Chapter 12: Simple Linear Regression

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SCENARIO 12-3

The director of cooperative education at a state college wants to examine the effect of cooperative education job experience on marketability in the work place. She takes a random sample of 4 students. For these 4, she finds out how many times each had a cooperative education job and how many job offers they received upon graduation. These data are presented in the table below.

Student	CoopJobs	JobOffer
1	1	4
2	2	6
3	1	3
4	0	1

1) Referring to Scenario 12-3, set up a scatter plot.

1) _____

SCENARIO 12-10

The management of a chain electronic store would like to develop a model for predicting the weekly sales (in thousands of dollars) for individual stores based on the number of customers who made purchases. A random sample of 12 stores yields the following results:

Customers	Sales (Thousands of Dollars)
907	11.20
926	11.05
713	8.21
741	9.21
780	9.42
898	10.08
510	6.73
529	7.02
460	6.12
872	9.52
650	7.53
603	7.25

2) Referring to Scenario 12-10, generate the scatter plot.

2) _____

3) _____

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

- 3) The Y-intercept (b0) represents the
 - A) predicted value of Y.
 - B) variation around the sample regression line.
 - C) change in estimated Y per unit change in X.
 - D) predicted value of Y when X = 0.

- 4) The slope (b₁) represents
 - A) the predicted value of Y.
 - B) variation around the line of regression.
 - C) predicted value of Y when X = 0.
 - D) the estimated average change in Y per unit change in X.

SCENARIO 12-1

A large national bank charges local companies for using their services. A bank official reported the results of a regression analysis designed to predict the bank's charges (Y)—measured in dollars per month—for services rendered to local companies. One independent variable used to predict service charges to a company is the company's sales revenue (X) —measured in millions of dollars. Data for 21 companies who use the bank's services were used to fit the model:

 $Y_i = \beta_0 + \beta_1 X_i + \mathsf{E}_i$

The results of the simple linear regression are provided below.

Y = -2,700 + 20X, $S_{YX} = 65$, two-tail *p*-value = 0.034 (for testing β_1)

- 5) Referring to Scenario 12-1, interpret the estimate of β_0 , the Y-intercept of the line.
 - A) All companies will be charged at least \$2,700 by the bank.
 - B) About 95% of the observed service charges fall within \$2,700 of the least squares line.
 - C) For every \$1 million increase in sales revenue, we expect a service charge to decrease \$2,700.
 - D) There is no practical interpretation since a sales revenue of \$0 is a nonsensical value.

SCENARIO 12-6

The following Excel tables are obtained when "Score received on an exam (measured in percentage points)" (Y) is regressed on "percentage attendance" (X) for 22 students in a Statistics for Business and Economics course.

Regression	n Statistics			
Multiple R	0.142620229			
R Square	0.02034053			
Standard Error	20.25979924			
Observations	22			
	Coefficients	Standard Error	T Stat	P-value
Intercept	39.39027309	37.24347659	1.057642216	0.302826622
Attendance	0.340583573	0.52852452	0.644404489	0.526635689

6) Referring to Scenario 12-6, which of the following statements is true?

- A) If the score received increases by 39.39%, the estimated mean attendance will go up by 1%.
- B) If attendance increases by 1%, the estimated mean score received will increase by 39.39 percentage points.
- C) If attendance increases by 1%, the estimated mean score received will increase by 0.341 percentage points.
- D) If attendance increases by 0.341%, the estimated mean score received will increase by 1 percentage point.

6) _____

4)

A) The model is	when we say that a simple an excellent predictor of እ "practically" useful for pre		"statistically" useful?	7)
	a better predictor of Y tha	° _		
	cs computed from the san	•		
8) The least squares m	ethod minimizes which o	f the following?		8)
I. SSR				
II. SSE				
III. SST				
A) II only	B) III only	C) All of these	D) I only	

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SCENARIO 12-4

The managers of a brokerage firm are interested in finding out if the number of new clients a broker brings into the firm affects the sales generated by the broker. They sample 12 brokers and determine the number of new clients they have enrolled in the last year and their sales amounts in thousands of dollars. These data are presented in the table that follows.

52
37
64
55
29
34
58
59
44
48
31
38

9) Referring to Scenario 12-4, the least squares estimate of the slope is _____. 9) _____

10) Referring to Scenario 12-4, the least squares estimate of the Y-intercept is _____. 10) _____

SCENARIO 12-5

The managing partner of an advertising agency believes that his company's sales are related to the industry sales. He uses Microsoft Excel to analyze the last 4 years of quarterly data (i.e., n = 16) with the following results:

Regression St	atistics										
Multiple R			0.802								
R Square			0.643								
Adjusted R S	quare		0.618								
Standard Err	or SYX		0.9224								
Observations			16								
ANOVA											
	df	SS	MS	F	Sig.l	-					
Regression	1	21.497	21.497	25.27	0.00)					
Error	14	11.912	0.851								
Total	15	33.409									
Predictor	C	oef	<u>StdError</u>	<u>t Sta</u>	at	<i>p</i> -value					
Intercept	3.9	962	1.440	2.7	5	0.016					
Industry	0.0404	451	0.008048	5.0	3	0.000					
Durbin-Wats	son Statis	stic	1.59								
	-	o Scenario ´ izes is	12-5, the valu 	e of the q	uantit <u>y</u>	y that the le	east square	es regressi	on	11)	
12) Re	ferring to	o Scenario ⁻	12-5, the estin	nates of th	ne Y-ir	ntercept an	d slope ar	e	and	12)	

_____, respectively.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

SCENARIO 12-9

It is believed that, the average numbers of hours spent studying per day (HOURS) during undergraduate education should have a positive linear relationship with the starting salary (SALARY, measured in thousands of dollars per month) after graduation. Given below is the Excel output for predicting starting salary (Y) using number of hours spent studying per day (X) for a sample of 51 students. NOTE: Only partial output is shown.

Regression Statisti	cs
Multiple R	0.8857
R Square	0.7845
Adjusted R Square	0.7801
Standard Error	1.3704
Observations	51

ANOVA

	đf	SS	MS	F	Significance F
Regression	1	335.0472	335.0473	178.3859	
Residual			1.8782		
Total	50	427.0798			

		Standard				
	Coefficients	Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-1.8940	0.4018	-4.7134	0.0000	-2.7015	-1.0865
Hours	0.9795	0.0733	13.3561	0.0000	0.8321	1.1269

Note: $2.051E - 05 = 2.051*10^{-05}$ and $5.944E - 18 = 5.944*10^{-18}$.

13) Referring to Scenario 12-9, the estimated change in mean salary (in thousands of dollars) as a					
result of spending an extra hour per day studying is					
A) 0.9795	B) 0.7845	C) 335.0473	D) -1.8940		

SCENARIO 13-2

A candy bar manufacturer is interested in trying to estimate how sales are influenced by the price of their product. To do this, the company randomly chooses 6 small cities and offers the candy bar at different prices. Using candy bar sales as the dependent variable, the company will conduct a simple linear regression on the data below:

<u> </u>	<u>Price (\$)</u>	<u>Sales</u>
River Falls	1.30	100
Hudson	1.60	90
Ellsworth	1.80	90
Prescott	2.00	40
Rock Elm	2.40	38
Stillwater	2.90	32

14) Referring to Scenario 13-2, what is the percentage of the total variation in candy bar sales				
explained by the re	gression model?			
A) 100%	B) 78.39%	C) 48.19%	D) 88.54%	

15) True or False: The Regression Sum of Squares (SSR) can never be greater than the Total Sum of 15) ______
Squares (SST).
A) True
B) False

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SCENARIO 13-4

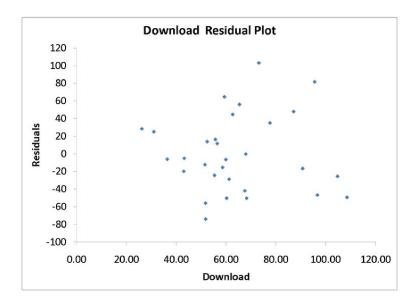
The managers of a brokerage firm are interested in finding out if the number of new clients a broker brings into the firm affects the sales generated by the broker. They sample 12 brokers and determine the number of new clients they have enrolled in the last year and their sales amounts in thousands of dollars. These data are presented in the table that follows.

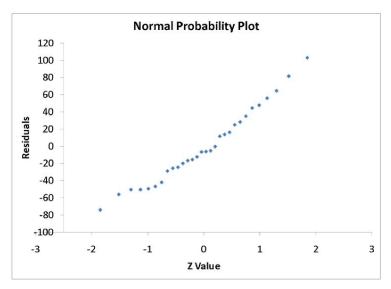
<u>Broker</u>	<u>Clients</u>	<u>Sales</u>
1	27	52
2	11	37
3	42	64
4	33	55
5	15	29
6	15	34
7	25	58
8	36	59
9	28	44
10	30	48
11	17	31
12	22	38

16) Referring to Scenario 13-4, _____ % of the total variation in sales generated can be 16) _____ explained by the number of new clients brought in.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

17) _____


17) The coefficient of determination (r^2) tells you


- A) the proportion of total variation that is explained.
- B) whether *r* has any significance.
- C) that you should not partition the total variation.
- D) that the coefficient of correlation (*r*) is larger than 1.

SCENARIO 13-11

A computer software developer would like to use the number of downloads (in thousands) for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars) he can make on the full version of the new shareware. Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:

Regression	Statistics					
Multiple R	0.8691					
R Square	0.7554					
Adjusted R Square	0.7467					
Standard Error	44.4765					
Observations	30.0000					
ANOVA	df	SS	MS	F	Significance F	
-	ai			•		
Regression	1	171062.9193	171062.9193	86.4759	0.0000	
Residual	28	55388.4309	1978.1582			
Total	29	226451.3503				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-95.0614	26.9183	-3.5315	0.0015	-150.2009	-39.9218
Download	3.7297	0.4011	9.2992	0.0000	2.9082	4.5513

- 18) Referring to Scenario 13-11, which of the following is the correct interpretation for the coefficient of determination?
 - A) 75.54% of the variation in the number of downloads can be explained by the variation in revenue.
 - B) 74.67% of the variation in the number of downloads can be explained by the variation in revenue.
 - C) 74.67% of the variation in revenue can be explained by the variation in the number of downloads.
 - D) 75.54% of the variation in revenue can be explained by the variation in the number of downloads.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SCENARIO 13-13

In this era of tough economic conditions, voters increasingly ask the question: "Is the educational achievement level of students dependent on the amount of money the state in which they reside spends on education?" The partial computer output below is the result of using spending per student (\$) as the independent variable and composite score which is the sum of the math, science and reading scores as the dependent variable on 35 states that participated in a study. The table includes only partial results.

Regress	ion Statistics			
Multiple R	0.3122			
R Square	0.0975			
Adjusted R Square	0.0701			
Standard Error	26.9122			
Observations	35			
ANOVA				
	df	SS	MS	F
Regression	1	2581.5759		
Residual			724.2674	
Total	34	26482.4000		
	Coefficients	Standard Error	t Stat	P-value
Intercept	595.540251	22.115176		
Spending per Student (\$)	0.007996	0.004235		

19) Referring to Scenario 13-13, what percentage of the variation in composite score can be explained by the variation in spending per student?

SCENARIO 13-3

The director of cooperative education at a state college wants to examine the effect of cooperative education job experience on marketability in the work place. She takes a random sample of 4 students. For these 4, she finds out how many times each had a cooperative education job and how many job offers they received upon graduation. These data are presented in the table below.

Student	CoopJobs	JobOffer
1	1	4
2	2	6
3	1	3
4	0	1

20) Referring to Scenario 13-3, the coefficient of determination is ______. 20) _____

SCENARIO 13-5

The managing partner of an advertising agency believes that his company's sales are related to the industry sales. He uses Microsoft Excel to analyze the last 4 years of quarterly data (i.e., n = 16) with the following results:

Regression Stat	tistics					
Multiple R			0.802			
R Square			0.643			
Adjusted R Squ	Jare		0.618			
Standard Error	SYX		0.9224			
Observations			16			
ANOVA						
	df	SS	MS	F	Sig.F	
Regression	1	21.497	21.497	25.27	0.000	
Error	14	11.912	0.851			
Total	15	33.409				
Predictor	<u>C</u>	oef	<u>StdError</u>	<u>t Sta</u>	<u>at</u>	<i>p</i> -value
Intercept	3.9	962	1.440	2.7	5	0.016
Industry	0.0404	451	0.008048	5.0	3	0.000
Durbin-Watso	n Statis	stic	1.59			

21) Referring to Scenario 13-5, the coefficient of determination is ______.

SCENARIO 13-10

The management of a chain electronic store would like to develop a model for predicting the weekly sales (in thousands of dollars) for individual stores based on the number of customers who made purchases. A random sample of 12 stores yields the following results:

Customers	Sales (Thousands of Dollars)
907	11.20
926	11.05
713	8.21
741	9.21
780	9.42
898	10.08
510	6.73
529	7.02
460	6.12
872	9.52
650	7.53
603	7.25

22) Referring to Scenario 13-10, what is the value of the coefficient of determination?

22) _____

23) _____

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

SCENARIO 13-1

A large national bank charges local companies for using their services. A bank official reported the results of a regression analysis designed to predict the bank's charges (Y)—measured in dollars per month—for services rendered to local companies. One independent variable used to predict service charges to a company is the company's sales revenue (X) —measured in millions of dollars. Data for 21 companies who use the bank's services were used to fit the model:

 $Y_i = \beta_0 + \beta_1 X_i + E_i$

The results of the simple linear regression are provided below.

 $\hat{Y} = -2,700 + 20X$, $S_{YX} = 65$, two-tail *p*-value = 0.034 (for testing β_1)

- 23) Referring to Scenario 13-1, interpret the estimate of σ , the standard deviation of the random error term (standard error of the estimate) in the model.
 - A) About 95% of the observed service charges fall within \$65 of the least squares line.
 - B) For every \$1 million increase in sales revenue, we expect a service charge to increase \$65.
 - C) About 95% of the observed service charges equal their corresponding predicted values.
 - D) About 95% of the observed service charges fall within \$130 of the least squares line.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SCENARIO 13-3

The director of cooperative education at a state college wants to examine the effect of cooperative education job experience on marketability in the work place. She takes a random sample of 4 students. For these 4, she finds out how many times each had a cooperative education job and how many job offers they received upon graduation. These data are presented in the table below.

Student	CoopJobs	JobOffer		
1	1	4		
2	2	6		
3	1	3		
4	0	1		
24) R	Referring to Scena	rio 13-3, the tota	al sum of squares (SST) is	24)
25) R	Referring to Scena	rio 13-3, the regi	ression sum of squares (<i>SSR</i>) is	25)
26) R	Referring to Scena	rio 13-3, the erro	or or residual sum of squares (SSE) is	26)
27) R	Referring to Scena	rio 13-3, the star	ndard error of estimate is	27)

SCENARIO 13-5

The managing partner of an advertising agency believes that his company's sales are related to the industry sales. He uses Microsoft Excel to analyze the last 4 years of quarterly data (i.e., n = 16) with the following results:

Regression Sta	tistics				
Multiple R			0.802		
R Square			0.643		
Adjusted R Sq	uare		0.618		
Standard Erro	r SYX		0.9224		
Observations			16		
ANOVA					
	df	SS	MS	F	Sig.F
Regression	1	21.497	21.497	25.27	0.000
Error	14	11.912	0.851		
Total	15	33.409			
Predictor	<u>C</u>	oef	<u>StdError</u>	<u>t Sta</u>	<u>at</u> <i>p</i> -value
Intercept	3.9	962	1.440	2.7	5 0.016
Industry	0.0404	451	0.008048	5.0	3 0.000
Durbin-Watso	on Statis	stic	1.59		

28) Referring to Scenario 13-5, the standard error of the estimate is _____. 28) _____

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

- 30) The standard error of the estimate is a measure of
 - A) the variation of the X variable.
 - B) total variation of the Y variable.
 - C) the variation around the sample regression line.
 - D) explained variation.

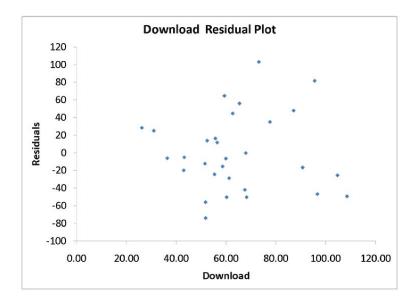
SCENARIO 13-9

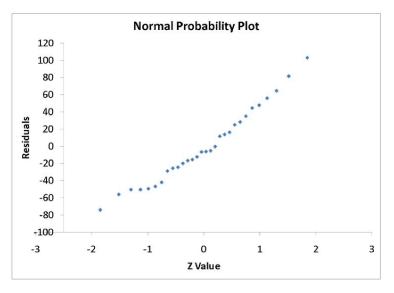
It is believed that, the average numbers of hours spent studying per day (HOURS) during undergraduate education should have a positive linear relationship with the starting salary (SALARY, measured in thousands of dollars per month) after graduation. Given below is the Excel output for predicting starting salary (Y) using number of hours spent studying per day (X) for a sample of 51 students. NOTE: Only partial output is shown.

	ati aa				
Regression Stati Multiple R	0.8857				
-					
R Square	0.7845				
Adjusted R Square	0.7801				
Standard Error	1.3704				
Observations	51				
ANOVA					
	đf	SS	MS	F	Significance F
Regression	1	335.0472	335.0473	178.3859	
Residual			1.8782		
Total	50	427.0798			

	Coefficients	Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-1.8940	0.4018	-4.7134	0.0000	-2.7015	-1.0865
Hours	0.9795	0.0733	13.3561	0.0000	0.8321	1.1269

Note: $2.051E - 05 = 2.051 \times 10^{-05}$ and $5.944E - 18 = 5.944 \times 10^{-18}$.


31) Referring to Scenario 13	-9, the error sum of squ	ares (SSE) of the above reg	gression is	31) _
A) 1.878215	B) 92.0325465	C) 427.079804	D) 335.047257	

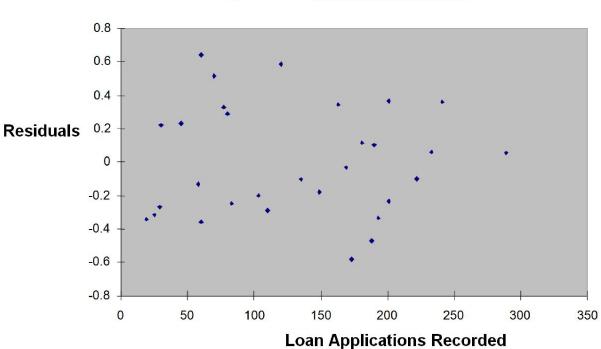

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SCENARIO 13-11

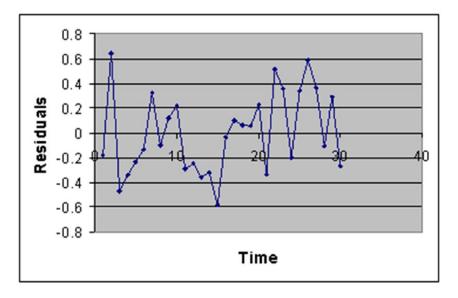
A computer software developer would like to use the number of downloads (in thousands) for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars) he can make on the full version of the new shareware. Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:

Regression	Statistics					
Multiple R	0.8691					
R Square	0.7554					
Adjusted R Square	0.7467					
Standard Error	44.4765					
Observations	30.0000					
ANOVA			140		0.111111111111	
	df	SS	MS	F	Significance F	
Regression	1	171062.9193	171062.9193	86.4759	0.0000	
Residual	28	55388.4309	1978.1582			
Total	29	226451.3503				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-95.0614	26.9183	-3.5315	0.0015	-150.2009	-39.9218
Download	3.7297	0.4011	9.2992	0.0000	2.9082	4.5513

32) Referring to Scenario 13-11, what is the standard error of estimate?


SCENARIO 13-12

The manager of the purchasing department of a large saving and loan organization would like to develop a model to predict the amount of time (measured in hours) it takes to record a loan application. Data are collected from a sample of 30 days, and the number of applications recorded and completion time in hours is recorded. Below is the regression output:


Regression Statistics				
Multiple R	0.9447			
R Square	0.8924			
Adjusted R	0.8886			
Square				
Standard	0.3342			
Error				
Observations	30			

	đţ	SS	MS	F	Significance F
Regression	1	25.9438	25.9438	232.2200	4.3946E-15
Residual	28	3.1282	0.1117		
Total	29	29.072			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	0.4024	0.1236	3.2559	0.0030	0.1492	0.6555
Applications Recorded	0.0126	0.0008	15.2388	0.0000	0.0109	0.0143

Applications Recorded Residual Plot

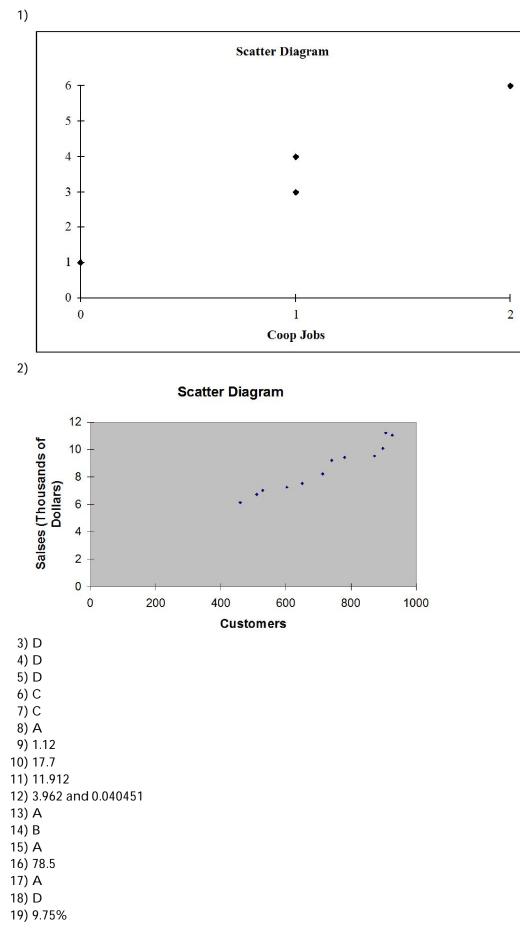
33) Referring to Scenario 13-12, what percentage of the variation in the amount of time needed can be explained by the variation in the number of invoices processed?

SCENARIO 13-13

In this era of tough economic conditions, voters increasingly ask the question: "Is the educational achievement level of students dependent on the amount of money the state in which they reside spends on education?" The partial computer output below is the result of using spending per student (\$) as the independent variable and composite score which is the sum of the math, science and reading scores as the dependent variable on 35 states that participated in a study. The table includes only partial results.

Regress	ion Statistics			
Multiple R	0.3122			
R Square	0.0975			
Adjusted R Square	0.0701			
Standard Error	26.9122			
Observations	35			
ANOVA				
	df	SS	MS	F
Regression	1	2581.5759		
Residual			724.2674	
Total	34	26482.4000		
	Coefficients	Standard Error	t Stat	P-value
Intercept	595.540251	22.115176		
Spending per Student (\$)	0.007996	0.004235		

34) Referring to Scenario 13-13, the error sum of squares (SSE) of the above regression is


34) _____

33) _____

15

35) Referring to Scenario 13-13, the regression mean square (<i>MSR</i>) of the above regression	35)
is	
36) Referring to Scenario 13-13, what is the standard deviation of the composite score	36)
around the regression line?	

Answer Key Testname: CH12-SIMPLE LINEAR REGRESSION

Answer Key Testname: CH12-SIMPLE LINEAR REGRESSION

20) 0.962 21) 0.643 22) 0.9453 23) D 24) 13.0 25) 12.5 26) 0.50 27) 0.50 28) 0.9224 29) 0.008 30) C 31) B 32) \$44.4765 thousands 33) 89.24% 34) 23,900.8241 35) 2,581.5759 36) 26.9122