

A block B of mass m can slide freely on a frictionless arm OA which
rotates in a horizontal plane at a constant rate
Knowing that B is released at a distance r, from O express as a

function of r

a) the component v, of the velocity of B along OA, and

b) the magnitude of the horizontal force exerted on B by the

6=0,
arm QOA.

STRATEGY:

« Write the radial and transverse equations of motion for the block.
+ Integrate the radial equation to find an expression for the radial velocity.
 Substitute known information into the transverse equation to find an expression for

the force on the block.



mag MODELING and ANALYSIS:

2.+ Write the radial and transverse equations of

motion for the block.
>Fo=ma,: O:m(r—ré?z)
Y Fg=may:F =m(r[9'+2r6")

 Integrate the radial equation to find an expression for the radial velocity.
r=v, = dvy _ dv, dr :Vrdvr
dt dr dt dr
g W _dvedr | dve

r = = =Vr
dt  dr dt dr
vpdv, = ro%dr = régdr

v, r

_p2

(j)vrdvr_eojrdr Vr2 =002(r2—r02
o

 Substitute known information into the transverse equation to find an expression for

the force on the block.

F = 2m¢902(r2 —rOZ)J/2




9=9()

REFLECT and THINK:

[ ]

Introducing radial and transverse
components of force and acceleration
involves using components of velocity
as well in the computations. But this is
still much simpler and more direct than
trying to use other coordinate systems.

Even though the radial acceleration 1s
zero, the rod accelerates relative to the
rod with acceleration 7.



12.2 Angular Momentum and Orbital Motion

Copyright © McGraw-Hill Education. Permission required for reproduction or display.
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Eqs of Motion in Radial & Transverse Components

Consider particle in polar coordinates,
" > F=ma, = m(r—ré’z)
S Fy =may =m(rd +2ro)

* This result may also be derived from conservation of angular

momentum,
Ho =mr26
> Fy = %(mrzé’)
= m(rzéf + 2rr9)

S Fp =m(rd +2r6)



A.Angular Momentum of a Particle

y . Ho=rxmV = moment of momentum or the

angular momentum of the particle about O.

. Ho is perpendicular to plane containing T and mV
Ho =rmVsing ] i K

= rmv, Ho =| X y 2z

— mrg mvy, mvy my,

» Derivative of angular momentum with respect to time,
ﬁo —FxmV +FxmV =V xmV +F xma

=rx>F

=> Mo
It follows from Newton's second law that the sum of the

moments about O of the forces acting on the particle is equal

to the rate of change of the angular momentum of the

particle about O



B.Conservation of Angular Momentum
y

When only force acting on particle is directed
toward or away from a fixed point O, the particle
P is said to be moving under a central force.

* Since the line of action of the central force passes

through O, ZMO = I__iO =0 and

FxmV =Hg =constant 1, 5o

* Position vector and motion of particle are in a plane

Ho.

perpendicular to

* Magnitude of angular momentum,

Hgo = rmV sin ¢ = constant

or



Ho = mr26 = constant
Ho _ 20 = angular momentum (12.24)

m unit mass

« Radius vector OP sweeps infinitesimal area

dAz%erH

- Define areal velocity

dA_erd_H_

dt 2 dt
® Recall, for a body moving under a central force,

1,25 _
2r6?—

h = r26 = constant

* When a particle moves under a central force, its areal velocity is constant.



C Newton’s Law of Gravitation
*Gravitational force exerted by the sun on a planet or by the
M earth on a satellite is an important example of gravitational

force.
*Newton’s law of universal gravitation - two particles of mass
M and m attract each other with equal and opposite force

directed along the line connecting the particles,

F:GMm
r2

G = constant of gravitation

3 4
A2 M7 g 401079 M

=66.73x10
kg-s2 Ib-s*

* For particle of mass m on the earth’s surface,

w=mMC _mng ¢ =9.8132=32.2f—t

R? S 52



Sample Problem 12.12

B 30000 km/b - A satellite is launched in a direction parallel to the

surface of the earth with a velocity of 30,000 km/h

from an altitude of 400 km. Determine the velocity
of the satellite as it reaches it maximum altitude of
4000 km. The radius of the earth is 6370 km.

STRATEGY:

+ Since the satellite is moving under a central force, its angular momentum is constant.

Equate the angular momentum at A and B and solve for the velocity at 5.



myv

va

MODELING and ANALYSIS:

*Since the satellite is moving under a central
force, its angular momentum is constant.
Equate the angular momentum at A and B and

solve for the velocity at 5.
rmvsing = Hy = constant
rAMv, =rgMvp
r
VB =Va é
(6370+400)km
(6370+4000)km

—(30,000km/h)

vg =19,590km/h




REFLECT and THINK:
* Note that in order to increase velocity, a spacecraft often applies thrusters to push it
closer to the earth. This central force means the spacecraft’'s angular momentum

remains constant, its radial distance r decreases, and its velocity v increases.



*12.3 APPLICATIONS OF CENTRAL FORCE MOTION

Trajectory of a Particle Under a Central Force

* For particle moving under central force directed towards force center,

m(r—réz):ZFr ——F  m(rd+2r6)=3F, =0

« Second expression is equivalent to from which,

2 2
éziz and r:—h—zd—z(lj
r r=doc\r

« After substituting into the radial equation of motion and simplifying,

du 1
—+u=—>— where u=-—
do mh*“u r

« If Fis a known function of ror ¢, then particle trajectory may be found by integrating

for v = f(»), with constants of integration determined from initial conditions.



Application to Space Mechanics

*Consider earth satellites subjected to only gravitational pull of the
earth,

2
d—g+u: Z 5 where u:1 FzGl\gm:GMmu2
do mh“u r r
d2u
) +U = o = constant
do h
. Solution is equation of conic section,(12.37)
2
u=1- G—M(1+ £C0sO) &= gil\/l = eccentricity

r h?
» Origin, located at earth’s center, is a focus of the conic section.

« Trajectory may be ellipse, parabola, or hyperbola depending on value of eccentricity.



* Trajectory of earth satellite is defined by

2
1_ G—M(1+ £C0SH) &= (CZBLM = eccentricity

r h? (12.37)

#Hyperbola, e > 1 or C > GM/h?, The radius vector becomes infinite for
q( 1 _ GM
1+¢cos@; =0 6 ==*cos 1(——) = +cos )
&€ Ch
*Parabola, e = 1 or C = GM/H. The radius vector becomes
1+cosf, =0 6, =180°

infinite for

*Ellipse, e < 1 or C < GM/R?. The radius vector is finite for

and is constant, i.e., a circle, for e = 0.




Free fight Integration constant C is determined by conditions at

vo beginning of free flight, =0, r = ry,

| 2
i Burnout l — Gl\z/l 1+ Ch cos 0°
L h GM
\ Powered flight
Launching C:l_GM :l_ GM

2 2
r, h I ( AA )
< Uy < Uese

Ucire

« Satellite escapes earth orbit for
£>1or C=GM/h? =GM/(ryvg)?
2GM
o
 Trajectory is elliptic for v, < v, and becomes

Vesc =Vo =

circular for e=0or C= 0,




le—— @ ————>

 Recall that for a particle moving under a central force, the

L

areal velocity is constant, i.e.,

 Periodic time or time required for a satellite to complete

an orbit is equal to area within the orbit divided by area/

~ r T
velocity,
dA | . zab 2rab
—=1r*9=1h=constant 7= =
dt * ’ h/2 h

a= %("o +1p)

b= oy

where



Sample Problem 12.14

p 36900 km/h A satellite is launched in a direction parallel to the

surface of the earth with a velocity of 36,900 km/h at an
altitude of 500 km.

Determine: a) the maximum altitude reached by the

Maximum altitude

satellite, and b) the periodic time of the satellite.

N

500 km
STRATEGY:
 Trajectory of the satellite is described by
1 GM
—=—+—+Ccosé
r he

Evaluate C using the initial conditions at & = 0.

a)Determine the maximum altitude by finding r at & = 180°.



« With the altitudes at the perigee and apogee known, the periodic time can be evaluated.

MODELING and ANALYSIS:
* Trajectory of the satellite is described by

1

r

- +Ccosé

Evaluate C using the initial conditions at @ = 0.

I, =(6370+500)km

=6.87x10°m
v 4=36,900 km y 1000 m/km
h = 3600s/h
=10.25x10°m/s
h = 1V = (6.87x10°m )(10.25x10° my/s) c_1_ GV
Y
— 70.4x10° m?/s hoh
) 1 398x10" m®/s’
GM = gR® =(9.81m/s”)(6.37x10°m) 68710 (70.4m)s)

=398x10" m?/s? =65.3x10°m™



Determine the maximum altitude by finding r at 0 =

180°.
1 GM 398x10"2 m®/s? o1
1 (70.4m?Js)

I, = 66.7x10°m = 66,700 km
max altitude = (66,700-6370)km = 60,300 km

b)  With the altitudes at the perigee and apogee known,
the periodic time can be evaluated.

a=21(rp+n)=1(6.87+66.7)x10°m =36.8x10°m

b=./ror =~/6.87x66.7x10°m = 21.4x10°m

__2mab _ 27(36.8x10°m 21.4x10°m)
h 70.4%x10°m?/s

r =70.3x10%s=19h 31min




36,900 km/h

Maximum altitude

\
REFLECT and THINK:

» The satellite takes less than one day to travel over 60,000 km from the earth and back. In

500 km

this problem, you started with Eq. 12.37, but it is important to remember that this formula

was the solution to a differential equation that was derived using Newton's second law.



Kepler’s Laws of Planetary Motion

» Results obtained for trajectories of satellites around earth may also be applied to
trajectories of planets around the sun.

* Properties of planetary orbits around the sun were determined astronomical
observations by Johann Kepler (1571-1630) before Newton had developed his
fundamental theory.

« Each planet describes an ellipse, with the sun located at one of its foci.

* The radius vector drawn from the sun to a planet sweeps equal areas in equal
times.

» The squares of the periodic times of the planets are proportional to the cubes

of the semimajor axes of their orbits.



