Chapter 12

Preview

- Objectives
- Solutions
- Suspensions
- Colloids
- Solutes: Electrolytes Versus Nonelectrolytes

Chapter 12

Objectives .

- Distinguish between electrolytes and nonelectrolytes.
- List three different solute-solvent combinations.
- Compare the properties of suspensions, colloids, and solutions. -
- Distinguish between electrolytes and nonelectrolytes.

Chapter 12

Solutions .

- You know from experience that sugar dissolves in water. Sugar is described as "soluble in water." By soluble we mean capable of being dissolved. -
- When sugar dissolves, all its molecules become uniformly distributed among the water molecules. The solid sugar is no longer visible.
- Such a mixture is called a solution. A solution is a homogeneous mixture of two or more substances in a single phase.

Chapter 12

Solutions

Click below to watch the Visual Concept.

Visual Concept

Chapter 12

Solutions, continued v

- The dissolving medium in a solution is called the solvent, and the substance dissolved in a solution is called the solute. \quad
- Solutions may exist as gases, liquids, or solids. There are many possible solute-solvent combinations between gases, liquids, and solids. マ
- example: Alloys are solid solutions in which the atoms of two or more metals are uniformly mixed.
- Brass is made from zinc and copper.
- Sterling silver is made from silver and copper.

Chapter 12

Solutes, Solvents, and Solutions

Click below to watch the Visual Concept.

Visual Concept

Chapter 12

Visual Concepts

Types of Solutions

Chapter 12

Section 1 Types of Mixtures

Particle Models for Gold and Gold Alloy

24 -karat gold is pure gold.

14-karat gold is an alloy of gold with silver and copper. 14-karat gold is $14 / 24$, or 58.3%, gold.

Chapter 12

Suspensions

- If the particles in a solvent are so large that they settle out unless the mixture is constantly stirred or agitated, the mixture is called a suspension. v
- For example, a jar of muddy water consists of soil particles suspended in water. The soil particles will eventually all collect on the bottom of the jar, because the soil particles are denser than the solvent, water.
- Particles over 1000 nm in diameter-1000 times as large as atoms, molecules or ions-form suspensions.

Chapter 12

Suspensions

Click below to watch the Visual Concept.

Visual Concept

Chapter 12

Colloids

- Particles that are intermediate in size between those in solutions and suspensions form mixtures known as colloidal dispersions, or simply colloids.
- The particles in a colloid are small enough to be suspended throughout the solvent by the constant movement of the surrounding molecules.
- Colloidal particles make up the dispersed phase, and water is the dispersing medium.
- example: Mayonnaise is a colloid.
- It is an emulsion of oil droplets in water.

Chapter 12

Colloids, continued Tyndall Effect ,

- Many colloids look similar to solutions because their particles cannot be seen. .
- The Tyndall effect occurs when light is scattered by colloidal particles dispersed in a transparent medium. \downarrow
- example: a headlight beam is visible from the side on a foggy night.
- The Tyndall effect can be used to distinguish between a solution and a colloid.

Chapter 12

Colloids

Chapter 12

Emulsions

Chapter 12

Properties of Solutions, Colloids, and Suspensions

Solutions	Colloids	Suspensions
Homogeneous	Heterogeneous	Heterogeneous
Particle size: $0.01-1 \mathrm{~nm}$; can be atoms, ions, molecules	Particle size: 1-1000 nm, dispersed; can be aggregates or large molecules	Particle size: over 1000 nm, suspended; can be large particles or aggregates
Do not separate on standing	Do not separate on standing	Particles settle out
Cannot be separated by filtration	Cannot be separated by filtration	Can be separated by filtration
Do not scatter light	Scatter light (Tyndall effect)	May scatter light, but are not transparent

Chapter 12

Solutes: Electrolytes Versus Nonelectrolytes .

- A substance that dissolves in water to give a solution that conducts electric current is called an electrolyte. v
- Any soluble ionic compound, such as sodium chloride, NaCl , is an electrolyte.
- The positive and negative ions separate from each other in solution and are free to move, making it possible for an electric current to pass through the solution.

Chapter 12

Solutes: Electrolytes Versus Nonelectrolytes, continued v

- A substance that dissolves in water to give a solution that does not conduct electric current is called a nonelectrolyte. -
- Sugar is an example of a nonelectrolyte.
- Neutral solute molecules do not contain mobile charged particles, so a solution of a nonelectrolyte cannot conduct electric current.

Chapter 12

Section 1 Types of Mixtures

Electrical Conductivity of Solutions

Chapter 12

Preview

- Objectives
- Factors Affecting the Rate of Dissolution
- Solubility
- Solute-Solvent Interactions
- Enthalpies of Solution

Chapter 12

Section 2 The Solution Process

Objectives

- List and explain three factors that affect the rate at which a solid solute dissolves in a liquid solvent. -
- Explain solution equilibrium, and distinguish among saturated, unsaturated, and supersaturated solutions.
- Explain the meaning of "like dissolves like" in terms of polar and nonpolar substances.

Chapter 12

Objectives, continued .

- List the three interactions that contribute to the enthalpy of a solution, and explain how they combine to cause dissolution to be exothermic or endothermic. .
- Compare the effects of temperature and pressure on solubility.

Chapter 12

Dissolving Process

Click below to watch the Visual Concept.

Chapter 12

Factors Affecting the Rate of Dissolution ,

- Because the dissolution process occurs at the surface of the solute, it can be speeded up if the surface area of the solute is increased. .
- Stirring or shaking helps to disperse solute particles and increase contact between the solvent and solute surface. This speeds up the dissolving process. .
- At higher temperatures, collisions between solvent molecules and solvent are more frequent and of higher energy. This helps to disperse solute molecules among the solvent molecules, and speed up the dissolving process.

Chapter 12

Factors Affecting the Rate of Dissolution

Click below to watch the Visual Concept.

Visual Concept

Chapter 12

Solubility .

- If you add spoonful after spoonful of sugar to tea, eventually no more sugar will dissolve. .
- This illustrates the fact that for every combination of solvent with a solid solute at a given temperature, there is a limit to the amount of solid that can be dissolved.
- The point at which this limit is reached for any solutesolvent combination depends on the nature of the solute, the nature of the solvent, and the temperature.

Chapter 12

Section 2 The Solution Process

Particle Model for Soluble and Insoluble Substances

Toluene and
lithium chloride

Chapter 12

Section 2 The Solution Process

Particle Model for Soluble and Insoluble Substances

Water and toluene
 Insoluble

Chapter 12

Solubility, continued .

- When a solute is first added to a solvent, solute molecules leave the solid surface and move about at random in the solvent. -
- As more solute is added, more collisions occur between dissolved solute particles. Some of the solute molecules return to the crystal. -
- When maximum solubility is reached, molecules are returning to the solid form at the same rate at which they are going into solution.

Chapter 12

Solubility, continued .

- Solution equilibrium is the physical state in which the opposing processes of dissolution and crystallization of a solute occur at the same rates.

Chapter 12

Solution Equilibrium

Click below to watch the Visual Concept.

Visual Concept

Chapter 12

Solubility, continued

Saturated Versus Unsaturated Solutions

- A solution that contains the maximum amount of dissolved solute is described as a saturated solution.
- If more solute is added to a saturated solution, it falls to the bottom of the container and does not dissolve. \vee
- This is because an equilibrium has been established between ions leaving and entering the solid phase.
- A solution that contains less solute than a saturated solution under the same conditions is an unsaturated solution.

Chapter 12

Section 2 The Solution Process

Mass of Solute Added Versus Mass of Solute Dissolved

Chapter 12

Solubility, continued

Supersaturated Solutions .

- When a saturated solution is cooled, the excess solute usually comes out of solution, leaving the solution saturated at the lower temperature. -
- But sometimes the excess solute does not separate, and a supersaturated solution is produced, which is a solution that contains more dissolved solute than a saturated solution contains under the same conditions.
- A supersaturated solution will form crystals of solute if disturbed or more solute is added.

Chapter 12

Solubility, continued Solubility Values .

- The solubility of a substance is the amount of that substance required to form a saturated solution with a specific amount of solvent at a specified temperature. -
- example: The solubility of sugar is 204 g per 100 g of water at $20^{\circ} \mathrm{C}$.
- Solubilities vary widely, and must be determined experimentally.
- They can be found in chemical handbooks and are usually given as grams of solute per 100 g of solvent at a given temperature.

Solubility of Common Compounds

Compounds containing these
ions are soluble in water . . .
. . . unless they also contain these ions, which make them insoluble.

ammonium	NH_{4}^{+}	
potassium	K^{+}	
sodium	Na^{+}	
acetate	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$	$\mathrm{Fe}^{3+}, \mathrm{Al}^{3+}, \mathrm{Hg}_{2}{ }^{2+}$
chlorate	$\mathrm{ClO}_{3}{ }^{-}$	
chloride	Cl^{-}	$\mathrm{Ag}^{+}, \mathrm{Hg}_{2}^{2+}, \mathrm{Pb}^{2+}$
nitrate	NO_{3}^{-}	
sulfate	$\mathrm{SO}_{4}{ }^{2-}$	$\mathrm{Ca}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Hg}_{2}{ }^{2+}$

Solubility of Common Compounds

Compounds containing these ions are insoluble in water . . .

carbonate	$\mathrm{CO}_{3}{ }^{2-}$	$\mathrm{K}^{+}, \mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{NH}_{4}^{+}$
hydroxide	OH^{-}	$\mathrm{K}^{+}, \mathrm{Li}^{+}, \mathrm{Ba}^{2+}, \mathrm{Na}^{+}$
oxide	O^{2-}	
phosphate	$\mathrm{PO}_{4}{ }^{3-}$	$\mathrm{K}^{+}, \mathrm{Na}^{+}, \mathrm{NH}_{4}^{+}$
silicate	$\mathrm{SiO}_{3}{ }^{2-}$	$\mathrm{K}^{+}, \mathrm{Na}^{+}$
sulfide	S^{2-}	$\mathrm{K}^{+}, \mathrm{Na}^{+}, \mathrm{NH}_{4}^{+}$
sulfite	$\mathrm{SO}_{3}{ }^{2-}$	$\mathrm{K}^{+}, \mathrm{Na}^{+}, \mathrm{NH}_{4}^{+}$

. . . unless they also contain these ions, which make them soluble.
$\mathrm{K}^{+}, \mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{NH}_{4}^{+}$
$\mathrm{K}^{+}, \mathrm{Li}^{+}, \mathrm{Ba}^{2+}, \mathrm{Na}^{+}$

Chapter 12

Solubility of a Solid in a Liquid

Click below to watch the Visual Concept.

Visual Concept

Chapter 12

Solute-Solvent Interactions .

- Solubility varies greatly with the type of compounds involved.
- "Like dissolves like" is a rough but useful rule for predicting whether one substance will dissolve in another.
- What makes substances similar depends on: v
- type of bonding .
- polarity or nonpolarity of molecules
- intermolecular forces between the solute and solvent

Chapter 12

Like Dissolves Like

Click below to watch the Visual Concept.

Visual Concept

Chapter 12

Solute-Solvent Interactions, continued Dissolving lonic Compounds in Aqueous Solution

- The polarity of water molecules plays an important role in the formation of solutions of ionic compounds in water. .
- The slightly charged parts of water molecules attract the ions in the ionic compounds and surround them, separating them from the crystal surface and drawing them into the solution. .
- This solution process with water as the solvent is referred to as hydration. The ions are said to be hydrated.

Chapter 12

Section 2 The Solution Process

Solute-Solvent Interactions, continued Dissolving lonic Compounds in Aqueous Solution •

The hydration of the ionic solute lithium chloride is shown below.

Chapter 12

Solute-Solvent Interactions, continued Nonpolar Solvents

- Ionic compounds are generally not soluble in nonpolar solvents such as carbon tetrachloride, CCl_{4}, and toluene, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$. -
- The nonpolar solvent molecules do not attract the ions of the crystal strongly enough to overcome the forces holding the crystal together. -
- Ionic and nonpolar substances differ widely in bonding type, polarity, and intermolecular forces, so their particles cannot intermingle very much.

Chapter 12

Solute-Solvent Interactions, continued Liquid Solutes and Solvents .

- Oil and water do not mix because oil is nonpolar whereas water is polar. The hydrogen bonding between water molecules squeezes out whatever oil molecules may come between them. -
- Two polar substances, or two nonpolar substances, on the other hand, form solutions together easily because their intermolecular forces match.
- Liquids that are not soluble in each other are immiscible. Liquids that dissolve freely in one another in any proportion are miscible.

Chapter 12

Comparing Miscible and Immiscible Liquids

Click below to watch the Visual Concept.

Visual Concept

Chapter 12

Solute-Solvent Interactions, continued Effects of Pressure on Solubility .

- Changes in pressure have very little effect on the solubilities of liquids or solids in liquid solvents. However, increases in pressure increase gas solubilities in liquids. -
- An equilibrium is established between a gas above a liquid solvent and the gas dissolved in a liquid. .
- As long as this equilibrium is undisturbed, the solubility of the gas in the liquid is unchanged at a given pressure:
gas + solvent \rightleftarrows solution

Chapter 12

Solute-Solvent Interactions, continued Effects of Pressure on Solubility, continued

- Increasing the pressure of the solute gas above the solution causes gas particles to collide with the liquid surface more often. This causes more gas particles to dissolve in the liquid. \checkmark

$$
\uparrow \text { gas }+ \text { solvent } \rightleftarrows \text { solution }
$$

- Decreasing the pressure of the solute gas above the solution allows more dissolved gas particles to escape from solution. -
\downarrow gas + solvent \longleftrightarrow solution

Chapter 12

Pressure, Temperature, and Solubility of Gases

 Click below to watch the Visual Concept.Visual Concept

Chapter 12

Solute-Solvent Interactions, continued

Henry's Law v

- Henry's law states that the solubility of a gas in a liquid is directly proportional to the partial pressure of that gas on the surface of the liquid. -
- In carbonated beverages, the solubility of carbon dioxide is increased by increasing the pressure. The sealed containers contain CO_{2} at high pressure, which keeps the CO_{2} dissolved in the beverage, above the liquid.
- When the beverage container is opened, the pressure above the solution is reduced, and CO_{2} begins to escape from the solution.
- The rapid escape of a gas from a liquid in which it is dissolved is known as effervescence.

Chapter 12

Henry's Law

Click below to watch the Visual Concept.

Visual Concept

Chapter 12

Effervescence

Click below to watch the Visual Concept.

Visual Concept

Chapter 12

Solute-Solvent Interactions, continued Effects of Temperature on Solubility .

- Increasing the temperature usually decreases gas solubility. -
- As temperature increases, the average kinetic energy of molecules increases.
- A greater number of solute molecules are therefore able to escape from the attraction of solvent molecules and return to the gas phase.
- At higher temperatures, therefore, equilibrium is reached with fewer gas molecules in solution, and gases are generally less soluble.

Chapter 12

Solute-Solvent Interactions, continued Effects of Temperature on Solubility ,

- Increasing the temperature usually increases solubility of solids in liquids, as mentioned previously. .
- The effect of temperature on solubility for a given solute is difficult to predict. .
- The solubilities of some solutes vary greatly over different temperatures, and those for other solutes hardly change at all. .
- A few solid solutes are actually less soluble at higher temperatures.

Chapter 12

Section 2 The Solution Process

Solubility vs. Temperature

Chapter 12

Enthalpies of Solution .

- The formation of a solution is accompanied by an energy change.
- If you dissolve some potassium iodide, KI, in water, you will find that the outside of the container feels cold to the touch.
- But if you dissolve some sodium hydroxide, NaOH , in the same way, the outside of the container feels hot.
- The formation of a solid-liquid solution can either absorb energy (KI in water) or release energy as heat (NaOH in water)

Chapter 12

Enthalpies of Solution, continued ,

- Before dissolving begins, solute particles are held together by intermolecular forces. Solvent particles are also held together by intermolecular forces.
- Energy changes occur during solution formation because energy is required to separate solute molecules and solvent molecules from their neighbors. -
- A solute particle that is surrounded by solvent molecules is said to be solvated.

Chapter 12

Section 2 The Solution Process

Enthalpies of Solution, continued v

The diagram above shows the enthalpy changes that occur during the formation of a solution.

Chapter 12

Enthalpies of Solution, continued v

- The net amount of energy absorbed as heat by the solution when a specific amount of solute dissolves in a solvent is the enthalpy of solution. .
- The enthalpy of solution is negative (energy is released) when the sum of attractions from Steps 1 and 2 is less than Step 3, from the diagram on the previous slide.
- The enthalpy of solution is positive (energy is absorbed) when the sum of attractions from Steps 1 and 2 is greater than Step 3.

Chapter 12

Preview

- Objectives
- Concentration
- Molarity
- Molality

Chapter 12

Objectives .

- Given the mass of solute and volume of solvent, calculate the concentration of solution. -
- Given the concentration of a solution, determine the amount of solute in a given amount of solution. .
- Given the concentration of a solution, determine the amount of solution that contains a given amount of solute.

Chapter 12

Concentration .

- The concentration of a solution is a measure of the amount of solute in a given amount of solvent or solution.
- Concentration is a ratio: any amount of a given solution has the same concentration. -
- The opposite of concentrated is dilute.
- These terms are unrelated to the degree to which a solution is saturated: a saturated solution of a solute that is not very soluble might be very dilute.

Chapter 12

Section 3 Concentration of Solutions

Concentration Units

Name	Abbr.	Units	Uses
grams/100.g	$\mathrm{g} / 100 . \mathrm{g}$	$\frac{\mathrm{g} \text { solute }}{100 . \mathrm{g} \text { solvent }}$	solubility descriptions, medical products
mass percent or "weight percent"	\%	$\frac{\mathrm{g} \text { solute }}{100 . \mathrm{g} \text { solution }}$	biological research
parts per million	ppm	$\frac{\mathrm{g} \text { solute }}{1000000 . \mathrm{g} \text { solution }}$	small concentrations
parts per billion	ppb	$\frac{\mathrm{g} \text { solute }}{1000000000 . \mathrm{g} \text { solution }} *$	very small concentrations, as in pollutants or contaminants
parts per trillion	ppt	$\frac{\mathrm{g} \text { solute }}{1000000000000 . \mathrm{g} \text { solution }} \text { * }$	extremely small concentrations, as in isotopes used as tracers in medicine
molarity	M	$\frac{\text { mol solute }}{\mathrm{L} \text { solution }}$	laboratory chemistry, where the solute may undergo a chemical change according to a mole ratio
molality	m	$\frac{\mathrm{mol} \text { solute }}{\mathrm{kg} \text { solvent }}$	calculation of special properties such as boilingpoint elevation and freezing-point depression

*volume for gases

Chapter 12

Section 3 Concentration of Solutions

Concentration

Click below to watch the Visual Concept.

Visual Concept

Chapter 12

Molarity .

- Molarity is the number of moles of solute in one liter of solution.
- For example, a "one molar" solution of sodium hydroxide contains one mole of NaOH in every liter of solution.
- The symbol for molarity is M. The concentration of a one molar NaOH solution is written 1 M NaOH .

Chapter 12

Molarity, continued .

- To calculate molarity, you must know the amount of solute in moles and the volume of solution in liters.
- When weighing out the solute, this means you will need to know the molar mass of the solute in order to convert mass to moles. .
- example: One mole of NaOH has a mass of 40.0 g . If this quantity of NaOH is dissolved in enough water to make 1.00 L of solution, it is a 1.00 M solution.

Chapter 12

Molarity, continued

- The molarity of any solution can be calculated by dividing the number of moles of solute by the number of liters of solution:

$$
\text { molarity }(\mathrm{M})=\frac{\text { amount of solute }(\mathrm{mol})}{\text { volume of solution }(\mathrm{L})}
$$

- Note that a 1 M solution is not made by adding 1 mol of solute to 1 L of solvent. In such a case, the final total volume of the solution might not be 1 L . ,
- Solvent must be added carefully while dissolving to ensure a final volume of 1 L .

Chapter 12

Section 3 Concentration of Solutions

Preparation of a Solution Based on Molarity

Click below to watch the Visual Concept.

Visual Concept

Chapter 12

Molarity, continued
Sample Problem A -
You have 3.50 L of solution that contains 90.0 g of sodium chloride, NaCl . What is the molarity of that solution?

Chapter 12

Section 3 Concentration of

 Solutions
Molarity, continued

Sample Problem A Solution
Given: solute mass $=90.0 \mathrm{~g} \mathrm{NaCl}$
solution volume $=3.50 \mathrm{~L}$ v
Unknown: molarity of NaCl solution v
Solution:
$90.0 \mathrm{~g} \mathrm{NaCl} \times \frac{1 \mathrm{~mol} \mathrm{NaCl}}{58.44 \mathrm{~g} \mathrm{NaCl}}=1.54 \mathrm{~mol} \mathrm{NaCl}$

$$
\frac{1.54 \mathrm{~mol} \mathrm{NaCl}}{3.50 \mathrm{~L} \text { of solution }}=0.440 \mathrm{M} \mathrm{NaCl}
$$

Chapter 12

Section 3 Concentration of

Molarity, continued
Sample Problem B v
You have 0.8 L of a 0.5 M HCl solution. How many moles of HCl does this solution contain?

Chapter 12

Section 3 Concentration of

 Solutions
Molarity, continued

Sample Problem B Solution
Given: volume of solution $=0.8 \mathrm{~L}$
concentration of solution $=0.5 \mathrm{M} \mathrm{HCl}$ マ
Unknown: moles of HCl in a given volume
Solution:
$\frac{0.5 \mathrm{~mol} \mathrm{HCl}}{1.0 \mathrm{~L} \text { of solution }} \times 0.8 \mathrm{~L}$ of solution $=0.4 \mathrm{~mol} \mathrm{HCl}$

Chapter 12

Molarity, continued

Sample Problem C -

To produce 40.0 g of silver chromate, you will need at least 23.4 g of potassium chromate in solution as a reactant. All you have on hand is 5 L of a 6.0 M $\mathrm{K}_{2} \mathrm{CrO}_{4}$ solution. What volume of the solution is needed to give you the $23.4 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CrO}_{4}$ needed for the reaction?

Chapter 12

Section 3 Concentration of

 Solutions
Molarity, continued
 Sample Problem C Solution ,
 Given: volume of solution $=5 \mathrm{~L}$
 concentration of solution $=6.0 \mathrm{M} \mathrm{K}_{2} \mathrm{CrO}_{4}$
 mass of solute $=23.4 \mathrm{~K}_{2} \mathrm{CrO}_{4}$
 mass of product $=40.0 \mathrm{~g} \mathrm{Ag}_{2} \mathrm{CrO}_{4}$ -

Unknown: volume of $\mathrm{K}_{2} \mathrm{CrO}_{4}$ solution in L

Chapter 12

Section 3 Concentration of

 Solutions
Molarity, continued

Sample Problem C Solution, continued Solution:

$$
1 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{CrO}_{4}=194.2 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CrO}_{4}
$$

$$
23.4 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CrO}_{4} \times \frac{1 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{CrO}_{4}}{194.2 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CrO}_{4}}=0.120 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{CrO}_{4}
$$

$$
6.0 \mathrm{M} \mathrm{~K}_{2} \mathrm{CrO}_{4}=\frac{0.120 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{CrO}_{4}}{x \mathrm{~L} \mathrm{~K}_{2} \mathrm{CrO}_{4} \text { solution }}
$$

$$
x=0.020 \mathrm{~L} \mathrm{~K}_{2} \mathrm{CrO}_{4} \text { solution }
$$

Chapter 12

Section 3 Concentration of

 Solutions
Molality .

- Molality is the concentration of a solution expressed in moles of solute per kilogram of solvent.
- A solution that contains 1 mol of solute dissolved in 1 kg of solvent is a "one molal" solution. .
- The symbol for molality is m, and the concentration of this solution is written as 1 m NaOH .

Chapter 12

Molality, continued ,

- The molality of any solution can be calculated by dividing the number of moles of solute by the number of kilograms of solvent: ,

$$
\text { molality }(m)=\frac{\text { amount of solute }(\mathrm{mol})}{\text { mass of solvent }(\mathrm{kg})}
$$

- Unlike molarity, which is a ratio of which the denominator is liters of solution, molality is per kilograms of solvent.
- Molality is used when studying properties of solutions related to vapor pressure and temperature changes, because molality does not change with temperature.

Chapter 12

Section 3 Concentration of Solutions

Comparing Molarity and Molality

Click below to watch the Visual Concept.

Visual Concept

Chapter 12

Making a Molal Solution

Calculate the mass of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ needed. To make this solution, each kilogram of solvent $(1000 \mathrm{~g})$ will require 0.5000 mol of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$. This mass is calculated to be 124.8 g .

Add exactly 1 kg of solvent to the solute in the beaker. Because the solvent is water, 1 kg will equal 1000 mL .

Chapter 12

Section 3 Concentration of

 Solutions
Molality, continued

Sample Problem D v

A solution was prepared by dissolving 17.1 g of sucrose (table sugar, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$) in 125 g of water. Find the molal concentration of this solution.

Chapter 12

Section 3 Concentration of

 Solutions
Molality, continued

Sample Problem D Solution
Given: solute mass $=17.1 \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
solvent mass $=125 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ -
Unknown: molal concentration
Solution: First, convert grams of solute to moles and grams of solvent to kilograms. -
$17.1 \mathrm{~g} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11} \times \frac{1 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}}{342.34 \mathrm{~g} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}}=0.0500 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
$\frac{125 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1000 \mathrm{~g} / \mathrm{kg}}=0.125 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}$

Chapter 12

Molality, continued
 Sample Problem D Solution, continued マ

Then, divide moles of solute by kilograms of solvent. -

$$
\frac{0.0500 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}}{0.125 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}}=0.400 \mathrm{~m} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}
$$

Chapter 12

Molality, continued

Sample Problem E v
A solution of iodine, I_{2}, in carbon tetrachloride, CCl_{4}, is used when iodine is needed for certain chemical tests. How much iodine must be added to prepare a 0.480 m solution of iodine in CCl_{4} if $100.0 \mathrm{~g} \mathrm{of} \mathrm{CCl}_{4}$ is used?

Chapter 12

Section 3 Concentration of

 Solutions
Molality, continued

Sample Problem E Solution ,
Given: molality of solution $=0.480 \mathrm{~m} \mathrm{I}_{2}$ mass of solvent $=100.0 \mathrm{~g} \mathrm{CCl}_{4}$ -
Unknown: mass of solute
Solution: First, convert grams of solvent to kilograms.v

$$
\frac{100.0 \mathrm{~g} \mathrm{CCl}_{4}}{1000 \mathrm{~g} / \mathrm{kg}}=0.100 \mathrm{~kg} \mathrm{CCl}_{4}
$$

Chapter 12

Molality, continued

Sample Problem E Solution, continued
Solution, continued: Then, use the equation for molality to solve for moles of solute. -

$$
0.480 \mathrm{~m}=\frac{x \mathrm{~mol} \mathrm{I}_{2}}{0.1 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}} \quad x=0.0480 \mathrm{~mol} \mathrm{I}_{2}
$$

Finally, convert moles of solute to grams of solute. v

$$
0.480 \mathrm{~mol} \mathrm{I}_{2} \times \frac{253.8 \mathrm{~g} \mathrm{I}_{2}}{\mathrm{~mol} \mathrm{I}_{2}}=12.2 \mathrm{~g} \mathrm{I}_{2}
$$

End of Chapter 12 Show

